Advertisement

Locoregional and Palliative Therapies for Patients with Unresectable Peritoneal Metastases

  • Ninad Katdare
  • Robin Prabhu
  • Aditi Bhatt
Chapter

Abstract

A large proportion of patients with peritoneal metastases (PM) are excluded from potentially curative treatment with cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) due to their disease extent and distribution, site of primary tumor, or their general condition which precludes an aggressive surgical effort. Some of these patients are symptomatic from their PM, and in them, the management of symptoms which severely impair the quality of life takes precedence over other treatment goals. In asymptomatic patients, the scientific and surgical community is working to develop and implement new systemic and locoregional therapies that could increase the survival over systemic therapies alone and prevent the development of symptoms. Some of these are being used in a neoadjuvant manner to downstage the disease and make patients eligible for CRS and HIPEC. Patients with unresectable PM fall in between palliation and cure from the treatment point of view. A multidisciplinary approach keeping in mind the goals of therapy which are based on the disease status and expectations of the patient and their caregivers should be used to treat these patients.

Keywords

Unresectable peritoneal metastases Palliative treatment PIPAC Malignant bowel obstruction 

References

  1. 1.
    Sadeghi B, Arvieux C, Glehen O, et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer. 2000;88:358–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Rajeev R, Turaga KK. Hyperthermic intraperitoneal chemotherapy and cytoreductive surgery in the management of peritoneal carcinomatosis. Cancer Control. 2016;23(1):36–46.PubMedCrossRefGoogle Scholar
  3. 3.
    American Cancer Society. Cancer Facts & Figures 2016. Atlanta, GA: American Cancer Society; 2016. http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-047079.pdf. Accessed 12 Feb 2017.Google Scholar
  4. 4.
    Jayne DG, Fook S, Loi C, et al. Peritoneal carcinomatosis from colorectal cancer. Br J Surg. 2002;89(12):1545–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Folprecht G, Köhne C, Lutz M. Systemic chemotherapy in patients with peritoneal carcinomatosis from colorectal cancer. Cancer Treat Res. 2007;134:425–40.PubMedGoogle Scholar
  6. 6.
    Köhne C, Vanhoefer U, Hartung G. Clinical predictive factors. Eur J Cancer. 2009;45:43–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Sampson JA. Implantation peritoneal carcinomatosis of ovarian origin. Am J Pathol. 1931;7:423–43.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Aranha GV, Folk FA, Greenlee HB. Surgical palliation of small bowel obstruction due to metastatic carcinoma. Am Surg. 1981;47:99–102.PubMedGoogle Scholar
  9. 9.
    Ketcham AS, Hoye RC, Pilch YH, Morton DL. Delayed intestinal obstruction following treatment for cancer. Cancer. 1970;25:406–10.PubMedCrossRefGoogle Scholar
  10. 10.
    Glass RL, LeDuc RJ. Small intestinal obstruction from peritoneal carcinomatosis. Am J Surg. 1973;125:316–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Annest LS, Jolly PC. The results of surgical treatment of bowel obstruction caused by peritoneal carcinomatosis. Am Surg. 1979;45:718–21.PubMedGoogle Scholar
  12. 12.
    Chu D, Lang N, Thompson C. Peritoneal carcinomatosis in nongynecologic malignancy. A prospective study of prognostic factors. Cancer. 1989;63:364–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Hompes D, Boot H, van Tinteren H, Verwaal V. Unresectable peritoneal carcinomatosis from colorectal cancer: a single center experience. J Surg Oncol. 2011;104:269–73.  https://doi.org/10.1002/jso.21937.PubMedCrossRefGoogle Scholar
  14. 14.
    Jayne D, Fook S, Seow-Choen F. Peritoneal carcinomatosis from colorectal cancer. Br J Surg. 2002;89:1545–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Sammartino P, Biacchi D, Cornali T et al. Proactive management for gastric, colorectal and appendiceal malignancies: preventing peritoneal metastases with hyperthermic intraperitoneal chemotherapy (HIPEC). Indian J Surg Oncol. 2016;7(2):215–24.  https://doi.org/10.1007/s13193-016-0497-1.
  16. 16.
    Razenberg LG, van Gestel YR, Creemers GJ, Verwaal VJ, Lemmens VE, de Hingh IH. Trends in cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for the treatment of synchronous peritoneal carcinomatosis of colorectal origin in the Netherlands. Eur J Surg Oncol. 2015;41(4):466–71.  https://doi.org/10.1016/j.ejso.2015.01.018.PubMedCrossRefGoogle Scholar
  17. 17.
    Bijelic L, Yan TD, Sugarbaker PH. Treatment failure following complete cytoreductive surgery and perioperative intraperitoneal chemotherapy for peritoneal dissemination from colorectal or appendiceal mucinous neoplasms. J Surg Oncol. 2008;98:295–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Portilla AG, Sugarbaker PH, Chang D. Second-look surgery after cytoreduction and intraperitoneal chemotherapy for peritoneal carcinomatosis from colorectal cancer: analysis of prognostic features. World J Surg. 1999;23:23–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Verwaal VJ, Boot H, Aleman BM, et al. Recurrences after peritoneal carcinomatosis of colorectal origin treated by cytoreduction and hyperthermic intraperitoneal chemotherapy: location, treatment, and outcome. Ann Surg Oncol. 2004;11:375–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Bijelic L, Yan TD, Sugarbaker PH. Failure analysis of recurrent disease following complete cytoreduction and perioperative intraperitoneal chemotherapy in patients with peritoneal carcinomatosis from colorectal cancer. Ann Surg Oncol. 2007;14:2281–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Pfisterer J, Plante M, Vergote I, du Bois A, Hirte H, Lacave AJ, et al. Gemcitabine plus carboplatin compared with carboplatin in patients with platinum-sensitive recurrent ovarian cancer: an intergroup trial of the AGO-OVAR, the NCICCTG, and the EORTCGCG. J Clin Oncol. 2006;24:4699–707.  https://doi.org/10.1200/JCO.2006.06.0913.
  22. 22.
    Parmar MK, Ledermann JA, Colombo N, du Bois A, Delaloye JF, Kristensen GB, et al. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2trial. Lancet. 2003;361:2099–106.  https://doi.org/10.1016/S0140-6736(03)13718-X.PubMedCrossRefGoogle Scholar
  23. 23.
    Pfisterer J, Ledermann JA. Management of platinum-sensitive recurrent ovarian cancer. Semin Oncol. 2006;33:S12–6.  https://doi.org/10.1053/j.seminoncol.2006.03.012.PubMedCrossRefGoogle Scholar
  24. 24.
    Bartlett DL. HIPEC: the complexities of clinical trials. Ann Surg Oncol. 2008;15(5):1277–9.  https://doi.org/10.1245/s10434-007-9768-y.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Guerra EM, Cortés-Salgado A, Mateo-Lobo R, et al. Role of parenteral nutrition in oncologic patients with intestinal occlusion and peritoneal carcinomatosis. Nutr Hosp. 2015;32(3):1222–7.Google Scholar
  26. 26.
