Skip to main content

Treatment of Rejection in Desensitized KT Patients

  • Chapter
  • First Online:
  • 334 Accesses

Abstract

In the end-stage renal disease, kidney transplantation is considered as an optimal treatment. As understanding of pathophysiology of antibody-mediated rejection (ABMR), the challenges of sensitized kidney transplantation is increased with a tool of desensitizing protocol. In the sensitized kidney transplantation against donor-specific antibody (DSA) for human leukocyte antigen or ABO-incompatible antigen, the antibody-mediated rejection is still not been fully overcome. The many reports showed the rate of T cell-mediated rejection (TCMR) has greatly decreased but the treatment of antibody-mediated rejection is still difficult. Antibody-mediated rejection is main risk of deterioration of renal function and graft loss in kidney transplantation. Antibody-mediated rejection therapy is currently known to be effective for removing or inhibiting the creation of donor-specific antibodies. Plasmapheresis and intravenous immunoglobulin (IVIG) are known to be helpful, but there is no defined protocol. Rituximab or bortezomib have been used to inhibit the production of antibody-producing plasma cells or B cells, but have not yet shown good results, and eculizumab, c1 esterase inhibitor, and IgG endopeptidase require additional studies.

In this chapter various treatments against the antibody-mediated rejection will be dealt with in current use of medical therapy and newly developed medications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Loupy A, Haas M, Solez K, et al. The Banff 2015 kidney meeting report: current challenges in rejection classification and prospects for adopting molecular pathology. Am J Transplant. 2017;17(1):28–41.

    Article  PubMed  CAS  Google Scholar 

  2. Baan CC, de Graav GN, Boer K. T follicular helper cells in transplantation: the target to attenuate antibody-mediated allogeneic responses? Curr Transplant Rep. 2014;1(3):166–72.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kidney Disease: Improving Global Outcomes Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9(Suppl 3):S1–155.

    Google Scholar 

  4. Burton SA, Amir N, Asbury A, et al. Treatment of antibody-mediated rejection in renal transplant patients: a clinical practice survey. Clin Transpl. 2015;29(2):118–23.

    Article  CAS  Google Scholar 

  5. Pretagostini R, Poli L, Gozzer M, et al. Plasmapheresis, photopheresis, and endovenous immunoglobulin in acute antibody-mediated rejection in kidney transplantation. Transplant Proc. 2015;47(7):2142–4.

    Article  PubMed  CAS  Google Scholar 

  6. Derksen RH, Schuurman HJ, Meyling FH, et al. The efficacy of plasma exchange in the removal of plasma components. J Lab Clin Med. 1984;104(3):346–54.

    PubMed  CAS  Google Scholar 

  7. Zachary AA, Montgomery RA, Leffell MS. Factors associated with and predictive of persistence of donor-specific antibody after treatment with plasmapheresis and intravenous immunoglobulin. Hum Immunol. 2005;66(4):364–70.

    Article  PubMed  CAS  Google Scholar 

  8. Djamali A, Kaufman DB, Ellis TM, et al. Diagnosis and management of antibody-mediated rejection: current status and novel approaches. Am J Transplant. 2014;14(2):255–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. 2013;13(3):176–89.

    Article  PubMed  CAS  Google Scholar 

  10. Jordan S, Cunningham-Rundles C, McEwan R. Utility of intravenous immune globulin in kidney transplantation: efficacy, safety, and cost implications. Am J Transplant. 2003;3(6):653–64.

    Article  PubMed  Google Scholar 

  11. Marfo K, Lu A, Ling M, et al. Desensitization protocols and their outcome. Clin J Am Soc Nephrol. 2011;6(4):922–36.

    Article  PubMed  Google Scholar 

  12. Rault R, Piraino B, Johnston JR, et al. Pulmonary and renal toxicity of intravenous immunoglobulin. Clin Nephrol. 1991;36(2):83–6.

