Advertisement

Cytoreductive Surgery for Peritoneal Metastases: Principles and Techniques

  • Aditi Bhatt
  • Sanket Mehta
Chapter

Abstract

The technique of cytoreductive surgery (CRS) was first formally described by Paul Sugarbaker. It is a complex surgical procedure comprising of peritonectomies and visceral resections. Since the first publication about 25 years ago, various aspects of the procedure have been described in greater detail, and some techniques have been modified and refined by other surgeons as well. Training at an expert center is the best way to understand and learn this procedure; however, each surgeon in their practice faces difficult situations while on the learning curve and even thereafter. This chapter provides a comprehensive overview of the rationale, techniques, and patient selection for CRS published in literature. A careful study of the published experiences of experts can guide surgeons on what to resect, how much, how, when, in whom, and how to manage the patient thereafter. A knowledge of the pathophysiology of peritoneal cancer spread forms the basis of providing this treatment and developing innovative therapies for future use.

Keywords

Peritoneal metastases Cytoreductive surgery Peritonectomy Visceral resection Multi-organ resection Pathophysiology 

References

  1. 1.
    Esquivel J. Current status and future directions of Hyperthermic Intraperitoneal Chemotherapy (HIPEC). Intervent Oncol. 2014;2(6):E45–52.Google Scholar
  2. 2.
    Lemoine L, Sugarbaker P, Van der Speeten K. Pathophysiology of colorectal peritoneal carcinomatosis: role of the peritoneum. World J Gastroenterol. 2016;22(34):7692–707.  https://doi.org/10.3748/wjg.v22.i34.7692.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Standring S, editor. Gray’s anatomy. 41st ed. London: Elsevier; 2015.Google Scholar
  4. 4.
    Meyers MA, Charnsangavej C, Oliphant M. Meyers’ dynamic radiology of the abdomen. 6th ed. New York: Springer; 2011. p. 23–34.CrossRefGoogle Scholar
  5. 5.
    Yoo E, Kim JH, Kim MJ, et al. Greater and lesser omenta: normal anatomy and pathologic processes. Radiographics. 2007;27(3):707–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Charnsangavej C, DuBrow RA, Varma DG, Herron DH, Robinson TJ, Whitley NO. CT of the mesocolon: part 1—anatomic considerations. Radiographics. 1993;13(5):1035–45.PubMedCrossRefGoogle Scholar
  7. 7.
    Solass W, Struller F, Horvath P, Königsrainer A, Sipos B, Weinreich F. Morphology of the peritoneal cavity and pathophysiological consequences. Pleura Peritoneum. 2016;1(4):193–201.CrossRefGoogle Scholar
  8. 8.
    Kim S, Kim TU, Lee JW, et al. The perihepatic space: comprehensive anatomy and CT features of pathologic conditions. Radiographics. 2007;27(1):129–43.PubMedCrossRefGoogle Scholar
  9. 9.
    Tirkes T, Sandrasegaran K, Patel AA, Hollar MA, Tejada JG, Tann M, et al. Peritoneal and retroperitoneal anatomy and its relevance for cross-sectional imaging. Radiographics. 2012;32:437–51.PubMedCrossRefGoogle Scholar
  10. 10.
    Verger C. Peritoneal ultrastructure. In: Nolph KD, editor. Peritoneal dialysis. Boston: Martinus Nijhoff; 1985. p. 95–113.CrossRefGoogle Scholar
  11. 11.
    Henderson LW. The problem of peritoneal membrane area and permeability. Kidney Int. 1973;3:409–10.PubMedCrossRefGoogle Scholar
  12. 12.
    Mion CM, Boen ST. Analysis of factors responsible for the formation of adhesions during chronic peritoneal dialysis. Am J Med Sci. 1965;250:675–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Knapowski J, Feder E, Simon M, Zabel M. Evaluation of the participation of parietal peritoneum in dialysis: physiological morphological and pharmacological data. Proc Eur Dial Transplant Assoc. 1979;16:155–64.PubMedGoogle Scholar
  14. 14.
    Rubin J, Clawson M, Planch A, Jones Q. Measurements of peritoneal surface area in man and rats. Am J Med Sci. 1988;295:453–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Esperanca MJ, Collins DL. Peritoneal dialysis efficiency in relation to body weight. J Pediatr Surg. 1966;1:162–9.CrossRefGoogle Scholar
  16. 16.
    Baron MA. Structure of the intestinal peritoneum in man. Am J Anat. 1941;69:439.CrossRefGoogle Scholar
  17. 17.
    Mutsaers SE, Wilkosz S. Structure and function of mesothelial cells. Cancer Treat Res. 2007;134:1–19.PubMedGoogle Scholar
  18. 18.
    van der Wal JB, Jeekel J. Biology of the peritoneum in normal homeostasis and after surgical trauma. Color Dis. 2007;9(Suppl 2):9–13.Google Scholar
  19. 19.
    Liu J, Geng X, Li Y. Tumor Biol. 2016;37:5715.  https://doi.org/10.1007/s13277-016-4887-3.CrossRefGoogle Scholar
  20. 20.
    Van Vugt E, Van Rijthoven EAM, Kamperdijk EWA, Beelen RHJ. Omental milky spots in the local immune response in the peritoneal cavity of rats. Anat Rec. 1996;244:235–45.PubMedCrossRefGoogle Scholar
  21. 21.
    Clark R, Krishnan V, Schoof M, Rodriguez I, Theriault B, Chekmareva M, et al. Milky spots promote ovarian cancer metastatic colonization of peritoneal adipose in experimental models. Am J Pathol. 2013;183:576–91.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Sedlacek AL, Gerber SA, Randall TD, van Rooijen N, Frelinger JG, Lord EM. Generation of a dual-functioning antitumor immune response in the peritoneal cavity. Am J Pathol. 2013;183:1318–28.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Oosterling SJ, van der Bij GJ, Bögels M, van der Sijp JR, Beelen RH, Meijer S, et al. Insufficient ability of omental milky spots to prevent peritoneal tumor outgrowth supports omentectomy in minimal residual disease. Cancer Immunol Immunother. 2006;55:1043–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Krist LF, Kerremans M, Broekhuis-Fluitsma DM, Eestermans IL, Meyer S, Beelen RH. Milky spots in the greater omentum are predominant sites of local tumour cell proliferation and accumulation in the peritoneal cavity. Cancer Immunol Immunother. 1998;47:205–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Kassis J, Klominek J, Kohn EC. Tumor microenvironment: what can effusions teach us? Diagn Cytopathol. 2005;33:316–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Kulbe H, Chakravarty P, Leinster DA, Charles KA, Kwong J, Thompson RG, et al. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res. 2012;72:66–75.PubMedCrossRefGoogle Scholar
  27. 27.
    Robinson-Smith TM, Isaacsohn I, Mercer CA, Zhou M, Van Rooijen N, Husseinzadeh N, et al. Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res. 2007;67:5708–16.PubMedCrossRefGoogle Scholar
  28. 28.
    Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17:1498–503.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mochizuki Y, Nakanishi H, Kodera Y, Ito S, Yamamura Y, Kato T, et al. TNF-alpha promotes progression of peritoneal metastasis as demonstrated using a green fluorescence protein (GFP)-tagged human gastric cancer cell line. Clin Exp Metastasis. 2004;21:39–47.PubMedCrossRefGoogle Scholar
  30. 30.
    Stadlmann S, Raffeiner R, Amberger A, Margreiter R, Zeimet AG, Abendstein B, et al. Disruption of the integrity of human peritoneal mesothelium by interleukin-1beta and tumor necrosis factor-alpha. Virchows Arch. 2003;443:678–85.PubMedCrossRefGoogle Scholar
  31. 31.
    Solass W, Horvath P, Struller F, Königsrainer I, Beckert S, Königsrainer A, Weinreich F, Schenk M. Functional vascular anatomy of the peritoneum in health and disease. Pleura Peritoneum. 2016;1(3):145–58.CrossRefGoogle Scholar
  32. 32.