    Baines MJ. Symptom control in advanced gastrointestinal cancer. Eur J Gastroenterol Hepatol. 2000;12:375–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Sangisetty SL, Miner TJ. Malignant ascites: a review of prognostic factors, pathophysiology and therapeutic measures. World J Gastrointest Surg. 2012;4(4):87–95.  https://doi.org/10.4240/wjgs.v4.i4.87.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ammouri L, Prommer EE. Palliative treatment of malignant ascites: profile of catumaxomab. Biologics: Targets Ther. 2010;4:103–10.Google Scholar
  29. 29.
    Logan-Collins JM, Lowy AM, Robinson-Smith TM, Kumar S, Sussman JJ, James LE, Ahmad SA. VEGF expression predicts survival in patients with peritoneal surface metastases from mucinous adenocarcinoma of the appendix and colon. Ann Surg Oncol. 2008;15:738–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Rosa M, Abdelbaqi M, Bui KM, Nasir A, Bui MM, Shibata D, Coppola D. Overexpression of vascular endothelial growth factor A in invasive micropapillary colorectal carcinoma. Cancer Control. 2015;22:206–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Yang X, Zhang Y, Hosaka K, Andersson P, Wang J, Tholander F, Cao Z, Morikawa H, Tegnér J, Yang Y, et al. VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc Natl Acad Sci U S A. 2015;112:E2900–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chen H, Guan R, Lei Y, Chen J, Ge Q, Zhang X, Dou R, Chen H, Liu H, Qi X, et al. Lymphangiogenesis in gastric cancer regulated through Akt/mTOR-VEGF-C/VEGF-D axis. BMC Cancer. 2015;15:103.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML. Autocrine VEGF signaling is required for vascular homeostasis. Cell. 2007;130:691–703.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    De Falco S, Gigante B, Persico MG. Structure and function of placental growth factor. Trends Cardiovasc Med. 2002;12:241–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Becker G, Galandi D, Blum H. Malignant ascites: systematic review and guideline for treatment. Eur J Cancer. 2006;42:589–97.PubMedCrossRefGoogle Scholar
  36. 36.
    Anthony T, Baron T, Mercadante S, et al. Report of the clinical protocol committee: development of randomized trials for malignant bowel obstruction. J Pain Symptom Manage. 2007;34:S49–59.PubMedCrossRefGoogle Scholar
  37. 37.
    Ripamonti C, Bruera E. Palliative management of malignant bowel obstruction. Int J Gynecol Cancer. 2002;12:135–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Jacquet P, Jelinek JS, Steves MA, et al. Evaluation of computed tomography in patients with peritoneal carcinomatosis. Cancer. 1993;72:1631–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Krouse RS. The international conference on malignant bowel obstruction: a meeting of the minds to advance palliative care research. J Pain Symptom Manage. 2007;34:S1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ripamonti CI, Easson AM, Gerdes H. Management of malignant bowel obstruction. Eur J Cancer. 2008;44(8):1105–15.  https://doi.org/10.1016/j.ejca.2008.02.028.PubMedCrossRefGoogle Scholar
  41. 41.
    Woolfson RG, Jennings K, Whalen GF. Management of bowel obstruction in patients with abdominal cancer. Arch Surg. 1997;132:1093–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Silva AC, Pimenta M, Guimaraes LS. Small bowel obstruction: what to look for? Radiographics. 2009;29:423–39.PubMedCrossRefGoogle Scholar
  43. 43.
    Easson AM, Lee KF, Brasel K, et al. Clinical research for surgeons in palliative care: challenges and opportunities. J Am Coll Surg. 2003;196:141–51.PubMedCrossRefGoogle Scholar
  44. 44.
    McCahill LE, Krouse RS, Chu DZ, et al. Decision making in palliative surgery. J Am Coll Surg. 2002;195:411–22.PubMedCrossRefGoogle Scholar
  45. 45.
    Hofmann B, Haheim LL, Soreide JA. Ethics of palliative surgery in patients with cancer. Br J Surg. 2005;92:802–9.PubMedCrossRefGoogle Scholar
  46. 46.
    McCahill LE, Krouse R, Chu D, Juarez G, Uman G, Ferrell B, et al. Indications and use of palliative surgery – results of Society of Surgical Oncology survey. Ann Surg Oncol. 2002;9:104–12.PubMedCrossRefGoogle Scholar
  47. 47.
    Rodt AP, Svarrer RO, Iversen LH. Clinical course for patients with peritoneal carcinomatosis excluded from cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. World J Surg Oncol. 2013;11:232.  https://doi.org/10.1186/1477-7819-11-232.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Easson A. Successful surgical palliation: how do we define it, and how do we measure it? Am Coll Surg. 2005;200:117–20.Google Scholar
  49. 49.
    Legendre H, Vanhuyse F, Caroli-Bosc FX, et al. Survival and quality of life after palliative surgery for neoplastic gastrointestinal obstruction. Eur J Surg Oncol. 2001;27:364–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Abbas SM, Merrie AE. Resection of peritoneal metastases causing malignant small bowel obstruction. World J Surg Oncol. 2007;5:122.  https://doi.org/10.1186/1477-7819-5-122.
  51. 51.
    Mantas D, Tsaparas P, Charalampoudis P, Gogas H, Kouraklis G. Emergency surgery for metastatic melanoma. Int J Surg Oncol. vol. 2014, Article ID 987170, 4 pages, 2014.  https://doi.org/10.1155/2014/987170.
  52. 52.
    Mendelsohn RB, Gerdes H, Markowitz AJ, et al. Carcinomatosis is not a contraindication to enteral stenting in selected patients with malignant gastric outlet obstruction. Gastrointest Endosc. 2011;73:1135–40.PubMedCrossRefGoogle Scholar
  53. 53.
    Lowe AS, Beckett CG, Jowett S, et al. Self-expandable metal stent placement for the palliation of malignant gastroduodenal obstruction: experience in a large, single, UK centre. Clin Radiol. 2007;62:738–44.PubMedCrossRefGoogle Scholar
  54. 54.
    Telford JJ, Carr-Locke DL, Baron TH, et al. Palliation of patients with malignant gastric outlet obstruction with the enteral Wallstent: outcomes from a multicenter study. Gastrointest Endosc. 2004;60:916–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Dormann A, Meisner S, Verin N, et al. Self-expanding metal stents for gastroduodenal malignancies: systematic review of their clinical effectiveness. Endoscopy. 2004;36:543–50.PubMedCrossRefGoogle Scholar
  56. 56.