    PubMed  CAS  Google Scholar 

  13. Levine MH, Abt PL. Treatment options and strategies for antibody mediated rejection after renal transplantation. Semin Immunol. 2012;24(2):136–42.

    Article  PubMed  CAS  Google Scholar 

  14. Slatinska J, Honsova E, Burgelova M, et al. Plasmapheresis and intravenous immunoglobulin in early antibody-mediated rejection of the renal allograft: a single-center experience. Ther Apher Dial. 2009;13(2):108–12.

    Article  PubMed  CAS  Google Scholar 

  15. Lefaucheur C, Nochy D, Andrade J, et al. Comparison of combination plasmapheresis/IVIg/anti-CD20 versus high-dose IVIg in the treatment of antibody-mediated rejection. Am J Transplant. 2009;9(5):1099–107.

    Article  PubMed  CAS  Google Scholar 

  16. Lachmann N, Duerr M, Schonemann C, et al. Treatment of antibody-mediated renal allograft rejection: improving step by step. J Immunol Res. 2017;2017:6872046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cooper JE, Gralla J, Klem P, et al. High dose intravenous immunoglobulin therapy for donor-specific antibodies in kidney transplant recipients with acute and chronic graft dysfunction. Transplantation. 2014;97(12):1253–9.

    Article  PubMed  CAS  Google Scholar 

  18. Genberg H, Hansson A, Wernerson A, et al. Pharmacodynamics of rituximab in kidney allotransplantation. Am J Transplant. 2006;6(10):2418–28.

    Article  PubMed  CAS  Google Scholar 

  19. Sidner RA, Book BK, Agarwal A, et al. In vivo human B-cell subset recovery after in vivo depletion with rituximab, anti-human CD20 monoclonal antibody. Hum Antibodies. 2004;13(3):55–62.

    Article  PubMed  CAS  Google Scholar 

  20. Jordan SC, Vo AA, Tyan D, et al. Current approaches to treatment of antibody-mediated rejection. Pediatr Transplant. 2005;9(3):408–15.

    Article  PubMed  CAS  Google Scholar 

  21. Shirakawa H, Ishida H, Shimizu T, et al. The low dose of rituximab in ABO-incompatible kidney transplantation without a splenectomy: a single-center experience. Clin Transpl. 2011;25(6):878–84.

    Article  CAS  Google Scholar 

  22. Sautenet B, Blancho G, Buchler M, et al. One-year results of the Effects of rituximab on acute antibody-mediated rejection in renal transplantation: RITUX ERAH, a multicenter double-blind randomized placebo-controlled trial. Transplantation. 2016;100(2):391–9.

    Article  PubMed  CAS  Google Scholar 

  23. Zarkhin V, Li L, Kambham N, et al. A randomized, prospective trial of rituximab for acute rejection in pediatric renal transplantation. Am J Transplant. 2008;8(12):2607–17.

    Article  PubMed  CAS  Google Scholar 

  24. Kaposztas Z, Podder H, Mauiyyedi S, et al. Impact of rituximab therapy for treatment of acute humoral rejection. Clin Transpl. 2009;23(1):63–73.

    Article  CAS  Google Scholar 

  25. Macklin PS, Morris PJ, Knight SR. A systematic review of the use of rituximab for the treatment of antibody-mediated renal transplant rejection. Transplant Rev (Orlando). 2017;31(2):87–95.

    Article  Google Scholar 

  26. Goodwin WE, Mims MM, Kaufman JJ. Human renal transplantation III. Technical problems encountered in six cases of kidney homotransplantation. Trans Am Assoc Genitourin Surg. 1962;54:116–25.

    PubMed  CAS  Google Scholar 

  27. De Lucena DD, Rangel EB. Glucocorticoids use in kidney transplant setting. Expert Opin Drug Metab Toxicol. 2018;14(10):1023–41.

    Article  PubMed  CAS  Google Scholar 

  28. Gray D, Shepherd H, Daar A, et al. Oral versus intravenous high-dose steroid treatment of renal allograft rejection. The big shot or not? Lancet. 1978;1(8056):117–8.