    De Bree E, Tsiftsis D. Principles of perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis. In: Gonzalez Moreno S, editor. Advances in peritoneal surface oncology. New York: Springer; 2007.Google Scholar
  33. 33.
    Dedrick RL, Myers CE, Bungay PM, DeVita VT Jr. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep. 1978;62:1–11.PubMedGoogle Scholar
  34. 34.
    Sheth S, Horton KM, Garland MR, Fishman EK. Mesenteric neoplasms: CT appearances of primary and secondary tumors and differential diagnosis. Radiographics. 2003;23:457–473.; quiz 535-536.  https://doi.org/10.1148/rg.232025081.PubMedCrossRefGoogle Scholar
  35. 35.
    Oliphant M, Berne AS. Computed tomography of the subperitoneal space: demonstration of direct spread of intraabdominal disease. J Comput Assist Tomogr. 1982;6:1127–37.  https://doi.org/10.1097/00004728-198212000-00014.PubMedCrossRefGoogle Scholar
  36. 36.
    Levy AD, Arnáiz J, Shaw JC, Sobin LH. From the archives of the AFIP: primary peritoneal tumors: imaging features with pathologic correlation. Radiographics. 2008;28:583–607.; quiz 621-622.  https://doi.org/10.1148/rg.282075175.PubMedCrossRefGoogle Scholar
  37. 37.
    Karaosmanoglu D, Karcaaltincaba M, Oguz B, Akata D, Ozmen M, Akhan O. CT findings of lymphoma with peritoneal, omental and mesenteric involvement: peritoneal lymphomatosis. Eur J Radiol. 2009;71:313–7.  https://doi.org/10.1016/j.ejrad.2008.04.012.PubMedCrossRefGoogle Scholar
  38. 38.
    Sugarbaker PH. Pseudomyxoma peritonei. A cancer whose biology is characterized by a redistribution phenomenon. Ann Surg. 1994;219(2):109–11.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Lengyel E. Ovarian cancer development and metastasis. Am J Pathol. 2010;177(3):1053–64.  https://doi.org/10.2353/ajpath.2010.100105.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Le O. Patterns of peritoneal spread of tumor in the abdomen and pelvis. World J Radiol. 2013;5(3):106–12.  https://doi.org/10.4329/wjr.v5.i3.106.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Murphy EM, Sexton R, Moran BJ. Early results of surgery in 123 patients with pseudomyxoma peritonei from a perforated appendiceal neoplasm. Dis Colon Rectum. 2007;50:37–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Kostić Z, Cuk V, Bokun R, Ignjatović D, Usaj-Knezević S, Ignjatović M. Detection of free cancer cells in peritoneal cavity in patients surgically treated for gastric adenocarcinoma. Vojnosanit Pregl. 2006;63:349–56.PubMedCrossRefGoogle Scholar
  43. 43.
    Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol. 1998;153:333–9.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28:15–33.PubMedCrossRefGoogle Scholar
  45. 45.
    Hudson LG, Zeineldin R, Stack MS. Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression. Clin Exp Metastasis. 2008;25:643–55.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Patel IS, Madan P, Getsios S, Bertrand M, MacCalman C. Cadherin switching in ovarian cancer progression. Int J Cancer. 2003;106:172–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Imai T, Horiuchi A, Wang C, Oka K, Ohira S, Nikaido T, Konishi I. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol. 2003;163:1437–47.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kusamura S, Baratti D, Zaffaroni N, et al. Pathophysiology and biology of peritoneal carcinomatosis. World J Gastrointest Oncol. 2010;2(1):12–8.  https://doi.org/10.4251/wjgo.v2.i1.12.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Carmignani CP, Sugarbaker TA, Bromley CM, Sugarbaker PH. Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer Metastasis Rev. 2003;22:465–72.PubMedCrossRefGoogle Scholar
  50. 50.
    Jayne DG. The molecular biology of peritoneal carcinomatosis from gastrointestinal cancer. Ann Acad Med Singap. 2003;32:219–25.PubMedGoogle Scholar
  51. 51.
    Jayne DG, O’Leary R, Gill A, Hick A, Guillou PJ. A three-dimensional in-vitro model for the study of peritoneal tumour metastasis. Clin Exp Metastasis. 1999;17:515–23.PubMedCrossRefGoogle Scholar
  52. 52.
    Heath RM, Jayne DG, O’Leary R, Morrison EE, Guillou PJ. Tumour-induced apoptosis in human mesothelial cells: a mechanism of peritoneal invasion by Fas Ligand/Fas interaction. Br J Cancer. 2004;90(7):1437–42.  https://doi.org/10.1038/sj.bjc.6601635.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yonemura Y, Kawamura T, Bandou E, Tsukiyama G, Endou Y, Miura M. The natural history of free cancer cells in the peritoneal cavity. In: Gonzalez-Moreno S, editor. Advances in peritoneal surface oncology. Berlin: Springer; 2007. p. 11–23.CrossRefGoogle Scholar
  54. 54.
    Davies DE, Farmer S, White J, Senior PV, Warnes SL, Alexander P. Contribution of host-derived growth factors to in vivo growth of a transplantable murine mammary carcinoma. Br J Cancer. 1994;70:263–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Masoumi Moghaddam S, Amini A, Morris DL, Pourgholami MH. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev. 2012;31(1–2):143–62.  https://doi.org/10.1007/s10555-011-9337-5.PubMedCrossRefGoogle Scholar
  56. 56.
    Lopes Cardozo AM, Gupta A, Koppe MJ, et al. Metastatic pattern of CC531 colon carcinoma cells in the abdominal cavity: an experimental model of peritoneal carcinomatosis in rats. Eur J Surg Oncol. 2001;27:359–63.PubMedCrossRefGoogle Scholar
  57. 57.
    Gerber SA, Rybalko VY, Bigelow CE, et al. Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth. Am J Pathol. 2006;169:1739–52.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Klopp AH, Zhang Y, Solley T, et al. Omental adipose tissue- derived stromal cells promote vascularization and growth of endometrial tumors. Clin Cancer Res. 2012;18:771–82.PubMedCrossRefGoogle Scholar
  59. 59.
    Nowicka A, Marini FC, Solley TN, et al. Human omental-derived adipose stem cells increase ovarian cancer proliferation, migration, and chemoresistance. PLoS One. 2013;8:e81859.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Koppe MJ, Nagtegaal ID, de Wilt JH, Ceelen WP. Recent insights into the pathophysiology of omental metastases. J Surg Oncol. 2014;110:670–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Sangisetty SL, Miner TJ. Malignant ascites: a review of prognostic factors, pathophysiology and therapeutic measures. World J Gastrointest Surg. 2012;4(4):87–95.  https://doi.org/10.4240/wjgs.v4.i4.87.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ammouri L, Prommer EE. Palliative treatment of malignant ascites: profile of catumaxomab. Biologics. 2010;4:103–10.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Logan-Collins JM, Lowy AM, Robinson-Smith TM, Kumar S, Sussman JJ, James LE, Ahmad SA. VEGF expression predicts survival in patients with peritoneal surface metastases from mucinous adenocarcinoma of the appendix and colon. Ann Surg Oncol. 2008;15:738–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Rosa M, Abdelbaqi M, Bui KM, Nasir A, Bui MM, Shibata D, Coppola D. Overexpression of vascular endothelial growth factor a in invasive micropapillary colorectal carcinoma. Cancer Control. 2015;22:206–10.PubMedCrossRefGoogle Scholar
  65. 65.