    Nassif T, Prat F, Meduri B, et al. Endoscopic palliation of malignant gastric outlet obstruction using self-expandable metallic stents: results of a multicenter study. Endoscopy. 2003;35:483–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Holt AP, Patel M, Ahmed MM. Palliation of patients with malignant gastroduodenal obstruction with self-expanding metallic stents: the treatment of choice? Gastrointest Endosc. 2004;60:1010–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Camunez F, Echenagusia A, Simo G, et al. Malignant colorectal obstruction treated by means of self-expanding metallic stents: effectiveness before surgery and in palliation. Radiology. 2000;216:492–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Law WL, Chu KW, Ho JW, et al. Self-expanding metallic stent in the treatment of colonic obstruction caused by advanced malignancies. Dis Colon Rectum. 2000;43:1522–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Pothuri B, Guiguis A, Gerdes H, et al. The use of colorectal stents for palliation of large bowel obstruction due to recurrent gynecologic cancer. Gynecol Oncol. 2004;95:513–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Khot UP, Wenk Lang A, Murali K, et al. Systematic review of the efficacy and safety of colorectal stents. Br J Surg. 2002;89:1096–102.PubMedCrossRefGoogle Scholar
  62. 62.
    Mercadante S. What is the opioid of choice? Progress in Palliative Care. 2001;9:190–3.Google Scholar
  63. 63.
    Mercadante S, Sapio M, Serretta R. Treatment of pain in chronic bowel subobstruction with self-administration of methadone. Support Care Cancer. 1997;5:327–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Hanks GW, De Conno F, Cherny N, et al. Expert Working Group of the Research Network of the European Association for Palliative Care. Morphine and alternative opioids in cancer pain: the EAPC recommendations. Br J Cancer. 2001;84(5):587–93.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Anderson SL, Shreve ST. Continuous subcutaneous infusion of opiates at the end-life. Ann Pharmacother. 2004;38:1015–23.PubMedCrossRefGoogle Scholar
  66. 66.
    Ripamonti C, Bruera E. Current status of patient-controlled analgesia in cancer patients. Oncology. 1997;11:373–84.PubMedGoogle Scholar
  67. 67.
    Grond S, Radbruch L, Lehmann KA. Clinical pharmacokinetics of transdermal opioids: focus on transdermal fentanyl. Clin Pharmacokin. 2000;38:59–89.CrossRefGoogle Scholar
  68. 68.
    Muijsers RBR, Wagstaff AJ. Transdermal fentanyl. An updated review of its pharmacological properties and therapeutic efficacy in chronic cancer pain control. Drugs. 2001;61:2289–307.PubMedCrossRefGoogle Scholar
  69. 69.
    Ventafridda V, Ripamonti C, Caraceni A, et al. The management of inoperable gastrointestinal obstruction in terminal cancer patients. Tumouri. 1990;76:389–93.Google Scholar
  70. 70.
    Mercadante S. Pain in inoperable bowel obstruction. Pain Digest. 1995;5:9–13.Google Scholar
  71. 71.
    De Conno F, Caraceni A, Zecca E, Spoldi E, Ventafridda V. Continuous subcutaneous infusion of hyoscine butylbromide reduces secretions in patients with gastrointestinal obstruction. J Pain Symptom Manage. 1991;6:484–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Mercadante S, Kargar J, Nicolosi G. Octreotide may prevent definitive intestinal obstruction. J Pain Symptom Manage. 1997;13:352–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Mercadante S, Spoldi E, Caraceni A, Maddaloni S, Simonetti MT. Octreotide in relieving gastrointestinal symptoms due to bowel obstruction. Palliat Med. 1993;7:295–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Ripamonti C, Panzeri C, Groff L, Galeazzi G, Boffi R. The role of somatostatin and octreotide in bowel obstruction: pre-clinical and clinical results. Tumouri. 2001;87:1–9.Google Scholar
  75. 75.
    Anthone GJ, Bastidas JA, Orlandle MS, Yeo CJ. Direct proabsorptive effect of octreotide on ionic transport in the small intestine. Surgery. 1990;108:1136–42.PubMedGoogle Scholar
  76. 76.
    Basson MD, Fielding LP, Bilchik AJ, et al. Does vasoactive intestinal polypeptide mediate the pathophysiology of bowel obstruction? Am J Surg. 1989;157:109–15.PubMedCrossRefGoogle Scholar
  77. 77.
    Neville R, Fielding P, Cambria RP, Modlin I. Vascular responsiveness in obstructed gut. Dis Colon Rectum. 1991;34:229–35.PubMedCrossRefGoogle Scholar
  78. 78.
    Nellgard P, Bojo L, Cassuto J. Importance of vasoactive intestinal peptide and somatostatin for fluid losses in small-bowel obstruction. Scand J Gastroenterol. 1995;30:464–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Mystakidou K, Tsilika E, Kalaidopoulou O, Chondros K, Georgaki S, Papadimitriou L. Comparison of octreotide administration vs conservative treatment in the management of inoperable bowel obstruction in patients with far advanced cancer: a randomised, double-blind, controlled clinical trial. Anticancer Res. 2002;22:1187–92.PubMedGoogle Scholar
  80. 80.
    Ripamonti C, Mercadante S, Groff L, Zecca E, De Conno F, Casuccio A. Role of octreotide, scopolamine butylbromide, and hydration in symptom control of patients with inoperable bowel obstruction and nasogastric tubes: a prospective randomised trial. J Pain Symptom Manage. 2000;19:23–34.PubMedCrossRefGoogle Scholar
  81. 81.
    Mercadante S, Ripamonti C, Casuccio A, Zecca E, Groff L. Comparison of octreotide and hyoscine butylbromide in controlling gastrointestinal symptoms due to malignant inoperable bowel obstruction. Support Care Cancer. 2000;8:188–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Mercadante S, Casuccio A, Mangione S. Medical treatment of inoperable malignant bowel obstruction: a qualitative systematic review. J Pain Symptom Manage. 2007;33:217–23.PubMedCrossRefGoogle Scholar
  83. 83.
    Massacesi C, Galeazzi G. Sustained release octreotide may have a role in the treatment of malignant bowel obstruction. Palliative Med. 2006;20:715–6.Google Scholar
  84. 84.
    Matulonis U, Seiden M, Roche M, et al. Long-acting octreotide for the treatment and symptomatic relief of bowel obstruction in advanced ovarian cancer. J Pain Symptom Manage. 2005;30:563–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Mystakidou K, Katsouda E, Tsilika E, et al. Octreotide long-acting formulation (LAR) in chronic loperamide-refractory diarrhea not related to cancer treatment. Anticancer Res. 2006;26:2325–8.PubMedGoogle Scholar
  86. 86.
    Bousquet C, Puente E, Vaysse N, Susini C. Antiproliferative effects of somatostatin and analogs. Chemotherapy. 2001;47:30–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Jones R, Beubi JC, Millan D, Vasey P. Octreotide: an active agent in epithelial ovarian carcinoma? Lancet Oncol. 2004;5:251–3.PubMedCrossRefGoogle Scholar
  88. 88.
