Imaging of Peritoneal Cancers

  • Stephanie Nougaret


Imaging of primary and secondary peritoneal cancers plays a critical role in their diagnosis and follow-up. Primary peritoneum malignancies are very rare compared to secondary neoplastic involvement. In this short chapter, we will review the imaging characteristics of primary and secondary peritoneal tumor with a dedicated emphasis on how the radiologist can guide the treatment plan.


Imaging Peritoneal metastases Peritoneal carcinomatosis CT MRI PET scan 


  1. 1.
    Busch JM, Kruskal JB, Wu B. Armed forces institute of P. Best cases from the AFIP. Malignant peritoneal mesothelioma. Radiographics. 2002;22(6):1511–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Pickhardt PJ, Bhalla S. Primary neoplasms of peritoneal and sub-peritoneal origin: CT findings. Radiographics. 2005;25(4):983–95.CrossRefPubMedGoogle Scholar
  3. 3.
    Levy AD, Arnaiz J, Shaw JC, Sobin LH. From the archives of the AFIP: primary peritoneal tumors: imaging features with pathologic correlation. Radiographics. 2008;28(2):583–607. quiz 21–2.CrossRefPubMedGoogle Scholar
  4. 4.
    Tirkes T, Sandrasegaran K, Patel AA, Hollar MA, Tejada JG, Tann M, et al. Peritoneal and retroperitoneal anatomy and its relevance for cross-sectional imaging. Radiographics. 2012;32(2):437–51.CrossRefPubMedGoogle Scholar
  5. 5.
    Marques DT, Tenorio de Brito Siqueira L, Franca Bezerra RO, Menezes MR, de Souza Rocha M, Cerri GG. Resident and fellow education feature: imaging evaluation of peritoneal disease: overview of anatomy and differential diagnosis. Radiographics. 2014;34(4):962–3.CrossRefPubMedGoogle Scholar
  6. 6.
    Tateishi U, Hasegawa T, Kusumoto M, Oyama T, Ishikawa H, Moriyama N. Desmoplastic small round cell tumor: imaging findings associated with clinicopathologic features. J Comput Assist Tomogr. 2002;26(4):579–83.CrossRefPubMedGoogle Scholar
  7. 7.
    Iyer RS, Schaunaman G, Pruthi S, Finn LS. Imaging of pediatric desmoplastic small-round-cell tumor with pathologic correlation. Curr Probl Diagn Radiol. 2013;42(1):26–32.CrossRefPubMedGoogle Scholar
  8. 8.
    Covarrubias DA, Nardi P, Duncan A. Multimodality imaging findings of leiomyomatosis peritonealis disseminata. Ultrasound Obstet Gynecol. 2009;33(2):247–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Talebian Yazdi A, De Smet K, Antic M, Ilsen B, Vandenbroucke F, de Mey J. Leiomyomatosis peritonealis disseminata in a 50-year-old woman: imaging findings. JBR-BTR. 2010;93(4):193–5.PubMedGoogle Scholar
  10. 10.
    Fujii S, Kawawa Y, Horiguchi S, Kamata N, Kinoshita T, Ogawa T. Low-grade fibromyxoid sarcoma of the small bowel mesentery: computed tomography and magnetic resonance imaging findings. Radiat Med. 2008;26(4):244–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Alatise OI, Oke OA, Olaofe OO, Omoniyi-Esan GO, Adesunkanmi AR. A huge low-grade fibromyxoid sarcoma of small bowel mesentery simulating hyper immune splenomegaly syndrome: a case report and review of literature. Afr Health Sci. 2013;13(3):736–40.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Sugarbaker P, Yan T, Zappa L, Haveric N, Brun E. Thin-walled cysts as a pathognomonic CT finding in cystic mesothelioma. Tumori. 2008;94(1):14–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee R, Tong A, Kurtis B, Gilet AG. Benign multicystic peritoneal mesothelioma: AIRP best cases in radiologic-pathologic correlation. Radiographics. 2016;36(2):407–11.CrossRefPubMedGoogle Scholar
  14. 14.
    Tsuda K, Murakami T, Nakamura H, Kozuka T, Yamanishi H, Miyata M, et al. Lymphangioma of the mesentery and small intestine: a case report showing a solid tumor with a cystic component on US and CT. Radiat Med. 1994;12(5):241–3.PubMedGoogle Scholar
  15. 15.
    Pannu HK, Bristow RE, Montz FJ, Fishman EK. Multidetector CT of peritoneal carcinomatosis from ovarian cancer. Radiographics. 2003;23(3):687–701.CrossRefPubMedGoogle Scholar
  16. 16.
    Levy AD, Shaw JC, Sobin LH. Secondary tumors and tumorlike lesions of the peritoneal cavity: imaging features with pathologic correlation. Radiographics. 2009;29(2):347–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Nougaret S, Addley HC, Colombo PE, Fujii S, Al Sharif SS, Tirumani SH, et al. Ovarian carcinomatosis: how the radiologist can help plan the surgical approach. Radiographics. 2012;32(6):1775–800. discussion 800–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Coakley FV, Hricak H. Imaging of peritoneal and mesenteric disease: key concepts for the clinical radiologist. Clin Radiol. 1999;54(9):563–74.CrossRefPubMedGoogle Scholar
  19. 19.
    Grabowska-Derlatka L, Derlatka P, Szeszkowski W, Cieszanowski A. Diffusion-weighted imaging of small peritoneal implants in “potentially” early-stage ovarian cancer. Biomed Res Int. 2016;2016:5.CrossRefGoogle Scholar
  20. 20.
    Li W, Chu C, Cui Y, Zhang P, Zhu M. Diffusion-weighted MRI: a useful technique to discriminate benign versus malignant ovarian surface epithelial tumors with solid and cystic components. Abdom Imaging. 2012;37(5):897–903.CrossRefPubMedGoogle Scholar
  21. 21.
    Lindgren A, Anttila M, Rautiainen S, Arponen O, Kivela A, Makinen P, et al. Primary and metastatic ovarian cancer: characterization by 3.0T diffusion-weighted MRI. Eur Radiol. 2017;27(9):4002–12.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Michielsen K, Vergote I, Op de Beeck K, Amant F, Leunen K, Moerman P, et al. Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT. Eur Radiol. 2014;24(4):889–901.CrossRefPubMedGoogle Scholar
  23. 23.
    Rockall AG. Diffusion weighted MRI in ovarian cancer. Curr Opin Oncol. 2014;26(5):529–35.CrossRefPubMedGoogle Scholar
  24. 24.
    Nougaret S, Lakhman Y, Reinhold C, Addley HC, Fujii S, Delhom E, et al. The wheel of the mesentery: imaging spectrum of primary and secondary mesenteric neoplasms--how can radiologists help plan treatment?: resident and fellow education feature. Radiographics. 2016;36(2):412–3.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chira RI, Nistor-Ciurba CC, Mociran A, Mircea PA. Appendicular mucinous adenocarcinoma associated with pseudomyxoma peritonei, a rare and difficult imaging diagnosis. Med Ultrason. 2016;18(2):257–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Menassel B, Duclos A, Passot G, Dohan A, Payet C, Isaac S, et al. Preoperative CT and MRI prediction of non-resectability in patients treated for pseudomyxoma peritonei from mucinous appendiceal neoplasms. Eur J Surg Oncol. 2016;42(4):558–66.CrossRefPubMedGoogle Scholar
  27. 27.