    Article  PubMed  CAS  Google Scholar 

  29. Laubach JP, Mitsiades CS, Mahindra A, et al. Novel therapies in the treatment of multiple myeloma. J Natl Compr Cancer Netw. 2009;7(9):947–60.

    Article  CAS  Google Scholar 

  30. Walsh RC, Alloway RR, Girnita AL, et al. Proteasome inhibitor-based therapy for antibody-mediated rejection. Kidney Int. 2012;81(11):1067–74.

    Article  PubMed  CAS  Google Scholar 

  31. Ejaz NS, Alloway RR, Halleck F, et al. Review of bortezomib treatment of antibody-mediated rejection in renal transplantation. Antioxid Redox Signal. 2014;21(17):2401–18.

    Article  PubMed  CAS  Google Scholar 

  32. Lemy A, Toungouz M, Abramowicz D. Bortezomib: a new player in pre- and post-transplant desensitization? Nephrol Dial Transplant. 2010;25(11):3480–9.

    Article  PubMed  CAS  Google Scholar 

  33. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–83.

    Article  PubMed  CAS  Google Scholar 

  34. van der Heijden JW, Oerlemans R, Lems WF, et al. The proteasome inhibitor bortezomib inhibits the release of NFkappaB-inducible cytokines and induces apoptosis of activated T cells from rheumatoid arthritis patients. Clin Exp Rheumatol. 2009;27(1):92–8.

    PubMed  Google Scholar 

  35. Testa U. Proteasome inhibitors in cancer therapy. Curr Drug Targets. 2009;10(10):968–81.

    Article  PubMed  CAS  Google Scholar 

  36. Curran MP, McKeage K. Bortezomib: a review of its use in patients with multiple myeloma. Drugs. 2009;69(7):859–88.

    Article  PubMed  CAS  Google Scholar 

  37. Perry DK, Burns JM, Pollinger HS, et al. Proteasome inhibition causes apoptosis of normal human plasma cells preventing alloantibody production. Am J Transplant. 2009;9(1):201–9.

    Article  PubMed  CAS  Google Scholar 

  38. Everly MJ, Everly JJ, Arend LJ, et al. Reducing de novo donor-specific antibody levels during acute rejection diminishes renal allograft loss. Am J Transplant. 2009;9(5):1063–71.

    Article  PubMed  CAS  Google Scholar 

  39. Walsh RC, Everly JJ, Brailey P, et al. Proteasome inhibitor-based primary therapy for antibody-mediated renal allograft rejection. Transplantation. 2010;89(3):277–84.

    Article  PubMed  CAS  Google Scholar 

  40. Eskandary F, Regele H, Baumann L, et al. A randomized trial of bortezomib in late antibody-mediated kidney transplant rejection. J Am Soc Nephrol. 2018;29(2):591–605.

    Article  PubMed  CAS  Google Scholar 

  41. Parker C. Eculizumab for paroxysmal nocturnal haemoglobinuria. Lancet. 2009;373(9665):759–67.

    Article  PubMed  CAS  Google Scholar 

  42. Zuber J, Fakhouri F, Roumenina LT, et al. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol. 2012;8(11):643–57.

    Article  PubMed  CAS  Google Scholar 

  43. Stegall MD, Chedid MF, Cornell LD. The role of complement in antibody-mediated rejection in kidney transplantation. Nat Rev Nephrol. 2012;8(11):670–8.

    Article  PubMed  CAS  Google Scholar 

  44. Locke JE, Magro CM, Singer AL, et al. The use of antibody to complement protein C5 for salvage treatment of severe antibody-mediated rejection. Am J Transplant. 2009;9(1):231–5.

    Article  PubMed  CAS  Google Scholar 

  45. Gonzalez-Roncero F, Suner M, Bernal G, et al. Eculizumab treatment of acute antibody-mediated rejection in renal transplantation: case reports. Transplant Proc. 2012;44(9):2690–4.