    Kvols LK, Wolterinf EA. Role of somatostatin analogs in the clinical management of non-neuroendocrine solid tumors. Anticancer Drugs. 2006;17:601–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Feuer DJ, Broadley KE. Systematic review and meta-analysis of corticosteroids for the resolution of malignant bowel obstruction in advanced gynaecological and gastrointestinal cancers. Systematic Review Steering Committee. Ann Oncol. 1999;10:1035–41.PubMedCrossRefGoogle Scholar
  90. 90.
    Laval G, Girarder J, Lassauniere J, et al. The use of steroids in the management of inoperable intestinal obstruction in terminal cancer patients: do they remove the obstruction? Palliat Med. 2000;14:3e10.CrossRefGoogle Scholar
  91. 91.
    Ripamonti C, Mercadante S, Groff L, Zecca E, De Conno F, Casuccio A. Role of octreotide, scopolamine butylbromide and hydration in symptom control of patients with inoperable bowel obstruction having a nasogastric tube. A prospective, randomized clinical trial. J Pain Symptom Manage. 2000;19:23–34.PubMedCrossRefGoogle Scholar
  92. 92.
    Fainsinger RL, MacEachern T, Miller MJ, et al. The use of hypodermoclysis for rehydration in terminally ill cancer patients. J Pain Symptom Manage. 1994;9:298–302.PubMedCrossRefGoogle Scholar
  93. 93.
    Ventafridda, et al. (2003) Mouth care. In: Doyle D, Hanks GWC, Cherny N, et al., editors. Oxford textbook of palliative medicine. 3rd ed. Oxford: Oxford University Press; 2005.Google Scholar
  94. 94.
    Cozzaglio L, et al. Outcome of cancer patients receiving home parenteral nutrition. J Parenter Enteral Nutr. 1997;21:339–42.CrossRefGoogle Scholar
  95. 95.
    Hoda D, Jatoi A, Burnes J, Loprinzi C, Kelly D. Should patients with advanced, incurable cancers ever be sent home with total parenteral nutrition? Cancer. 2005;103:863–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Garrison RN, Kaelin LD, Galloway RH, Heuser LS. Malignant ascites. Clinical and experimental observations. Ann Surg. 1986;203:644–51.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hind D, Tappenden P, Tumur I, Eggington S, Sutcliffe P, Ryan A. The use of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer: systematic review and economic evaluation. Health Technol Assess. 2008;12:iii–ix. xi–162.Google Scholar
  98. 98.
    Oh SY, Kwon HC, Lee S, et al. A Phase II study of oxaliplatin with low-dose leucovorin and bolus and continuous infusion 5-fluorouracil (modified FOLFOX-4) for gastric cancer patients with malignant ascites. Jpn J Clin Oncol. 2007;37:930–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Becker G, Galandi D, Blum HE. Database of Abstracts of Reviews of Effects (DARE): quality-assessed reviews: malignant ascites: systematic review and guideline for treatment. Available at https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0022845/.Google Scholar
  100. 100.
    Adam RA, Adam YG. Malignant ascites: past, present, and future. J Am Coll Surg. 2004;198:999–1011.PubMedCrossRefGoogle Scholar
  101. 101.
    Parsons SL, Watson SA, RJC S. Malignant ascites. Br J Surg. 1996;83:6–14.PubMedCrossRefGoogle Scholar
  102. 102.
    Lambert LA, Harris A. Palliative cytoreductive surgery and hyperthermic intraperitoneal chemoperfusion: current clinical practice or misnomer? J Gastrointest Oncol. 2016;7(1):112–21.  https://doi.org/10.3978/j.issn.2078-6891.2015.132. PubMedPubMedCentralGoogle Scholar
  103. 103.
    Garofalo A, Valle M, Garcia J, et al. Laparoscopic intraperitoneal hyperthermic chemotherapy for palliation of debilitating malignant ascites. Eur J Surg Oncol. 2006;32:682–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Facchiano E, Scaringi S, Kianmanesh R, et al. Laparoscopic hyperthermic intraperitoneal chemotherapy (HIPEC) for the treatment of malignant ascites secondary to unresectable peritoneal carcinomatosis from advanced gastric cancer. Eur J Surg Oncol. 2008;34:154–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Patriti A, Cavazzoni E, Graziosi L, et al. Successful palliation of malignant ascites from peritoneal mesothelioma by laparoscopic intraperitoneal hyperthermic chemotherapy. Surg Laparosc Endosc Percutan Tech. 2008;18:426–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Valle M, Van der Speeten K, Garofalo A. Laparoscopic hyperthermic intraperitoneal peroperative chemotherapy (HIPEC) in the management of refractory malignant ascites: a multi-institutional retrospective analysis in 52 patients. J Surg Oncol. 2009;100(4):331.PubMedCrossRefGoogle Scholar
  107. 107.
    Ba MC, Cui SZ, Lin SQ, et al. Chemotherapy with laparoscope-assisted continuous circulatory hyperthermic intraperitoneal perfusion for malignant ascites. World J Gastroenterol. 2010;16:1901–7.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    de Mestier L, Volet J, Scaglia E, et al. Is palliative laparoscopic hyperthermic intraperitoneal chemotherapy effective in patients with malignant hemorrhagic ascites? Case Rep Gastroenterol. 2012;6:166–70.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Randle RW, Swett KR, Swords DS, et al. Efficacy of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy in the management of malignant ascites. Ann Surg Oncol. 2014;21:1474–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Ba MC, Long H, Cui SZ, et al. Multivariate comparison of B-ultrasound guided and laparoscopic continuous circulatory hyperthermic intraperitoneal perfusion chemotherapy for malignant ascites. Surg Endosc. 2013;27:2735–43.PubMedCrossRefGoogle Scholar
  111. 111.
    Esquis P, Consolo D, Magnin G, et al. High intraabdominal pressure enhances the penetration and antitumor effect of intraperitoneal cisplatin on experimental carcinomatosis. Ann Surg. 2006;244:106–12.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Jacquet P, Stuart OA, Chang D, et al. Effect of intra-abdominal pressure on pharmacokinetics and tissue distribution of doxorubicin after intraperitoneal administration. Anticancer Drugs. 1996;7:596–603.PubMedCrossRefGoogle Scholar
  113. 113.
    Räth U, Kaufmann M, Schmid H, et al. Effect of intraperitoneal recombinant human tumour necrosis factor alpha on malignant ascites. Eur J Cancer. 1991;27:121–37.PubMedCrossRefGoogle Scholar
  114. 114.
    GCE S, Nation JG, Snider DD, et al. Intraperitoneal interferon in the management of malignant ascites. Cancer. 1993;71:2027–30.CrossRefGoogle Scholar
  115. 115.
    Mahler F, Rapin CH, Macgee W. Corynebacterium parvum as palliative treatment in malignant ascites. J Palliat Care. 1998;4:58–62.Google Scholar
  116. 116.