    Chi DS, Musa F, Dao F, Zivanovic O, Sonoda Y, Leitao MM, et al. An analysis of patients with bulky advanced stage ovarian, tubal, and peritoneal carcinoma treated with primary debulking surgery (PDS) during an identical time period as the randomized EORTC-NCIC trial of PDS vs neoadjuvant chemotherapy (NACT). Gynecol Oncol. 2012;124(1):10–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Suidan RS, Ramirez PT, Sarasohn DM, Teitcher JB, Mironov S, Iyer RB, et al. A multicenter prospective trial evaluating the ability of preoperative computed tomography scan and serum CA-125 to predict suboptimal cytoreduction at primary debulking surgery for advanced ovarian, fallopian tube, and peritoneal cancer. Gynecol Oncol. 2014;134(3):455–61.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vargas HA, Burger IA, Goldman DA, Micco M, Sosa RE, Weber W, et al. Volume-based quantitative FDG PET/CT metrics and their association with optimal debulking and progression-free survival in patients with recurrent ovarian cancer undergoing secondary cytoreductive surgery. Eur Radiol. 2015;25(11):3348–53.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Qayyum A, Coakley FV, Westphalen AC, Hricak H, Okuno WT, Powell B. Role of CT and MR imaging in predicting optimal cytoreduction of newly diagnosed primary epithelial ovarian cancer. Gynecol Oncol. 2005;96(2):301–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Forstner R, Sala E, Kinkel K, Spencer JA. ESUR guidelines: ovarian cancer staging and follow-up. Eur Radiol. 2010;20(12):2773–80.CrossRefPubMedGoogle Scholar
  32. 32.
    Javitt MC. ACR appropriateness criteria on staging and follow-up of ovarian cancer. J Am Coll Radiol. 2007;4(9):586–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Walkey MM, Friedman AC, Sohotra P, Radecki PD. CT manifestations of peritoneal carcinomatosis. AJR Am J Roentgenol. 1988;150(5):1035–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Nelson RC, Chezmar JL, Hoel MJ, Buck DR, Sugarbaker PH. Peritoneal carcinomatosis: preoperative CT with intraperitoneal contrast material. Radiology. 1992;182(1):133–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Kim HW, Won KS, Zeon SK, Ahn BC, Gayed IW. Peritoneal carcinomatosis in patients with ovarian cancer: enhanced CT versus 18F-FDG PET/CT. Clin Nucl Med. 2013;38(2):93–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Diop AD, Fontarensky M, Montoriol PF, Da Ines D. CT imaging of peritoneal carcinomatosis and its mimics. Diagn Interv Imaging. 2014;95(9):861–72.CrossRefPubMedGoogle Scholar
  37. 37.
    Torkzad MR, Casta N, Bergman A, Ahlstrom H, Pahlman L, Mahteme H. Comparison between MRI and CT in prediction of peritoneal carcinomatosis index (PCI) in patients undergoing cytoreductive surgery in relation to the experience of the radiologist. J Surg Oncol. 2015;111(6):746–51.CrossRefPubMedGoogle Scholar
  38. 38.
    Forstner R, Hricak H, Occhipinti KA, Powell CB, Frankel SD, Stern JL. Ovarian cancer: staging with CT and MR imaging. Radiology. 1995;197(3):619–26.CrossRefPubMedGoogle Scholar
  39. 39.
    Low RN, Barone RM, Lacey C, Sigeti JS, Alzate GD, Sebrechts CP. Peritoneal tumor: MR imaging with dilute oral barium and intravenous gadolinium-containing contrast agents compared with unenhanced MR imaging and CT. Radiology. 1997;204(2):513–20.CrossRefPubMedGoogle Scholar
  40. 40.
    Low RN, Semelka RC, Worawattanakul S, Alzate GD, Sigeti JS. Extrahepatic abdominal imaging in patients with malignancy: comparison of MR imaging and helical CT, with subsequent surgical correlation. Radiology. 1999;210(3):625–32.CrossRefPubMedGoogle Scholar
  41. 41.
    Fujii S, Matsusue E, Kanasaki Y, Kanamori Y, Nakanishi J, Sugihara S, et al. Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur Radiol. 2008;18(1):18–23.CrossRefPubMedGoogle Scholar
  42. 42.