    Article  PubMed  CAS  Google Scholar 

  46. Kocak B, Arpali E, Demiralp E, et al. Eculizumab for salvage treatment of refractory antibody-mediated rejection in kidney transplant patients: case reports. Transplant Proc. 2013;45(3):1022–5.

    Article  PubMed  CAS  Google Scholar 

  47. Burbach M, Suberbielle C, Brocheriou I, et al. Report of the inefficacy of eculizumab in two cases of severe antibody-mediated rejection of renal grafts. Transplantation. 2014;98(10):1056–9.

    Article  PubMed  Google Scholar 

  48. Orandi BJ, Zachary AA, Dagher NN, et al. Eculizumab and splenectomy as salvage therapy for severe antibody-mediated rejection after HLA-incompatible kidney transplantation. Transplantation. 2014;98(8):857–63.

    Article  PubMed  CAS  Google Scholar 

  49. Vo AA, Zeevi A, Choi J, et al. A phase I/II placebo-controlled trial of C1-inhibitor for prevention of antibody-mediated rejection in HLA sensitized patients. Transplantation. 2015;99(2):299–308.

    Article  PubMed  CAS  Google Scholar 

  50. Berger M, Baldwin WM 3rd, Jordan SC. Potential roles for C1 inhibitor in transplantation. Transplantation. 2016;100(7):1415–24.

    Article  PubMed  CAS  Google Scholar 

  51. Viglietti D, Gosset C, Loupy A, et al. C1 inhibitor in acute antibody-mediated rejection nonresponsive to conventional therapy in kidney transplant recipients: a pilot study. Am J Transplant. 2016;16(5):1596–603.

    Article  PubMed  CAS  Google Scholar 

  52. Montgomery RA, Orandi BJ, Racusen L, et al. Plasma-derived C1 esterase inhibitor for acute antibody-mediated rejection following kidney transplantation: results of a randomized double-blind placebo-controlled pilot study. Am J Transplant. 2016;16(12):3468–78.

    Article  PubMed  CAS  Google Scholar 

  53. Tradtrantip L, Asavapanumas N, Verkman AS. Therapeutic cleavage of anti-aquaporin-4 autoantibody in neuromyelitis optica by an IgG-selective proteinase. Mol Pharmacol. 2013;83(6):1268–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. von Pawel-Rammingen U, Johansson BP, Bjorck L. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J. 2002;21(7):1607–15.

    Article  Google Scholar 

  55. Jordan SC, Lorant T, Choi J. IgG endopeptidase in highly sensitized patients undergoing transplantation. N Engl J Med. 2017;377(17):1693–4.

    PubMed  Google Scholar 

  56. Vo AA, Choi J, Kim I, et al. A phase I/II trial of the interleukin-6 receptor-specific humanized monoclonal (tocilizumab) + intravenous immunoglobulin in difficult to desensitize patients. Transplantation. 2015;99(11):2356–63.

    Article  PubMed  CAS  Google Scholar 

  57. Casiraghi F, Ruggenenti P, Noris M, et al. Sequential monitoring of urine-soluble interleukin 2 receptor and interleukin 6 predicts acute rejection of human renal allografts before clinical or laboratory signs of renal dysfunction. Transplantation. 1997;63(10):1508–14.

    Article  PubMed  CAS  Google Scholar 

  58. Choi J, Aubert O, Vo A, et al. Assessment of tocilizumab (anti-interleukin-6 receptor monoclonal) as a potential treatment for chronic antibody-mediated rejection and transplant glomerulopathy in HLA-sensitized renal allograft recipients. Am J Transplant. 2017;17(9):2381–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, JK. (2020). Treatment of Rejection in Desensitized KT Patients. In: Han, D. (eds) Kidney Transplantation in Sensitized Patients. Springer, Singapore. https://doi.org/10.1007/978-981-10-7046-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7046-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7045-7

  • Online ISBN: 978-981-10-7046-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics