Skip to main content

Neural Networks for Robot Arm Cooperation with a Full Distributed Control Topology

  • Chapter
  • First Online:
Book cover Neural Networks for Cooperative Control of Multiple Robot Arms

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSINTELL))

  • 936 Accesses

Abstract

This chapter considers cooperative kinematic control of multiple robot arms with a full distributed control topology by using distributed recurrent neural networks. The problem is formulated as a constrained game, where energy consumptions for each robot arm, saturations of control input, and the topological constraints imposed by the communication graph are taken into account. An implicit form of the Nash equilibrium for the game is obtained by converting the problem into its dual space. Then, a distributed dynamic controller based on recurrent neural networks is devised to drive the system towards the desired Nash equilibrium to seek the optimal solution of the cooperative control. Global stability and solution optimality of the neural networks are proved in theory. Simulations demonstrate the effectiveness of the method presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu G, Xu J, Wang X, Li Z (2004) On quality functions for grasp synthesis, fixture planning, and coordinated manipulation. IEEE Trans Autom Sci Eng 1(2):146–162

    Article  Google Scholar 

  2. Wu L, Cui K, Chen S (2000) Redundancy coordination of multiple robotic devices for welding through genetic algorithm. Robotica 18(6):669–676

    Article  Google Scholar 

  3. Jin L, Li S, Xiao L, Liao B (2017) Cooperative motion generation in a distributed network of redundant robot manipulators with noises. IEEE Trans Syst Man Cybern: Syst. https://doi.org/10.1109/TSMC.2017.2693400

  4. Jin L, Li S (2017) Distributed task allocation of multiple robots: A control perspective. IEEE Trans Syst Man Cybern: Syst. https://doi.org/10.1109/TSMC.2016.2627579

  5. Fraile J, Paredis C, Wang C, Khosla P (1999) Agent-based planning and control of a multi-manipulator assembly system. In: Proceedings of IEEE International conference on robotics and automation, pp 1219–1225

    Google Scholar 

  6. Montemayor G, Wen J (2005) Decentralized collaborative load transport by multiple robots. In: Proceedings of IEEE International conference on robotics and automation, pp 372–377

    Google Scholar 

  7. Wang Z, Zhou T, Mao Y, Chen Q (2014) Adaptive recurrent neural network control of uncertain constrained nonholonomic mobile manipulators. Int J Syst Sci 45(2):133–144

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhang Y, Ge SS, Lee HT (2004) A unified quadratic-programming-based dynamical system approach to joint torque optimization of physically constrained redundant manipulators. IEEE Trans Syst Man Cybern Part B: Cybern 34(5):2126–2132

    Article  Google Scholar 

  9. Xiao L, Zhang Y (2014) A new performance index for the repetitive motion of mobile manipulators. IEEE Trans Cybern 44(2):280–292

    Article  Google Scholar 

  10. Zhang Y, Wang J, Xia Y (2003) A dual neural network for redundancy resolution of kinematically redundant manipulators subject to joint limits and joint velocity limits. IEEE Trans Neural Netw 14(3):658–667

    Article  Google Scholar 

  11. Zhang Z, Zhang Y (2013) Variable joint-velocity limits of redundant robot manipulators handled by quadratic programming. IEEE/ASME Trans Mechatron 18(2):674–686

    Article  Google Scholar 

  12. Ding H, Wang J (1999) Recurrent neural networks for minimum infinity-norm kinematic control of redundant manipulators. IEEE Trans Syst Man Cybern Part A: Syst Hum 29(3):269–276

    Article  Google Scholar 

  13. Tang W, Wang J (2001) A recurrent neural network for minimum infinity-norm kinematic control of redundant manipulators with an improved problem formulation and reduced architecture complexity. IEEE Trans Syst Man Cybern Part B: Cybern 31(1):98–105

    Article  Google Scholar 

  14. Xia Y, Feng G, Wang J (2005) A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control. IEEE Trans Syst Man Cybern Part B: Cybern 35(1):54–64

    Article  Google Scholar 

  15. Cai B, Zhang Y (2012) Different-level redundancy-resolution and its equivalent relationship analysis for robot manipulators using gradient-descent and Zhang’s neural-dynamic methods. IEEE Trans Ind Electron 59(8):3146–3155

    Article  Google Scholar 

  16. Mohammed A, Li S (2015) Dynamic neural networks for kinematic redundancy resolution of parallel stewart platforms. IEEE Trans Cybern 17(3):1400–1410

    Google Scholar 

  17. Guo D, Zhang Y (2014) Acceleration-level inequality-based MAN scheme for obstacle avoidance of redundant robot manipulators. IEEE Trans Ind Electron 61(12):6903–6914

    Article  Google Scholar 

  18. Wen U, Lan K, Shih H (2009) A review of Hopfield neural networks for solving mathematical programming problems. Eur J Oper Res 198(3):675–687

    Article  MATH  MathSciNet  Google Scholar 

  19. Xia Y, Wang J (2005) A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Trans Neural Netw 16(2):379–386

    Article  Google Scholar 

  20. Xiao L (2015) A finite-time convergent neural dynamics for online solution of time-varying linear complex matrix equation. Neurocomputing 167:254–259