    Yang X, Zhang Y, Hosaka K, Andersson P, Wang J, Tholander F, Cao Z, Morikawa H, Tegnér J, Yang Y, et al. VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc Natl Acad Sci U S A. 2015;112:E2900–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Chen H, Guan R, Lei Y, Chen J, Ge Q, Zhang X, Dou R, Chen H, Liu H, Qi X, et al. Lymphangiogenesis in gastric cancer regulated through Akt/mTOR-VEGF-C/VEGF-D axis. BMC Cancer. 2015;15:103.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML. Autocrine VEGF signaling is required for vascular homeostasis. Cell. 2007;130:691–703.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    De Falco S, Gigante B, Persico MG. Structure and function of placental growth factor. Trends Cardiovasc Med. 2002;12:241–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Sugarbaker PH. Colorectal cancer: prevention and management of metastatic disease. Biomed Res Int. 2014., Article ID 782890;2014:11.  https://doi.org/10.1155/2014/782890.CrossRefGoogle Scholar
  70. 70.
    Havelaar IJ, Sugarbaker PH, Vermess M, Miller DL. Rate of growth of intraabdominal metastases from colorectal cancer. Cancer. 1984;54(1):163–71.PubMedCrossRefGoogle Scholar
  71. 71.
    Joyce JA, Pollard JW. Microenvironment regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.PubMedCrossRefGoogle Scholar
  72. 72.
    Sugarbaker PH, Sammartino P, Tentes AA. Proactive management of peritoneal metastases from colorectal cancer: the next logical step toward optimal locoregional control. Colorect Cancer. 2012;1:115–23.CrossRefGoogle Scholar
  73. 73.
    Sugarbaker PH. It’s what the surgeon doesn’t see that kills the patient. J Nippon Med Sch. 2000;67:5–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Renzulli P, Lowy A, Maibach R, et al. The influence of the surgeon’s and the hospital’s caseload on survival and local recurrence after colorectal cancer surgery. Surgery. 2006;139:296–304.PubMedCrossRefGoogle Scholar
  75. 75.
    Sugarbaker PH. Carcinoma of the colon-prognosis and operative choice. Curr Probl Surg. 1981;18:755–802.CrossRefGoogle Scholar
  76. 76.
    Averbach AM, Jacquet P, Sugarbaker PH. Surgical technique and colorectal cancer: impaction on local recurrence and survival. Tumori. 1995;81(supplement):65–71.PubMedGoogle Scholar
  77. 77.
    Carter JJ, Feingold DL, Kirman I, et al. Laparoscopic-assisted cecectomy is associated with decreased formation of postoperative pulmonary metastases compared with open cecectomy in a murine model. Surgery. 2003;134:432–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Canis M, Botchorishvili R, Wattiez A, et al. Cancer and laparoscopy, experimental studies: a review. Eur J Obstet Gynecol Reprod Biol. 2000;91:1–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Jayne DG, Guillou PJ, Thorpe H, et al. Randomized trial of laparoscopic-assisted resection of colorectal carcinoma: 3-year results of the UK MRC CLASICC trial group. J Clin Oncol. 2007;25:3061–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Sugarbaker PH. Peritoneum as the first-line of defense in carcinomatosis. J Surg Oncol. 2007;95(2):93–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Sugarbaker PH. Management of peritoneal-surface malignancy: the surgeon’s role. Langenbeck’s Arch Surg. 1999;384:576–87.CrossRefGoogle Scholar
  82. 82.
    Bao P, Bartlett D. Surgical techniques in visceral resection and peritonectomy procedures. Cancer J. 2009;15(3):204–11.  https://doi.org/10.1097/PPO.0b013e3181a9c6f0.PubMedCrossRefGoogle Scholar
  83. 83.
    Sugarbaker P, Sardi A, Brown G, et al. Concerning CT features used to select patients for treatment of peritoneal metastases, a pictoral essay. Int J Hyperth. 2017;33(5):497–504.  https://doi.org/10.1080/02656736.2017.1317368.CrossRefGoogle Scholar
  84. 84.
    Sugarbaker PH. Peritonectomy procedures. Ann Surg. 1995;221(1):29–42.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Sugarbaker PH. The subpyloric space: an important surgical and radiologic feature in pseudomyxoma peritonei. Eur J Surg Oncol. 2002;28:443–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Sugarbaker P. Cytoreductive surgery using peritonectomy and visceral resections for peritoneal surface malignancy. Transl Gastrointest Cancer. 2013;2(2):54–74.Google Scholar
  87. 87.
    Sugarbaker PH. Dissection by electrocautery with a ball tip. J Surg Oncol. 1994;56:246–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Sugarbaker PH. Laser-mode electrosurgery. Cancer Treat Res. 1996;82:375–85.PubMedCrossRefGoogle Scholar
  89. 89.
    Zappa L, Sugarbaker PH. Compartment syndrome of the leg associated with lithotomy position for cytoreductive surgery. J Surg Oncol. 2007;96:619–23.PubMedCrossRefGoogle Scholar
  90. 90.
    de Lima Vazquez V, Sugarbaker PH. Xiphoidectomy. Gastric Cancer. 2003;6:127–9.PubMedGoogle Scholar
  91. 91.
    Sugarbaker PH. Cytoreductive surgery and perioperative chemotherapy: textbook and video atlas. Connecticut: Cine-Med Publishing; 2013.Google Scholar
  92. 92.
    Vazquez Vde L, Sugarbaker PH. Total anterior parietal peritonectomy. J Surg Oncol. 2003;83:261–3.PubMedCrossRefGoogle Scholar
  93. 93.
    Dagbert F, Passot G, Glehen O, Bakrin N. Glisson capsulectomy for extensive superficial liver involvement in peritoneal carcinomatosis (with video). J Visc Surg. 2015;152(5):332–3.PubMedCrossRefGoogle Scholar
  94. 94.
    Passot G, Kim BJ, Vaudoyer D, Kepenekian V, Bonnefoy I, Bakrin N, Cotte E, Glehen O. Digital glissonectomy: a safe perihepatic peritonectomy. Ann Surg Oncol. 2016;23(12):3978–85.PubMedCrossRefGoogle Scholar
  95. 95.
    Pathiraja PNJ, Garruto-Campanile R, Tozzi R. Diaphragmatic peritonectomy versus full thickness diaphragmatic resection and pleurectomy during cytoreduction in patients with ovarian cancer. Int J Surg Oncol. 2013;2013:6.  https://doi.org/10.1155/2013/876150.Google Scholar
  96. 96.
    Deslauriers N, Olney H, Younan R. Splenectomy revisited in 2011: impact on hematologic toxicities while performing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Gastrointest Oncol. 2011;2(2):61–3.  https://doi.org/10.3978/j.issn.2078-6891.2011.019. PubMedPubMedCentralGoogle Scholar
  97. 97.
    Becher RD, Shen P, Stewart JH, Russell G, Bradley JF, Levine EA. Splenectomy ameliorates hematologic toxicity of hyperthermic intraperitoneal chemotherapy. J Gastrointest Oncol. 2011;2(2):70–6.  https://doi.org/10.3978/j.issn.2078-6891.2011.011. PubMedPubMedCentralGoogle Scholar
  98. 98.
    Sugarbaker PH. Pont hepatique (hepatic bridge), an important anatomic structure in cytoreductive surgery. J Surg Oncol. 2010;101:251–2.PubMedCrossRefGoogle Scholar
  99. 99.
    Han SS, Sugarbaker PH. Kocher maneuver to facilitate cytoreduction within the foramen of Winslow. J Surg Oncol. 2017;115(7):788–90.  https://doi.org/10.1002/jso.24587. [Epub ahead of print]PubMedCrossRefGoogle Scholar
  100. 100.
    Chang S-J, Bristow RE. Surgical technique of en bloc pelvic resection for advanced ovarian cancer. J Gynecol Oncol. 2015;26(2):155.  https://doi.org/10.3802/jgo.2015.26.2.155.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Bijelic L, Sugarbaker PH. Cytoreduction of the small bowel surfaces. J Surg Oncol. 2008;97:176–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Benhaim L, Honoré C, Goéré D, Delhorme JB, Elias D. Huge pseudomyxoma peritonei: surgical strategies and procedures to employ to optimize the rate of complete cytoreductive surgery. Eur J Surg Oncol. 2016;42(4):552–7.  https://doi.org/10.1016/j.ejso.2016.01.015.PubMedCrossRefGoogle Scholar
  103. 103.