    Ariel IM, Oropeza R, Pack GT. Intracavitary administration of radioactive isotopes in the control of effusions due to cancer: results in 267 patients. Cancer. 1966;8:1096–102.CrossRefGoogle Scholar
  117. 117.
    Patriarca C, Macchi RM, Marschner AK, Mellstedt H. Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev. 2012;38(1):68–75.PubMedCrossRefGoogle Scholar
  118. 118.
    Zeidler R, Reisbach G, Wollenberg B, Lang S, Chaubal S, Schmitt B, Lindhofer H. Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing. J Immunol. 1999;163:1246–52.PubMedGoogle Scholar
  119. 119.
    Chelius D, Ruf P, Gruber P, Plöscher M, Liedtke R, Gansberger E, Hess J, Wasiliu M, Lindhofer H. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs. 2010;2:309–19.  https://doi.org/10.4161/mabs.2.3.11791.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Bokemeyer C. Catumaxomab—trifunctional anti-EpCAM antibody used to treat malignant ascites. Expert Opin Biol Ther. 2010;10(8):1259–69.PubMedCrossRefGoogle Scholar
  121. 121.
    Ruf P, Lindhofer H. Induction of a long-lasting antitumor immunity by a trifunctional bispecific antibody. Blood. 2001;98(8):2526–34.PubMedCrossRefGoogle Scholar
  122. 122.
    Schmitt M, Schmitt A, Reinhardt P, Thess B, Manfras B, Lindhofer H, et al. Opsonization with a trifunctional bispecific (alphaCD3 x alphaEpCAM) antibody results in efficient lysis in vitro and in vivo of EpCAM positive tumor cells by cytotoxic T lymphocytes. Int J Oncol. 2004;25(4):841–8.PubMedGoogle Scholar
  123. 123.
    Ruf P, Gires O, Jager M, Fellinger K, Atz J, Lindhofer H. Characterisation of the new EpCAM-specific antibody HO-3: implications for trifunctional antibody immunotherapy of cancer. Br J Cancer. 2007;97(3):315–21.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Mackey JR, Venner PM. Malignant ascites: demographics, therapeutic efficacy and predictors of survival. Can J Oncol. 1996;6:474–80.PubMedGoogle Scholar
  125. 125.
    Wimberger P, Gilet H, Gonschior AK, Heiss MM, Moehler M, Oskay-Oezcelik G, et al. Deterioration in quality of life (QoL) in patients with malignant ascites: results from a phase II/III study comparing paracentesis plus catumaxomab with paracentesis alone. Ann Oncol. 2012;23:1979–85.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Heiss MM, Murawa P, Koralewski P, Kutarska E, Kolesnik OO, Ivanchenko VV, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127:2209–21.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Krueger CM, Berdov BA, Roman LA, Luft AV, Lampe P, Lindhofer H, Bartelheim K, Klein A, Heiss MM. Intraoperative, adjuvant treatment of gastric cancer with the trifunctional antibody catumaxomab compared to surgery alone: a phase II study. J Clin Oncol. 2008, 26 (May 20 Suppl):abstr 15529.Google Scholar
  128. 128.
    Ströhlein MA, Siegel R, Jäger M, Lindhofer H, Jauch KW, Heiss MM. Induction of anti-tumor immunity by trifunctional antibodies in patients with peritoneal carcinomatosis. J Exp Clin Cancer Res. 2009;28:18.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Bokemeyer C, Stein A, Ridwelski K, Atanackovic D, Arnold D, Woll E, et al. A phase II study of catumaxomab administered intra- and postoperatively as part of a multimodal approach in primarily resectable gastric cancer. Gastric Cancer. 2015;18:833–42.PubMedGoogle Scholar
  130. 130.
    Goéré D, Gras-Chaput N, Aupérin A, Flament C, Mariette C, Glehen O, et al. Treatment of gastric peritoneal carcinomatosis by combining complete surgical resection of lesions and intraperitoneal immunotherapy using catumaxomab. BMC Cancer. 2014;14:148.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Stadlmann S, Amberger A, Pollheimer J, et al. Ovarian carcinoma cells and IL-1beta-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions. Gynecol Oncol. 2005;97:784–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Yeo KT, Wang HH, Nagy JA, et al. Vascular permeability factor (vascular endothelial growth factor) in guinea pig and human tumor and inflammatory effusions. Cancer Res. 1993;53:2912–8.PubMedGoogle Scholar
  133. 133.
    Freeman MR, Schneck FX, Gagnon ML, et al. Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis. Cancer Res. 1995;55:4140–5.PubMedGoogle Scholar
  134. 134.
    Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–5.PubMedCrossRefGoogle Scholar
  135. 135.
    Senger DR, Perruzzi CA, Feder J, et al. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 1986;46:5629–32.PubMedGoogle Scholar
  136. 136.
    Luo JC, Toyoda M, Shibuya M. Differential inhibition of fluid accumulation and tumor growth in two mouse ascites tumors by an antivascular endothelial growth factor/permeability factor neutralizing antibody. Cancer Res. 1998;58:2594–600.PubMedGoogle Scholar
  137. 137.
    Shibuya M, Luo JC, Toyoda M, et al. Involvement of VEGF and its receptors in ascites tumor formation. Cancer Chemother Pharmacol. 1999;43(Suppl):S72–7.PubMedCrossRefGoogle Scholar
  138. 138.
    Pichelmayer O, Zielinski C, Raderer M. Response of a nonmalignant pleural effusion to bevacizumab. N Engl J Med. 2005;353:740–1.PubMedCrossRefGoogle Scholar
  139. 139.
    Numnum TM, Rocconi RP, Whitworth J, et al. The use of bevacizumab to palliate symptomatic ascites in patients with refractory ovarian carcinoma. Gynecol Oncol. 2006;102:425–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Hamilton CA, Maxwell GL, Chernofsky MR, et al. Intraperitoneal bevacizumab for the palliation of malignant ascites in refractory ovarian cancer. Gynecol Oncol. 2008;111:530–2.PubMedCrossRefGoogle Scholar
  141. 141.
    El-Shami K, Elsaid A, El-Kerm Y. Open-label safety and efficacy pilot trial of intraperitoneal bevacizumab as palliative treatment in refractory malignant ascites. J Clin Oncol. 2007;25(18 Suppl):9043.Google Scholar
  142. 142.
    Kelly KJ, Baumgartner JM, Lowy AM. Laparoscopic evacuation of mucinous ascites for palliation of pseudomyxoma peritonei. Ann Surg Oncol. 2015;22(5):1722.PubMedCrossRefGoogle Scholar
  143. 143.
    Von Grueningen VE, Radwany SM. Palliative and end-of-life care for patients with ovarian cancer. Clin Obstet Gynecol. 2012;55(1):173–84.CrossRefGoogle Scholar
  144. 144.
    A brief guide to symptom management in palliative care. NHS, Yorkshire and Humber Palliative and End of Life Care Groups, editors: Version 6; March 2016.Google Scholar
  145. 145.