    Klumpp BD, Schwenzer N, Aschoff P, Miller S, Kramer U, Claussen CD, et al. Preoperative assessment of peritoneal carcinomatosis: intraindividual comparison of 18F-FDG PET/CT and MRI. Abdom Imaging. 2013;38(1):64–71.CrossRefPubMedGoogle Scholar
  43. 43.
    Schmidt S, Meuli RA, Achtari C, Prior JO. Peritoneal carcinomatosis in primary ovarian cancer staging: comparison between MDCT, MRI, and 18F-FDG PET/CT. Clin Nucl Med. 2015;40(5):371–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Low RN, Sebrechts CP, Barone RM, Muller W. Diffusion-weighted MRI of peritoneal tumors: comparison with conventional MRI and surgical and histopathologic findings--a feasibility study. AJR Am J Roentgenol. 2009;193(2):461–70.CrossRefPubMedGoogle Scholar
  45. 45.
    Kyriazi S, Collins DJ, Morgan VA, Giles SL, de Souza NM. Diffusion-weighted imaging of peritoneal disease for noninvasive staging of advanced ovarian cancer. Radiographics. 2010;30(5):1269–85.CrossRefPubMedGoogle Scholar
  46. 46.
    Fehniger J, Thomas S, Lengyel E, Liao C, Tenney M, Oto A, et al. A prospective study evaluating diffusion weighted magnetic resonance imaging (DW-MRI) in the detection of peritoneal carcinomatosis in suspected gynecologic malignancies. Gynecol Oncol. 2016;142(1):169–75.CrossRefPubMedGoogle Scholar
  47. 47.
    Dohan A, Hoeffel C, Soyer P, Jannot AS, Valette PJ, Thivolet A, et al. Evaluation of the peritoneal carcinomatosis index with CT and MRI. Br J Surg. 2017;104(9):1244–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Mitchell DG, Javitt MC, Glanc P, Bennett GL, Brown DL, Dubinsky T, et al. ACR appropriateness criteria staging and follow-up of ovarian cancer. J Am Coll Radiol. 2013;10(11):822–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Nam EJ, Yun MJ, YT O, Kim JW, Kim JH, Kim S, et al. Diagnosis and staging of primary ovarian cancer: correlation between PET/CT, Doppler US, and CT or MRI. Gynecol Oncol. 2010;116(3):389–94.CrossRefPubMedGoogle Scholar
  50. 50.
    Hynninen J, Kemppainen J, Lavonius M, Virtanen J, Matomaki J, Oksa S, et al. A prospective comparison of integrated FDG-PET/contrast-enhanced CT and contrast-enhanced CT for pretreatment imaging of advanced epithelial ovarian cancer. Gynecol Oncol. 2013;131(2):389–94.CrossRefPubMedGoogle Scholar
  51. 51.
    De Iaco P, Musto A, Orazi L, Zamagni C, Rosati M, Allegri V, et al. FDG-PET/CT in advanced ovarian cancer staging: value and pitfalls in detecting lesions in different abdominal and pelvic quadrants compared with laparoscopy. Eur J Radiol. 2011;80(2):e98–103.CrossRefPubMedGoogle Scholar
  52. 52.
    Micco M, Sala E, Lakhman Y, Hricak H, Vargas HA. Role of imaging in the pretreatment evaluation of common gynecological cancers. Women’s Health (Lond Engl). 2014;10(3):299–321.CrossRefGoogle Scholar
  53. 53.
    Gu P, Pan LL, Wu SQ, Sun L, Huang G. CA 125, PET alone, PET-CT, CT and MRI in diagnosing recurrent ovarian carcinoma: a systematic review and meta-analysis. Eur J Radiol. 2009;71(1):164–74.CrossRefPubMedGoogle Scholar
  54. 54.
    Forstner R, Hricak H, Powell CB, Azizi L, Frankel SB, Stern JL. Ovarian cancer recurrence: value of MR imaging. Radiology. 1995;196(3):715–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of RadiologyIRCM INSERM U1194, SIRICMontpellierFrance

Personalised recommendations