    Sugarbaker PH. Cytoreduction including total gastrectomy for pseudomyxoma peritonei. Br J Surg. 2002;89(2):208–12.PubMedCrossRefGoogle Scholar
  104. 104.
    Piso P, Slowik P, Popp F, Dahlke MH, Glockzin G, Schlitt HJ. Safety of gastric resections during cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis. Ann Surg Oncol. 2009;16(8):2188–94.  https://doi.org/10.1245/s10434-009-0478-5. Epub 2009 May 2PubMedCrossRefGoogle Scholar
  105. 105.
    Di Fabio F, Mehta A, Chandrakumaran K, Mohamed F, Cecil T, Moran B. Advanced pseudomyxoma peritonei requiring gastrectomy to achieve complete cytoreduction results in good long-term oncologic outcomes. Ann Surg Oncol. 2016;23(13):4316–21. Epub 2016 Jul 5PubMedCrossRefGoogle Scholar
  106. 106.
    Liu Y, Mizumoto A, Ishibashi H, Takeshita K, Hirano M, Ichinose M, Takegawa S, Yonemura Y. Should total gastrectomy and total colectomy be considered for selected patients with severe tumor burden of pseudomyxoma peritonei in cytoreductive surgery? Eur J Surg Oncol. 2016;42(7):1018–23.  https://doi.org/10.1016/j.ejso.2016.04.059.PubMedCrossRefGoogle Scholar
  107. 107.
    Foster JM, Gupta PK, Carreau JH, Grotz TE, Blas JV, Gatalica Z, Nath S, Loggie BW. Right hemicolectomy is not routinely indicated in pseudomyxoma peritonei. Am Surg. 2012;78(2):171–7.PubMedGoogle Scholar
  108. 108.
    Hertel H, Diebolder H, Herrmann J, Köhler C, Kühne-Heid R, Possover M, Schneider A. Is the decision for colorectal resection justified by histopathologic findings: a prospective study of 100 patients with advanced ovarian cancer. Gynecol Oncol. 2001;83(3):481–4.PubMedCrossRefGoogle Scholar
  109. 109.
    Sugarbaker PH. Avoiding diverting ileostomy in patients requiring complete pelvic peritonectomy. Ann Surg Oncol. 2016;23(5):1481–5.  https://doi.org/10.1245/s10434-015-4961-x.PubMedCrossRefGoogle Scholar
  110. 110.
    Obermair A, Hagenauer S, Tamandl D, Clayton RD, Nicklin JL, Perrin LC, Ward BG, Crandon AJ. Safety and efficacy of low anterior en bloc resection as part of cytoreductive surgery for patients with ovarian cancer. Gynecol Oncol. 2001;83(1):115–20.PubMedCrossRefGoogle Scholar
  111. 111.
    Yildirim Y, Ertas IE, Nayki U, Ulug P, Nayki C, Yilmaz I, Gultekin E, Dogan A, Aykas A, Ulug S, Ozdemir A, Solmaz U. En-bloc pelvic resection with concomitant rectosigmoid colectomy and immediate anastomosis as part of primary cytoreductive surgery for patients with advanced ovarian cancer. Eur J Gynaecol Oncol. 2014;35(4):400–7. PMID: 25118481PubMedGoogle Scholar
  112. 112.
    Mourton SM, Temple LK, Abu-Rustum NR, Gemignani ML, Sonoda Y, Bochner BH, Barakat RR, Chi DS. Morbidity of rectosigmoid resection and primary anastomosis in patients undergoing primary cytoreductive surgery for advanced epithelial ovarian cancer. Gynecol Oncol. 2005;99(3):608–14. Epub 2005 Sep 8 PMID: 16153697PubMedCrossRefGoogle Scholar
  113. 113.
    Sonnendecker EW, Beale PG. Rectosigmoid resection without colostomy during primary cytoreductive surgery for ovarian carcinoma. Int Surg. 1989;74(1):10–2.PubMedGoogle Scholar
  114. 114.
    Riss S, Chandrakumaran K, Dayal S, Cecil TD, Mohamed F, Moran BJ. Risk of definitive stoma after surgery for peritoneal malignancy in 958 patients: comparative study between complete cytoreductive surgery and maximal tumor debulking. Eur J Surg Oncol. 2015;41(3):392–5.  https://doi.org/10.1016/j.ejso.2014.09.002.PubMedCrossRefGoogle Scholar
  115. 115.
    Pokorny H, Herkner H, Jakesz R, Herbst F. Mortality and complications after stoma closure. Arch Surg. 2005;140:956–60. discussion 960PubMedCrossRefGoogle Scholar
  116. 116.
    Mala T, Nesbakken A. Morbidity related to the use of a protective stoma in anterior resection for rectal cancer. Color Dis. 2008;10(8):785.CrossRefGoogle Scholar
  117. 117.
    de Cuba EM, Verwaal VJ, de Hingh IH, et al. Morbidity associated with colostomy reversal after cytoreductive surgery and HIPEC. Ann Surg Oncol. 2014;21:883–90.PubMedCrossRefGoogle Scholar
  118. 118.
    Doud AN, Randle RW, Clark CJ, Levine EA, Swett KR, Shen P, Stewart JH, Votanopoulos KI. Impact of distal pancreatectomy on outcomes of peritoneal surface disease treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2015;22(5):1645–50.  https://doi.org/10.1245/s10434-014-3976-z.PubMedCrossRefGoogle Scholar
  119. 119.
    Schwarz L, Votanopoulos K, Morris D, Yonemura Y, Deraco M, Piso P, Moran B, Levine EA, Tuech JJ. Is the combination of distal pancreatectomy and cytoreductive surgery with HIPEC reasonable?: results of an international multicenter study. Ann Surg. 2016;263(2):369–75.  https://doi.org/10.1097/SLA.0000000000001225.PubMedCrossRefGoogle Scholar
  120. 120.
    Mahdi H, Rose PG, Gonzalez S, DeBernardo R, Knight J, Michener C, Moselmi-Kebria M.Postoperative complications after distal pancreatectomy performed during cytoreductive surgery for gynecologic malignancies. Int J Gynecol Cancer. 2015;25(6):1128–33.  https://doi.org/10.1097/IGC.0000000000000455.PubMedCrossRefGoogle Scholar
  121. 121.
    Bacalbasa N, Dima S, Brasoveanu V, et al. Liver resection for ovarian cancer liver metastases as part of cytoreductive surgery is safe and may bring survival benefit. World J Surg Oncol. 2015;13:235.  https://doi.org/10.1186/s12957-015-0652-0.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Yoon SS, Jarnagin WR, Fong Y, DeMatteo RP, Barakat RR, Blumgart LH, Chi DS. Resection of recurrent ovarian or fallopian tube carcinoma involving the liver. Gynecol Oncol. 2003;91(2):383–8.  https://doi.org/10.1016/j.ygyno.2003.07.005.PubMedCrossRefGoogle Scholar
  123. 123.
    O’Rourke TR, Tekkis P, Yeung S, Fawcett J, Lynch S, Strong R, et al. Long-term results of liver resection for non-colorectal, non-neuroendocrine metastases. Ann Surg Oncol. 2008;15(1):207–18.  https://doi.org/10.1245/s10434-007-9649-4.PubMedCrossRefGoogle Scholar
  124. 124.
    Gasparri ML, Grandi G, Bolla D, Gloor B, Imboden S, Panici PB, Mueller MD, Papadia A. Hepatic resection during cytoreductive surgery for primary or recurrent epithelial ovarian cancer. J Cancer Res Clin Oncol. 2016;142(7):1509–20.  https://doi.org/10.1007/s00432-015-2090-3.PubMedCrossRefGoogle Scholar
  125. 125.
    Meredith MA, Cliby WA, Keeney GL, Lesnick TG, Nagorney DM, Podratz KC. Hepatic resection for metachronous metastases from ovarian carcinoma. Gynecol Oncol. 2003;89:16–21.CrossRefGoogle Scholar
  126. 126.