    Beesley V, Janda M, Eakin E, et al. Lymphedema after gynecological cancer treatment: prevalence, correlates, and supportive care needs. Cancer. 2007;109(12):2607–14.PubMedCrossRefGoogle Scholar
  146. 146.
    Radwany SM, von Gruenigen VE. Palliative and end-of-life care for patients with ovarian cancer. Clin Obstet Gynecol. 2012;55(1):173–84.  https://doi.org/10.1097/GRF.0b013e31824b1af1.PubMedCrossRefGoogle Scholar
  147. 147.
    Laneader A, Angelos P, Ferrell BR, et al. Ethical issues in research to improve the management of malignant bowel obstruction: challenges and recommendations. J Pain Symptom Manage. 2007;34:S20–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Ansari N, Chandrakumaran K, Dayal S, Mohamed F, Cecil TD, Moran BJ. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in 1000 patients with perforated appendiceal epithelial tumours. Eur J Surg Oncol. 2016;42(7):1035–41.  https://doi.org/10.1016/j.ejso.2016.03.017.PubMedCrossRefGoogle Scholar
  149. 149.
    Miner TJ, Shia J, Jaques DP, Klimstra DS, Brennan MF, Coit DG. Long-term survival following treatment of pseudomyxoma peritonei: an analysis of surgical therapy. Ann Surg. 2005;241:300–8.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Delhorme JB, Elias D, Varatharajah S, Benhaim L, Dumont F, Honoré C, Goéré D. Can a benefit be expected from surgical debulking of unresectable pseudomyxoma peritonei? Ann Surg Oncol. 2016;23(5):1618–24.  https://doi.org/10.1245/s10434-015-5019-9.PubMedCrossRefGoogle Scholar
  151. 151.
    Glehen O, Mohamed F, Sugarbaker PH. Incomplete cytoreduction in 174 patients with peritoneal carcinomatosis from appendiceal malignancy. Ann Surg. 2004;240:278–85.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Levine EA, Stewart JH 4th, Shen P, et al. Intraperitoneal chemotherapy for peritoneal surface malignancy: experience with 1,000 patients. J Am Coll Surg. 2014;218:573–85.PubMedCrossRefGoogle Scholar
  153. 153.
    Brücher BL, Piso P, Verwaal V, et al. Peritoneal carcinomatosis: cytoreductive surgery and HIPEC—overview and basics. Cancer Invest. 2012;30:209–24.PubMedCrossRefGoogle Scholar
  154. 154.
    Elias D, Gilly F, Boutitie F, et al. Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: retrospective analysis of 523 patients from a multicentric French study. J Clin Oncol. 2010;28:63–8.PubMedCrossRefGoogle Scholar
  155. 155.
    Yonemura Y, Elnemr A, Endou Y, et al. Effects of neoadjuvant intraperitoneal/systemic chemotherapy (bidirectional chemotherapy) for the treatment of patients with peritoneal metastasis from gastric cancer. Int J Surg Oncol. 2012;2012:148420.  https://doi.org/10.1155/2012/148420.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Yonemura Y, Ishibashi H, Hirano M, Mizumoto A, Takeshita K, Noguchi K, Takao N, Ichinose M, Liu Y, Li Y. Effects of neoadjuvant laparoscopic hyperthermic intraperitoneal chemotherapy and neoadjuvant intraperitoneal/systemic chemotherapy on peritoneal metastases from gastric cancer. Ann Surg Oncol. 2017;24(2):478–85.  https://doi.org/10.1245/s10434-016-5487-6.PubMedCrossRefGoogle Scholar
  157. 157.
    Sgarbura O, Samalin E, Carrere S, Mazard T, de Forges H, Alline M, Pissas MH, Portales F, Ychou M, Quénet F. Preoperative intraperitoneal oxaliplatin for unresectable peritoneal carcinomatosis of colorectal origin: a pilot study. Pleura Peritoneum. 2016;1(4):209–15.CrossRefGoogle Scholar
  158. 158.
    Reymond MA, Hu B, Garcia A, Reck T, Köckerling F, Hess J, Morel P. Feasibility of therapeutic pneumoperitoneum in a large animal model using a microvaporisator. Surg Endosc. 2000;14(1):51–5.PubMedCrossRefGoogle Scholar
  159. 159.
    Solaß W, Hetzel A, Nadiradze G, Sagynaliev E, Reymond MA. Description of a novel approach for intraperitoneal drug delivery and the related device. Surg Endosc. 2012;26(7):1849–55.  https://doi.org/10.1007/s00464-012-2148-0.PubMedCrossRefGoogle Scholar
  160. 160.
    Sharon A, Hirsh I, Kaufman Y, Ostrovski L, Brandes-Klein O, Spiegel D, Shenderey A, Lissak A. The effect of continuous intraabdominal nebulization of lidocaine during gynecological laparoscopic procedures: a pilot study. Gynecol Surg. 2008;5:221–5.CrossRefGoogle Scholar
  161. 161.
    Alkhamesi NA, Ridgway PF, Ramwell A, McCullough PW, Peck DH, Darzi AW. Peritoneal nebulizer. A novel technique for delivering intraperitoneal therapeutics in laparoscopic surgery to prevent locoregional recurrence. Surg Endosc. 2009;19:1142–6.CrossRefGoogle Scholar
  162. 162.
    Canis M, Matsuzaki S, Bourdel N, Jardon K, Cotte B, Botchorishvili R, Rabischong B, Mage G. Peritoneum and laparoscopic environment [review]. Bull Cancer. 2007;94:1043–51.PubMedGoogle Scholar
  163. 163.
    Solass W, Herbette A, Schwarz T, Hetzel A, Sun JS, Dutreix M, Reymond MA. Therapeutic approach of human peritoneal carcinomatosis with Dbait in combination capnoperitoneum: proof of concept. Surg Endosc. 2012;26(3):847–52.  https://doi.org/10.1007/s00464-011-1964-y.PubMedCrossRefGoogle Scholar
  164. 164.
    Laube BL. The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination. Respir Care. 2005;50:1161–76.PubMedGoogle Scholar
  165. 165.
    Minchinton AI, Tannock IF. Drug penetration in solid tumors. Nat Rev Cancer. 2006;6:583–92.  https://doi.org/10.1038/nrc1893.PubMedCrossRefGoogle Scholar
  166. 166.
    Solass W, Kerb R, Mürdter T, et al. Intraperitoneal chemotherapy of peritoneal carcinomatosis using pressurized aerosol as an alternative to liquid solution: first evidence for efficacy. Ann Surg Oncol. 2014;21(2):553–9.  https://doi.org/10.1245/s10434-013-3213-1.PubMedCrossRefGoogle Scholar
  167. 167.