    Yoon SS, Jarnagin WR, Fong Y, DeMatteo RP, Barakat RR, Blum- gart LH, Chi DS. Resection of recurrent ovarian or fallopian tube carcinoma involving the liver. Gynecol Oncol. 2003;91(2):383–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Loizzi V, Rossi C, Cormio G, Cazzolla A, Altomare D, Selvaggi L. Clinical features of hepatic metastasis in patients with ovarian cancer. Int J Gynecol Cancer. 2005;15(1):26–31.PubMedCrossRefGoogle Scholar
  128. 128.
    Abood G, Bowen M, Potkul R, Aranha G, Shoup M. Hepatic resection for recurrent metastatic ovarian cancer. Am J Surg. 2008;195:370–3.PubMedCrossRefGoogle Scholar
  129. 129.
    Pekmezci S, Saribeyoglu K, Aytac E, Arvas M, Demirkiran F, Ozguroglu M. Surgery for isolated liver metastasis of ovarian cancer. Asian J Surg. 2010;30(2):83–8.CrossRefGoogle Scholar
  130. 130.
    Roh HJ, Kim DY, Joo WD, Yoo HJ, Kim JH, Kim YM, Kim YT, Nam JH. Hepatic resection as part of secondary cytoreductive surgery for recurrent ovarian cancer involving the liver. Arch Gynecol Obstet. 2011;284(5):1223–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Niu G, Shen C, Cui W, Li Q. Hepatic resection is safe for metachronous hepatic metastases from ovarian cancer. Cancer Biol Med. 2012;9:182–7.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Neumann UP, Fotopoulou C, Schmeding M, Thelen A, Papanikolaou G, Braicu EI, Neuhaus P, Sehouli J. Clinical outcome of patients with advanced ovarian cancer after resection of liver metastases. Anticancer Res. 2012;32(10):4517–21.PubMedGoogle Scholar
  133. 133.
    Chi DS, Temkin SM, Abu-Rustum NR, Sabattini P, Jarnagin W, Blumgart LH. Major hepatectomy at interval debulking for stage IV ovarian carcinoma: a case report. Gynecol Oncol. 2002;87(1):138–42.  https://doi.org/10.1006/gyno.2002.6717[17].PubMedCrossRefGoogle Scholar
  134. 134.
    Loizzi V, Rossi C, Cormio G, Cazzolla A, Altomare D, Selvaggi L. Clinical features of hepatic metastasis in patients with ovarian cancer. Int J Gynecol Cancer. 2005;15(1):26–31.  https://doi.org/10.1111/j.1048-891x.2005.14406.x.PubMedCrossRefGoogle Scholar
  135. 135.
    Pelz JOW, Stojadinovic A, Nissan A, Hohenberger W, Esquivel J. Evaluation of a peritoneal surface disease severity score in patients with colon cancer with peritoneal carcinomatosis. J Surg Oncol. 2009;99:9–15.  https://doi.org/10.1002/jso.21169.PubMedCrossRefGoogle Scholar
  136. 136.
    Fong Y, Fortner J, Sun RL, et al. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg. 1999;230:309–18.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Elias D, Ouellet J-F, Bellon N, et al. Extrahepatic disease does not contraindicate hepatectomy for colorectal liver metastases. Br J Surg. 2003;90:567–74.  https://doi.org/10.1002/bjs.4071.PubMedCrossRefGoogle Scholar
  138. 138.
    Kianmanesh R, Scaringi S, Sabate J-M, et al. Iterative cytoreductive surgery associated with hyperthermic intraperitoneal chemotherapy for treatment of peritoneal carcinomatosis of colorectal origin with or without liver metastases. Ann Surg. 2007;245:597–603.  https://doi.org/10.1097/01.sla.0000255561.87771.11.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Elias D, Benizri E, Pocard M, et al. Treatment of synchronous peritoneal carcinomatosis and liver metastases from colorectal cancer. Eur J Surg Oncol. 2006;32:632–6.  https://doi.org/10.1016/j.ejso.2006.03.013.PubMedCrossRefGoogle Scholar
  140. 140.
    Varban O, Levine EA, Stewart JH, et al. Outcomes associated with cytoreductive surgery and intraperitoneal hyperthermic chemotherapy in colorectal cancer patients with peritoneal surface disease and hepatic metastases. Cancer. 2009;115:3427–36.  https://doi.org/10.1002/cncr.24385.PubMedCrossRefGoogle Scholar
  141. 141.
    Elias D, Faron M, Goéré D, Dumont F, Honoré C, Boige V, Malka D, Ducreux MA. Simple tumor load-based nomogram for surgery in patients with colorectal liver and peritoneal metastases. Ann Surg Oncol. 2014;21(6):2052–8.  https://doi.org/10.1245/s10434-014-3506-z.PubMedCrossRefGoogle Scholar
  142. 142.
    Kolev V, Pereira EB, Schwartz M, Sarpel U, Roayaie S, Labow D, Momeni M, Chuang L, Dottino P, Rahaman J, Zakashansky K. The role of liver resection at the time of secondary cytoreduction in patients with recurrent ovarian cancer. Int J Gynecol Cancer. 2014;24(1):70–4.  https://doi.org/10.1097/IGC.0000000000000026.PubMedCrossRefGoogle Scholar
  143. 143.
    Darrad M, Harper S, Verghese A, Leveckis J, Pathak S. Synchronous and metachronous ureteric metastases from adenocarcinoma of the colon. Int J Clin Oncol. 2012;17(2):185–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Honore C, Souadka A, Goere D, Dumont F, Deschamps F, Elias D. HIPEC for peritoneal carcinomatosis: does an associated urologic procedure increase morbidity? Ann Surg Oncol. 2012;19(1):104–9.PubMedCrossRefGoogle Scholar
  145. 145.
    van der Bij GJ, Oosterling SJ, Beelen RH, Meijer S, Coffey JC, van Egmond M. The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer. Ann Surg. 2009;249(5):727–34.PubMedCrossRefGoogle Scholar
  146. 146.
    Braam HJ, van Oudheusden TR, de Hingh IH, Nienhuijs SW, Boerma D, Wiezer MJ, van Ramshorst B. Urological procedures in patients with peritoneal carcinomatosis of colorectal cancer treated with HIPEC: morbidity and survival analysis. Anticancer Res. 2015;35(1):295–300.PubMedGoogle Scholar
  147. 147.
    Leapman MS, Jibara G, Tabrizian P, Franssen B, Yang MJ, Romanoff A, Hall SJ, Palese M, Sarpel U, Hiotis S, Labow D. Genitourinary resection at the time of cytoreductive surgery and heated intraperitoneal chemotherapy for peritoneal carcinomatosis is not associated with increased morbidity or worsened oncologic outcomes: a case-matched study. Ann Surg Oncol. 2014;21(4):1153–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Smeenk RM, Bex A, Verwaal VJ, Horenblas S, Zoetmulder FA. Pseudomyxoma peritonei and the urinary tract: involvement and treatment related complications. J Surg Oncol. 2006;93(1):20–3.PubMedCrossRefGoogle Scholar
  149. 149.
    Votanopoulos KI, Randle RW, Craven B, Swett KR, Levine EA, Shen P, Stewart JH, Mirzazadeh M. Significance of urinary tract involvement in patients treated with cytoreductive surgery (CRS) and Hyperthermic Intraperitoneal Chemotherapy (HIPEC). Ann Surg Oncol. 2014;21(3):868–74.PubMedCrossRefGoogle Scholar
  150. 150.
    Segelman J, Floter-Radestad A, Hellborg H, Sjovall A, Martling A. Epidemiology and prognosis of ovarian metastases in colorectal cancer. Br J Surg. 2010;97:1704–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Evers DJ, Verwaal VJ. Indication for oophorectomy during cytoreduction for intraperitoneal metastatic spread of colorectal or appendiceal origin. Br J Surg. 2011;98:287–92.PubMedCrossRefGoogle Scholar
  152. 152.
    Moore RG, Chung M, Granai CO, et al. Incidence of metastasis to the ovaries from nongenital tract primary tumors. Gynecol Oncol. 2004;93:87–91.PubMedCrossRefGoogle Scholar
  153. 153.
    Eveno C, Goéré D, Dartigues P, Honoré C, Dumont F, Tzanis D, Benhaim L, Malka D, Elias D. Ovarian metastasis is associated with retroperitoneal lymph node relapses in women treated for colorectal peritoneal carcinomatosis. Ann Surg Oncol. 2013;20(2):491–6.  https://doi.org/10.1245/s10434-012-2623-9. Epub 2012 Sep 7PubMedCrossRefGoogle Scholar
  154. 154.
    Ortega-Deballon P, Glehen O, Levine E, et al. Childbearing after hyperthermic intraperitoneal chemotherapy: results from an international survey. Ann Surg Oncol. 2011;18:2297.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Sheehan L, Mehta A, Sawan S, et al. Preserving fertility in pseudomyxoma peritonei, a novel approach. Pleura Peritoneum. 2017;2(1):33–6.CrossRefGoogle Scholar
  156. 156.
    Glehen O, Osinsky D, Cotte E, Kwiatkowski F, Freyer G, Isaac S, et al. Intraperitoneal chemohyperthermia using a closed abdominal procedure and cytoreductive surgery for the treatment of peritoneal carcinomatosis: morbidity and mortality analysis of 216 consecutive procedures. Ann Surg Oncol. 2003;10:863–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Verwaal VJ, van Tinteren H, Ruth SV, Zoetmulder FAN. Toxicity of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Surg Oncol. 2004;85:61–7.PubMedCrossRefGoogle Scholar
  158. 158.
    Kusamura S, Younan R, Baratti D, Costanzo P, Favaro M, Gavazzi C, et al. Cytoreductive surgery followed by intraperitoneal hyperthermic perfusion: analysis of morbidity and mortality in 209 peritoneal surface malignancies treated with closed abdomen technique. Cancer. 2006;106:1144–53.PubMedCrossRefGoogle Scholar
  159. 159.
    Stephens AD, Alderman R, Chang D, Edwards GD, Esquivel J, Sebbag G, et al. Morbidity and mortality analysis of 200 treatments with cytoreductive surgery and hyperthermic intraoperative intraperitoneal chemotherapy using the coliseum technique. Ann Surg Oncol. 1999;6:790–6.PubMedCrossRefGoogle Scholar
  160. 160.
    Franko J, Gusani NJ, Holtzman MP, Ahrendt SA, Jones HL, Zeh HJ, Bartlett DL. Multivisceral resection does not affect morbidity and survival after cytoreductive surgery and chemoperfusion for carcinomatosis from colorectal cancer. Ann Surg Oncol. 2008;15(11):3065–72.PubMedCrossRefGoogle Scholar
  161. 161.
    Jacquet P, Sugarbaker PH. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res. 1996;82:359–74.PubMedCrossRefGoogle Scholar
  162. 162.
    Sugarbaker PH. Epithelial appendiceal neoplasms. Cancer J. 2009;15:225–35.  https://doi.org/10.1097/PPO.0b013e3181a9c781.PubMedCrossRefGoogle Scholar
  163. 163.
    Ronnett BM, Shmookler BM, Sugarbaker PH, Kurman RJ. Pseudomyxoma peritonei: new concepts in diagnosis, origin, nomenclature, and relationship to mucinous borderline (low malignant potential) tumors of the ovary. Anat Pathol. 1997;2:197–226.PubMedGoogle Scholar
  164. 164.
    Elias D, Gilly F, Boutitie F, et al. Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: retrospective analysis of 523 patients from a multicentric French study. J Clin Oncol. 2009;23:9285.Google Scholar
  165. 165.
    Yan TD, Deraco M, Baratti D, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for malignant peritoneal mesothelioma: multi-institutional experience. J Clin Oncol. 2009;27:6237–42.  https://doi.org/10.1200/JCO.2009.23.9640.PubMedCrossRefGoogle Scholar
  166. 166.
    Winer J, Zenati M, Ramalingam L, et al. Impact of aggressive histology and location of primary tumor on the efficacy of surgical therapy for peritoneal carcinomatosis of colorectal origin. Ann Surg Oncol. 2014;21:1456–62.  https://doi.org/10.1245/s10434-013-3328-4.PubMedCrossRefGoogle Scholar
  167. 167.
    Van Oudheusden TR, Braam HJ, Nienhuijs SW, et al. Poor outcome after cytoreductive surgery and HIPEC for colorectal peritoneal carcinomatosis with signet ring cell histology. J Surg Oncol. 2015;111(2):237–42.  https://doi.org/10.1002/jso.23784.PubMedCrossRefGoogle Scholar
  168. 168.
    Simkens GA, van Oudheusden TR, Nieboer D, et al. Development of a prognostic nomogram for patients with peritoneally metastasized colorectal cancer treated with cytoreductive surgery and HIPEC. Ann Surg Oncol. 2016;23:4214–21.  https://doi.org/10.1245/s10434-016-5211-6.PubMedCrossRefGoogle Scholar
  169. 169.
    Mohkam K, Passot G, Cotte E, Bakrin N, Gilly FN, Ledochowski S, et al. Resectability of peritoneal carcinomatosis: learnings from a prospective cohort of 533 consecutive patients selected for cytoreductive surgery. Ann Surg Oncol. 2016;23:1261–70.PubMedCrossRefGoogle Scholar
  170. 170.
    Verwaal VJ, Kusamura S, Baratti D, et al. The eligibility for local-regional treatment of peritoneal surface malignancy. J Surg Oncol. 2008;98:220–3.PubMedCrossRefGoogle Scholar
  171. 171.
    Yan TD, Morris DL, Kusamura S, et al. Preoperative investigations in the management of peritoneal surface malignancy with cytoreductive surgery and perioperative intraperitoneal chemotherapy. J Surg Oncol. 2008;98:224–7.PubMedCrossRefGoogle Scholar
  172. 172.
    Coakley FV, Choi PH, Gougoutas CA, et al. Peritoneal metastases: detection with spiral CT in patients with ovarian cancer. Radiology. 2002;223:495–9.PubMedCrossRefGoogle Scholar
  173. 173.
    Esquivel J, Chua TC, Stojadinovic A, et al. Accuracy and clinical relevance of computed tomography scan interpretation of peritoneal cancer index in colorectal cancer peritoneal carcinomatosis: a multi-institutional study. J Surg Oncol. 2010;102:565–70.PubMedCrossRefGoogle Scholar
  174. 174.
    Low RN. Preoperative and surveillance MR imaging of patients undergoing cytoreductive surgery and heated intraperitoneal chemotherapy. J Gastrointest Oncol. 2016;2:58–71.  https://doi.org/10.3978/j.issn.2078-6891.2015.11.Google Scholar
  175. 175.
    Torkzad MR, Casta N, Bergman A, Ahlström H, Påhlman L, Mahteme H. Comparison between MRI and CT in prediction of peritoneal carcinomatosis index (PCI) in patients undergoing cytoreductive surgery in relation to the experience of the radiologist. J Surg Oncol. 2015;111(6):746–51.  https://doi.org/10.1002/jso.23878.PubMedCrossRefGoogle Scholar
  176. 176.
    Passot G, Glehen O, Pellet O, et al. Pseudomyxoma peritonei: role of 18F-FDG PET in preoperative evaluation of pathological grade and potential for complete cytoreduction. Eur J Surg Oncol. 2010;36:315–23.PubMedCrossRefGoogle Scholar
  177. 177.
    Dromain C, Leboulleux S, Auperin A, et al. Staging of peritoneal carcinomatosis: enhanced CT vs. PET/CT. Abdom Imaging. 2008;33:87–9.PubMedCrossRefGoogle Scholar
  178. 178.