    Kakchekeeva T, Demtröder C, Herath NI, et al. In vivo feasibility of electrostatic precipitation as an adjunct to pressurized intraperitoneal aerosol chemotherapy (ePIPAC). Ann Surg Oncol. 2016;23(Suppl 5):592–8.  https://doi.org/10.1245/s10434-016-5108-4.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Ansell J, Warren N, Wall P, et al. Electrostatic precipitation is a novel way of maintaining visual field clarity during laparoscopic surgery: a prospective double-blind randomized controlled pilot study. Surg Endosc. 2014;28:2057–65.  https://doi.org/10.1007/s00464-014-3427-8.PubMedCrossRefGoogle Scholar
  169. 169.
    Tempfer CB, Celik I, Solass W, Buerkle B, Pabst U, Zieren J, et al. Activity of pressurized intraperitoneal aerosol chemotherapy (PIPAC) with cisplatin and doxorubicin in women with recurrent, platinum-resistant ovarian cancer: preliminary clinical experience. Gynecol Oncol. 2014;132(2):307–11.PubMedCrossRefGoogle Scholar
  170. 170.
    Tempfer CB, Solass W, Buerkle B, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) with cisplatin and doxorubicin in a woman with pseudomyxoma peritonei: a case report. Gynecol Oncol Rep. 2014;10:32–5.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Giger-Pabst U, Solass W, Buerkle B, Reymond MA. Low-dose intraperitoneal aerosol chemotherapy (PIPAC) as an alternative therapy for ovarian cancer in an octogenarian patient. Anticancer Res. 2015;35(4):2309–14.PubMedGoogle Scholar
  172. 172.
    Robella M, Vaira M, De Simone M. Safety and feasibility of pressurized intraperitoneal aerosol chemotherapy (PIPAC) associated with systemic chemotherapy: an innovative approach to treat peritoneal carcinomatosis. World J Surg Oncol. 2016;14:128.  https://doi.org/10.1186/s12957-016-0892-7.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Tempfer CB, Winnekendonk G, Solass W, et al. Pressurized intraperitoneal aerosol chemotherapy in women with recurrent ovarian cancer: a phase 2 study. Gynecol Oncol. 2015;137(2):223–8.  https://doi.org/10.1016/j.ygyno.2015.02.009.PubMedCrossRefGoogle Scholar
  174. 174.
    Nadiradze G, Giger-Pabst U, Zieren J, Strumberg D, Solass W, Reymond M-A. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) with low-dose cisplatin and doxorubicin in gastric peritoneal metastasis. J Gastrointest Surg. 2016;20:367–73.  https://doi.org/10.1007/s11605-015-2995-9.PubMedCrossRefGoogle Scholar
  175. 175.
    Demtröder C, Solass W, Zieren J, Strumberg D, Giger-Pabst U, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy with oxaliplatin in colorectal peritoneal metastasis. Colorectal Dis. 2016;18(4):364–71.  https://doi.org/10.1111/codi.13130.PubMedCrossRefGoogle Scholar
  176. 176.
    Blanco A, Giger-Pabst U, Solass W, Zieren J, Reymond MA. Renal and hepatic toxicities after pressurized intraperitoneal aerosol chemotherapy (PIPAC). Ann Surg Oncol. 2013;20(7):2311–6.  https://doi.org/10.1245/s10434-012-2840-2.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Odendahl K, Solass W, Demtröder C, Giger-Pabst U, Zieren J, Tempfer C, Reymond MA. Quality of life of patients with end-stage peritoneal metastasis treated with pressurized intraperitoneal aerosol chemotherapy (PIPAC). Eur J Surg Oncol. 2015;41(10):1379–85.  https://doi.org/10.1016/j.ejso.2015.06.001.PubMedCrossRefGoogle Scholar
  178. 178.
    Girshally R, Demtröder C, Albayrak N, Zieren J, Tempfer C, Reymond MA. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) as a neoadjuvant therapy before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. World J Surg Oncol. 2016;14:253.  https://doi.org/10.1186/s12957-016-1008-0.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Meredith RF, Buchsbaum DJ, Alvarez RD, LoBuglio AF. Brief overview of preclinical and clinical studies in the development of intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res. 2007;13:5643s–5645s. Koppe MJ, Soede AC, Pels W, Oyen WJG, Goldenberg DM, Bleichrodt RP, Boerman OC. Experimental radioimmunotherapy of small peritoneal metastases of colorectal origin. Int J Cancer. 2003;106:965–72.Google Scholar
  180. 180.
    Kinuya S, Yokoyama K, Fukuoka M, Hiramatsu T, Mori H, Shiba K, Watanabe N, Shuke N, Michigishi T, Tonami N. Intraperitoneal radioimmunotherapy to treat the early phase of peritoneal dissemination of human colon cancer cells in a murine model. Nucl Med Commun. 2007;28:129–33.PubMedCrossRefGoogle Scholar
  181. 181.
    Epenetos AA, Hird V, Lambert H, Mason P, Coulter C. Long term survival of patients with advanced ovarian cancer treated with intraperitoneal radioimmunotherapy. Int J Gynecol Cancer. 2000;10:44–6.PubMedCrossRefGoogle Scholar
  182. 182.
    Verheijen RH, Massuger LF, Benigno BB, Epenetos AA, Lopes A, Soper JT, Markowska J, Vyzula R, Jobling T, Stamp G, Spiegel G, Thurston D, Falke T, Lambert J, Seiden MV. Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J Clin Oncol. 2006;24:571–8.PubMedCrossRefGoogle Scholar
  183. 183.
    Oei AL, Verheijen RH, Seiden MV, Benigno BB, Lopes A, Soper JT. Decreased intraperitoneal disease recurrence in epithelial ovarian cancer patients receiving intraperitoneal consolidation treatment with yttrium-90-labeled murine Hmfg1 without improvement in overall survival. Int J Cancer. 2007;120:2710–4.PubMedCrossRefGoogle Scholar
  184. 184.
    Vergote IB, Vergote-De Vos LN, Abeler VM, et al. Randomized trial comparing cisplatin with radioactive phosphorus or whole-abdomen irradiation as adjuvant treatment of ovarian cancer. Cancer. 1992;69:741–9.PubMedCrossRefGoogle Scholar
  185. 185.
    Young RC, Brady MF, Nieberg RK, et al. Adjuvant treatment for early ovarian cancer: a randomized phase III trial of intraperitoneal 32P or intravenous cyclophosphamide and cisplatin—a gynecologic oncology group study. J Clin Oncol. 2003;21:4350–5.PubMedCrossRefGoogle Scholar
  186. 186.
    Nicholson S, Gooden CS, Hird V, et al. Radioimmunotherapy after chemotherapy compared to chemotherapy alone in the treatment of advanced ovarian cancer: a matched analysis. Oncol Rep. 1998;5:223–6.PubMedGoogle Scholar
  187. 187.
    Macey DJ, Meredith RF. A strategy to reduce red marrow dose for intraperitoneal radioimmunotherapy. Clin Cancer Res. 1999;5:3044s–7s.PubMedGoogle Scholar
  188. 188.