    Jacquet P, Jelinek JS, Chang D, et al. Abdominal computed tomographic scan in the selection of patients with mucinous peritoneal carcinomatosis for cytoreductive surgery. J Am Coll Surg. 1995;181:530–8.PubMedGoogle Scholar
  179. 179.
    Yan TD, Haveric N, Carmignani CP, et al. Abdominal computed tomography scans in the selection of patients with malignant peritoneal mesothelioma for comprehensive treatment with cytoreductive surgery and perioperative intraperitoneal chemotherapy. Cancer. 2005;103:839–49.PubMedCrossRefGoogle Scholar
  180. 180.
    Jacquet P, Sugarbaker PH. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. In: Sugarbaker PH, editor. Peritoneal carcinomatosis: principles of management. Boston: Kluwer; 1996. p. 359–74.CrossRefGoogle Scholar
  181. 181.
    Goéré D, Souadka A, Faron M, Cloutier AS, Viana B, Honoré C, Dumont F, Elias D. Extent of colorectal peritoneal carcinomatosis: attempt to define a threshold above which HIPEC does not offer survival benefit: a comparative study. Ann Surg Oncol. 2015;22(9):2958–64.PubMedCrossRefGoogle Scholar
  182. 182.
    Coccolini F, Catena F, Glehen O, Yonemura Y, Sugarbaker PH, Piso P, Montori G, Ansaloni L. Complete versus incomplete cytoreduction in peritoneal carcinosis from gastric cancer, with consideration to PCI cut-off. Systematic review and meta-analysis. Eur J Surg Oncol. 2015;41(7):911–9.PubMedCrossRefGoogle Scholar
  183. 183.
    Villeneuve L, Thivolet A, Bakrin N, Mohamed F, Isaac S, Valette PJ, Glehen O, Rousset P, BIG-RENAPE and RENAPE Working Groups. A new internet tool to report peritoneal malignancy extent. PeRitOneal Mallgnancy Stage Evaluation (PROMISE) application. Eur J Surg Oncol. 2016;42(6):877–82.  https://doi.org/10.1016/j.ejso.2016.03.015.PubMedCrossRefGoogle Scholar
  184. 184.
    Sugarbaker PH. Successful management of microscopic residual disease in large bowel cancer. Cancer Chemother Pharmacol. 1999;43:15–25.CrossRefGoogle Scholar
  185. 185.
    Bakrin N, Bereder JM, Decullier E, Classe JM, Msika S, Lorimier G, Abboud K, Meeus P, Ferron G, Quenet F, Marchal F, Gouy S, Morice P, Pomel C, Pocard M, Guyon F, Porcheron J, Glehen O, FROGHI (FRench Oncologic and Gynecologic HIPEC) Group. Peritoneal carcinomatosis treated with cytoreductive surgery and Hyperthermic Intraperitoneal Chemotherapy (HIPEC) for advanced ovarian carcinoma: a French multicentre retrospective cohort study of 566 patients. Eur J Surg Oncol. 2013;39(12):1435–43.PubMedCrossRefGoogle Scholar
  186. 186.
    Chua TC, Moran BJ, Sugarbaker PH, Levine EA, Glehen O, Gilly FN, Baratti D, Deraco M, Elias D, Sardi A, Liauw W, Yan TD, Barrios P, Gómez Portilla A, de Hingh IH, Ceelen WP, Pelz JO, Piso P, González-Moreno S, Van Der Speeten K, Morris DL. Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Clin Oncol. 2012;30(20):2449–56.PubMedCrossRefGoogle Scholar
  187. 187.
    Glehen O, Mohamed F, Sugarbaker PH. Incomplete cytoreduction in 174 patients with peritoneal carcinomatosis from appendiceal malignancy. Ann Surg. 2004;240(2):278–85.  https://doi.org/10.1097/01.sla.0000133183.15705.71.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Dayal S, Taflampas P, Riss S, Chandrakumaran K, Cecil TD, Mohamed F, Moran BJ. Complete cytoreduction for pseudomyxoma peritonei is optimal but maximal tumor debulking may be beneficial in patients in whom complete tumor removal cannot be achieved. Dis Colon Rectum. 2013;56(12):1366–72.  https://doi.org/10.1097/DCR.0b013e3182a62b0d.PubMedCrossRefGoogle Scholar
  189. 189.
    Passot G, You B, Boschetti G, Fontaine J, Isaac S, Decullier E, et al. Pathological response to neoadjuvant chemotherapy: a new prognosis tool for the curative management of peritoneal colorectal carcinomatosis. Ann Surg Oncol. 2014;21:2608–14.PubMedCrossRefGoogle Scholar
  190. 190.
    Rubbia-Brandt L, et al. Importance of histological tumor response assessment in predicting the outcome in patients with colorectal liver metastases treated with neo-adjuvant chemotherapy followed by liver surgery. Ann Oncol. 2007;18(2):299–304.PubMedCrossRefGoogle Scholar
  191. 191.
    Blazer DG, et al. Pathologic response to preoperative chemotherapy: a new outcome end point after resection of hepatic colorectal metastases. J Clin Oncol. 2008;26(33):5344–51.PubMedCrossRefGoogle Scholar
  192. 192.
    Folprecht G, Kohne CH, Lutz MP. Systemic chemotherapy in patients with peritoneal carcinomatosis from colorectal cancer. Cancer Treat Res. 2007;134:425–40.PubMedGoogle Scholar
  193. 193.
    Kohne CH, et al. Clinical determinants of survival in patients with 5-fluorouracil-based treatment for metastatic colorectal cancer: results of a multivariate analysis of 3825 patients. Ann Oncol. 2002;13(2):308–17.PubMedCrossRefGoogle Scholar
  194. 194.
    Yonemura Y, Elnemr A, Endou Y, et al. Effects of neoadjuvant intraperitoneal/systemic chemotherapy (bidirectional chemotherapy) for the treatment of patients with peritoneal metastasis from gastric cancer. Int J Surg Oncol. 2012;2012:8.  https://doi.org/10.1155/2012/148420. Google Scholar
  195. 195.
    Bijelic L, Kumar AS, Stuart OA, Sugarbaker PH. Systemic chemotherapy prior to cytoreductive surgery and HIPEC for carcinomatosis from appendix cancer: impact on perioperative outcomes and short-term survival. Gastroenterol Res Pract. 2012;2012:6.  https://doi.org/10.1155/2012/163284. Google Scholar
  196. 196.
    Solass W, Sempoux C, Detlefsen S, et al. Peritoneal sampling and histological assessment of therapeutic response in peritoneal metastasis: proposal of the Peritoneal Regression Grading Score (PRGS). Pleura Peritoneum. 2016;1(2):99–107.  https://doi.org/10.1515/pap-2016-0011.CrossRefGoogle Scholar
  197. 197.
    Seshadri RA, Hemanth Raj E. Diagnostic laparoscopy in the pre-operative assessment of patients undergoing cytoreductive surgery and HIPEC for peritoneal surface malignancies. Indian J Surg Oncol. 2016;7:230.  https://doi.org/10.1007/s13193-015-0486-9.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Fagotti A, Ferrandina G, Fanfani F, Ercoli A, Lorusso D, Rossi M, et al. A laparoscopy-based score to predict surgical outcome in patients with advanced ovarian carcinoma: a pilot study. Ann Surg Oncol. 2006;13:1156–61.PubMedCrossRefGoogle Scholar
  199. 199.
    Brun JL, Rouzier R, Uzan S, Darai E. External validation of a laparoscopic-based score to evaluate resectability of advanced ovarian cancers: clues for a simplified score. Gynecol Oncol. 2008;110:354–9.PubMedCrossRefGoogle Scholar
  200. 200.
    Fagotti A, Ferrandina G, Fanfani F, Garganese G, Vizzielli F, Carone V, et al. Prospective validation of a laparoscopic predictive model for optimal cytoreduction in advanced ovarian carcinoma. Am J Obstet Gynecol. 2008;199:642.e1–6.CrossRefGoogle Scholar
  201. 201.
    Varnoux C, Huchon C, Bats AS, et al. Diagnostic accuracy of hand-assisted laparoscopy in predicting resectability of peritoneal carcinomatosis from gynecological malignancies. Eur J Surg Oncol. 2013;39:774–9.PubMedCrossRefGoogle Scholar
  202. 202.
    Sugarbaker PH. Pseudomyxoma peritonei and peritoneal metastases from appendiceal malignancy. In: Sugarbaker PH, editor. Cytoreductive surgery & perioperative chemotherapy for peritoneal surface malignancy. Textbook and video atlas. Woodbury: Cine-Med Publishers; 2012.Google Scholar
  203. 203.
    González-Moreno S, Ortega-Pérez G, González-Bayón L. Indications and patient selection for cytoreductive surgery and perioperative intraperitoneal chemotherapy. J Surg Oncol. 2009;100(4):287–92.  https://doi.org/10.1002/jso.21325.PubMedCrossRefGoogle Scholar
  204. 204.
    Passot G, Vaudoyer D, Cotte E, You B, Isaac S, Noël Gilly F, Mohamed F, Glehen O. Progression following neoadjuvant systemic chemotherapy may not be a contraindication to a curative approach for colorectal carcinomatosis. Ann Surg. 2012;256(1):125–9.  https://doi.org/10.1097/SLA.0b013e318255486a.PubMedCrossRefGoogle Scholar
  205. 205.
    Glehen O, Beaujard AC, Arvieux C, Huber O, Gilly FN. Peritoneal carcinomatosis. Surgical treatment, peritonectomy and intraperitoneal chemohyperthermia. Gastroenterol Clin Biol. 2002;26:210–5.PubMedGoogle Scholar
  206. 206.
    Elias DM, Ouellet JF. Intraperitoneal chemohyperthermia: rationale, technique, indications, and results. Surg Oncol Clin N Am. 2001;10:915–33.PubMedGoogle Scholar
  207. 207.
    Cotte E, Passot G, Gilly F-N, Glehen O. Selection of patients and staging of peritoneal surface malignancies. World J Gastrointest Oncol. 2010;2(1):31–5.  https://doi.org/10.4251/wjgo.v2.i1.31.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Brouquet A, Goere D, Lefevre JH, et al. The second procedure combining complete cytoreductive surgery and intraperitoneal chemotherapy for isolated peritoneal recurrence: postoperative course and long-term outcome. Ann Surg Oncol. 2009;16:2744–51.PubMedCrossRefGoogle Scholar
  209. 209.
    Yan TD, Bijelic L, Sugarbaker PH. Critical analysis of treatment failure after complete cytoreductive surgery and perioperative intraperitoneal chemotherapy for peritoneal dissemination from appendiceal mucinous neoplasms. Ann Surg Oncol. 2007;14:2289–99.PubMedCrossRefGoogle Scholar
  210. 210.
    Verwaal VJ, Boot H, Aleman BM, et al. Recurrences after peritoneal carcinomatosis of colorectal origin treated by cytoreduction and hyperthermic intraperitoneal chemotherapy: location, treatment, and outcome. Ann Surg Oncol. 2004;11:375–9.PubMedCrossRefGoogle Scholar
  211. 211.
    Saxena A, Yan TD, Morris DL. Critical assessment of preoperative and operative risk factors for complications after iterative peritonectomy procedures. Eur J Surg Oncol. 2010;36:309–14.PubMedCrossRefGoogle Scholar
  212. 212.
    Smeenk RM, Verwaal VJ, Antonini N, Zoetmulder FA. Progression of pseudomyxoma peritonei after combined modality treatment: management and outcome. Ann Surg Oncol. 2007;14(2):493–9.PubMedCrossRefGoogle Scholar
  213. 213.
    Esquivel J, Sugarbaker PH. Second-look surgery in patients with peritoneal dissemination from appendiceal malignancy: analysis of prognostic factors in 98 patients. Ann Surg. 2001;234:198–205.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Mogal H, Chouliaras K, Levine EA, Shen P, Votanopoulos KI. Repeat cytoreductive surgery with hyperthermic intraperitoneal chemotherapy: review of indications and outcomes. J Gastrointest Oncol. 2016;7(1):129–42.  https://doi.org/10.3978/j.issn.2078-6891.2015.131. PubMedPubMedCentralGoogle Scholar
  215. 215.
    Golse N, Bakrin N, Passot G, Mohamed F, Vaudoyer D, Gilly FN, Glehen O, Cotte E. Iterative procedures combining cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for peritoneal recurrence: postoperative and long-term results. J Surg Oncol. 2012;106(2):197–203.  https://doi.org/10.1002/jso.23062.PubMedCrossRefGoogle Scholar
  216. 216.
    Vaira M, Robella M, Mellano A, Sottile A, De Simone M. Iterative procedures combining cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for isolated peritoneal recurrence. Int J Hyperth. 2014;30(8):565–9.  https://doi.org/10.3109/02656736.2014.974693.CrossRefGoogle Scholar
  217. 217.
    Vassos N, Förtsch T, Aladashvili A, Hohenberger W, Croner RS. Repeated cytoreductive surgery (CRS) with Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in patients with recurrent peritoneal carcinomatosis. World J Surg Oncol. 2016;14:42.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Fish R, Selvasekar C, Crichton P, Wilson M, Fulford P, Renehan A, O’Dwyer S. Risk-reducing laparoscopic cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for low-grade appendiceal mucinous neoplasm: early outcomes and technique. Surg Endosc. 2014;28:341–5.  https://doi.org/10.1007/s00464-013-3189-8.PubMedCrossRefGoogle Scholar
  219. 219.
    Esquivel J, Averbach A, Chua TC. Laparoscopic cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in patients with limited peritoneal surface malignancies: feasibility, morbidity and outcome in an early experience. Ann Surg. 2011;253(4):764–8.  https://doi.org/10.1097/SLA.0b013e31820784df.PubMedCrossRefGoogle Scholar
  220. 220.
    Esquivel J, Averbach A. Laparoscopic cytoreductive surgery and HIPEC in patients with limited pseudomyxoma peritonei of appendiceal origin. Gastroenterol Res Pract. 2012;2012:5.CrossRefGoogle Scholar
  221. 221.
    Passot G, Bakrin N, Isaac S, Decullier E, Gilly FN, Glehen O, Cotte E. Postoperative outcomes of laparoscopic vs open cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy for treatment of peritoneal surface malignancies. Eur J Surg Oncol. 2014;40(8):957–62.  https://doi.org/10.1016/j.ejso.2013.10.002. Epub 2013 Oct 16.
  222. 222.
    Gallotta V, Fagotti A, Fanfani F, Ferrandina G, Nero C, Costantini B, Gueli Alletti S, Chiantera V, Ercoli A, Scambia G. Laparoscopic surgical management of localized recurrent ovarian cancer: a single-institution experience. Surg Endosc. 2014;28(6):1808–15.  https://doi.org/10.1007/s00464-013-3390-9.PubMedCrossRefGoogle Scholar
  223. 223.
    Trinh H, Ott C, Fanning J. Feasibility of laparoscopic debulking with electrosurgical loop excision procedure and argon beam coagulator at recurrence in patients with previous laparotomy debulking. Am J Obstet Gynecol. 2004;190:1394–7.PubMedCrossRefGoogle Scholar
  224. 224.
    Nezhat FR, Denoble SM, Cho JE, Brown DN, Soto E, Chuang L, Gretz H, Saharia P. Safety and efficacy of video laparoscopic surgical debulking of recurrent ovarian, fallopian tube, and primary peritoneal cancers. JSLS. 2012;16:511–8.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Magrina JF, Cetta RL, Chang YH, Guevara G, Magtibay PM. Analysis of secondary cytoreduction for recurrent ovarian cancer by robotics, laparoscopy, and laparotomy. Gynecol Oncol. 2013;129:336–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Surgical OncologyFortis HospitalBangaloreIndia
  2. 2.Department of Peritoneal Surface OncologySaifee HospitalMumbaiIndia

Personalised recommendations