    Elgqvist J, Frost S, Pouget JP, Albertsson P. The potential and hurdles of targeted alpha therapy - clinical trials and beyond. Front Oncol. 2014;3:324–9.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Aarts F, Hendriks T, Boerman OC, Koppe MJ, Oyen WJG, Bleichrodt RP. A comparison between radioimmunotherapy and hyperthermic intraperitoneal chemotherapy for the treatment of peritoneal carcinomatosis of colonic origin in rats. Ann Surg Oncol. 2007;14(11):3274–82.  https://doi.org/10.1245/s10434-007-9509-2.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Meredith R, Torgue J, Shen S, et al. Dose escalation and dosimetry of first in human alpha radioimmunotherapy with 212Pb-TCMC-trastuzumab. J Nucl Med. 2014;55(10):1636–42.  https://doi.org/10.2967/jnumed.114.143842. PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Casson AG. Photofrin PDT for early stage esophageal cancer: a new standard of care? Photodiagnosis Photodyn Ther. 2009;6:155–6.PubMedCrossRefGoogle Scholar
  192. 192.
    Choi MC, Lee C, Kim SJ. Efficacy and safety of photodynamic therapy for cervical intraepithelial neoplasia: a systemic review. Photodiagnosis Photodyn Ther. 2014;11:479–80.PubMedCrossRefGoogle Scholar
  193. 193.
    Ikeda N, Usuda J, Kato H, et al. New aspects of photodynamic therapy for central type early stage lung cancer. Lasers Surg Med. 2011;43:749–54.PubMedCrossRefGoogle Scholar
  194. 194.
    Azaïs H, Mordon S, Collinet P. Intraperitoneal photodynamic therapy for peritoneal metastasis of epithelial ovarian cancer. Limits and future prospects. Gynecol Obstet Fertil Senol. 2017;45(4):249–56.  https://doi.org/10.1016/j.gofs.2017.02.005.PubMedGoogle Scholar
  195. 195.
    Guyon L, Farine MO, Lesage JC, Gevaert AM, Simonin S, Schmitt C, Collinet P, Mordon S. Photodynamic therapy of ovarian cancer peritoneal metastasis with hexaminolevulinate: a toxicity study. Photodiagnosis Photodyn Ther. 2014;11(3):265–74.  https://doi.org/10.1016/j.pdpdt.2014.04.006.PubMedCrossRefGoogle Scholar
  196. 196.
    Azaïs H, Schmitt C, Tardivel M, Kerdraon O, Stallivieri A, Frochot C, Betrouni N, Collinet P, Mordon S. Assessment of the specificity of a new folate-targeted photosensitizer for peritoneal metastasis of epithelial ovarian cancer to enable intraperitoneal photodynamic therapy. A preclinical study. Photodiagnosis Photodyn Ther. 2016;13:130–8.  https://doi.org/10.1016/j.pdpdt.2015.07.005.PubMedCrossRefGoogle Scholar
  197. 197.
    Kalli KR, Oberg AL, Keeney GL, Christianson TJH, Low PS, Knutson KL, et al. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol. 2008;108(3):619–26.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Markert S, Lassmann S, Gabriel B, Klar M, Werner M, Gitsch G, et al. Alpha-folate receptor expression in epithelial ovarian carcinoma and non-neoplastic ovarian tissue. Anticancer Res. 2008;28(6A):3567–72.PubMedGoogle Scholar
  199. 199.
    O’Shannessy DJ, Somers EB, Smale R, Fu Y-S. Expression of folate receptor-a (FRA) in gynecologic malignancies and its relationship to the tumor type. Int J Gynecol Pathol. 2013;32(3):258–68.PubMedCrossRefGoogle Scholar
  200. 200.
    Crane LMA, Arts HJG, Oosten M, Low PS, Zee AGJ, Dam GM, et al. The effect of chemotherapy on expression of folate receptor-alpha in ovarian cancer. Cell Oncol. 2011;35(1):9–18.CrossRefGoogle Scholar
  201. 201.
    Yokoyama Y, Shigeto T, Miura R, Kobayashi A, Mizunuma M, Yamauchi A, Futagami M, Mizunuma H. A strategy using photodynamic therapy and clofibric acid to treat peritoneal dissemination of ovarian cancer. Asian Pac J Cancer Prev. 2016;17(2):775–9.PubMedCrossRefGoogle Scholar
  202. 202.
    Mroz P, Xia Y, Asanuma D, Konopko A, Zhiyentayev T, Huang YY, Sharma SK, Dai T, Khan UJ, Wharton T, Hamblin MR. Intraperitoneal photodynamic therapy mediated by a fullerene in a mouse model of abdominal dissemination of colon adenocarcinoma. Nanomedicine. 2011;7(6):965–74.  https://doi.org/10.1016/j.nano.2011.04.007.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Ma Z, Li W, Yoshiya S, Xu Y, Hata M, El-Darawish Y, et al. Augmentation of immune checkpoint cancer immunotherapy with IL18. Clin Cancer Res. 2016;22:2969–80.PubMedCrossRefGoogle Scholar
  204. 204.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–8.PubMedCrossRefGoogle Scholar
  206. 206.
    Zarour HM. Reversing T-cell dysfunction and exhaustion in cancer. Clin Cancer Res. 2016;22:1856–64.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified t cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, et al. Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res. 2015;21:3149–59.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Katz SC, Point GR, Cunetta M, Thorn M, Guha P, Espat NJ, et al. Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther. 2016;23:142–8.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Koneru M, Purdon TJ, Spriggs D, Koneru S, Brentjens RJ. IL-12 secreting tumor targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology. 2015;4:e994446.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Hong H, Brown CE, Ostberg JR, Priceman SJ, Chang WC, Weng L, et al. L1 cell adhesion molecule-specific chimeric antigen receptor-redirected human T cells exhibit specific and efficient antitumor activity against human ovarian cancer in mice. PLoS One. 2016;11:e0146885.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    VanLith ML, Kohlgraf KG, Sivinski CL, Tempero RM, Hollingsworth MA. MUC1-specific antitumor responses: molecular requirements for CD4-mediated responses. Int Immunol. 2002;14:873–82.PubMedCrossRefGoogle Scholar
  214. 214.
    Dobrzanski MJ, Rewers-Felkins KA, Quinlin IS, Samad KA, Phillips CA, Robinson W, et al. Autologous MUC1-specific Th1 effector cell immunotherapy induces differential levels of systemic TReg cell subpopulations that result in increased ovarian cancer patient survival. Clin Immunol. 2009;133:333–52.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Ai YQ, Cai K, JH H, Jiang LW, Gao YR, Zhao H, et al. The clinical effects of dendritic cell vaccines combined with cytokine-induced killer cells intraperitoneal injected on patients with malignant ascites. Int J Clin Exp Med. 2014;7:4272–81.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Surgical OncologySL Raheja HospitalMumbaiIndia
  2. 2.Department of Surgical OncologyFortis HospitalBangaloreIndia

Personalised recommendations