    Article  Google Scholar 

  21. Xiao L, Lu R (2015) Finite-time solution to nonlinear equation using recurrent neural dynamics with a specially-constructed activation function. Neurocomputing 151:246–251

    Article  Google Scholar 

  22. Liu Q, Wang J (2011) A one-layer recurrent neural network for constrained nonsmooth optimization. IEEE Trans Syst Man Cybern Part B: Cybern 41(5):1323–1333

    Article  Google Scholar 

  23. Zhang H, Wang Z, Liu D (2014) A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Trans Neural Netw Learn Syst 25(7):1229–1262

    Article  Google Scholar 

  24. Hu X, Wang J (2008) An improved dual neural network for solving a class of quadratic programming problems and its-winners-take-all application. IEEE Trans Neural Netw 19(12):2022–2031

    Article  Google Scholar 

  25. Hu X, Zhang B (2009) A new recurrent neural network for solving convex quadratic programming problems with an application to the-winners-take-all problem. IEEE Trans Neural Netw 20(4):654–664

    Article  Google Scholar 

  26. Li S, Li Y, Wang Z (2013) A class of finite-time dual neural networks for solving quadratic programming problems and its \(k\)-winners-take-all application. Neural Netw 39:27–39

    Article  MATH  Google Scholar 

  27. Liu S, Wang J (2006) A simplified dual neural network for quadratic programming with its \(k\)-WTA application. IEEE Trans Neural Netw 17(6):1500–1510

    Article  Google Scholar 

  28. Yan Z, Wang J (2012) Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks. IEEE Trans Ind Inform 8(4):746–756

    Article  Google Scholar 

  29. Jin L, Zhang Y, Li S, Zhang Y (2016) Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators. IEEE Trans Ind Electron 63(11):6978–6988

    Article  Google Scholar 

  30. Jin L, Zhang Y (2014) G2-Type SRMPC scheme for synchronous manipulation of two redundant robot arms. IEEE Trans Cybern 45(2):153–164

    Google Scholar 

  31. Jin L, Zhang Y (2014) Discrete-time Zhang neural network for online time-varying nonlinear optimization with application to manipulator motion generation. IEEE Trans Neural Netw Learn Syst 26(7):1525–1531

    MathSciNet  Google Scholar 

  32. Jin L, Li S (2017) Nonconvex function activated zeroing neural network models for dynamic quadratic programming subject to equality and inequality constraints. https://doi.org/10.1016/j.neucom.2017.05.017

    Google Scholar 

  33. Jin L, Li S, La HM, Luo X (2017) Manipulability optimization of redundant manipulators using dynamic neural networks 64(6):4710–4720

    Google Scholar 

  34. Jin L, Zhang Y (2015) G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms. IEEE Trans Cybern 45(2):153–164

    Article  Google Scholar 

  35. Li S, Chen S, Liu B, Li Y, Liang Y (2012) Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing 91(15):1–9

    Google Scholar 

  36. Li S, Cui H, Li Y, Liu B, Lou Y (2012) Decentralized control of collaborative redundant manipulators with partial command coverage via locally connected recurrent neural networks. Neural Comput Appl 23(3):1051–1060

    Google Scholar 

  37. Li S, He J, Rafique U, Li Y (2016) Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans Neural Netw Learn Syst 28(2):415–426

    Article  MathSciNet  Google Scholar 

  38. Li S, Zhou M, Luo X, You Z (2017) Distributed winner-take-all in dynamic networks. IEEE Trans Autom Control 62(2):577–589

    Article  MATH  MathSciNet  Google Scholar 

  39. Li S, Zhang Y, Jin L (2016) Kinematic control of redundant manipulators using neural networks. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2016.2574363

  40. Jin L, Zhang Y, Li S, Zhang Y (2017) Noise-tolerant ZNN models for solving time-varying zero-finding problems: a control-theoretic approach. IEEE Trans Autom Control 62(2):992–997

    Article  MATH  MathSciNet  Google Scholar 

  41. Jin L, Zhang Y, Li S (2016) Integration-enhanced Zhang neural network for real-time varying matrix inversion in the presence of various kinds of noises. IEEE Trans Neural Netw Learn Syst 27(12):2615–2627

    Article  Google Scholar 

  42. Mao M, Li J, Jin L, Li S, Zhang Y (2016) Enhanced discrete-time Zhang neural network for time-variant matrix inversion in the presence of bias noises. Neurocomputing 207:220–230

    Article  Google Scholar 

  43. Khan M, Lin S, Wang Q, Shao Z (2016) Distributed multi-robot formation and tracking control in cluttered environment. ACM Trans Auton Adapt Syst 11(2):12

    Article  Google Scholar 

  44. Wang H, Liu X, Liu P, Li S (2016) Robust adaptive fuzzy fault-tolerant control for a class of non-lower-triangular nonlinear systems with actuator failures. Inf Sci 336:60–74

    Article  Google Scholar 

  45. Khan M, Li S, Wang Q, Shao Z (2016) CPS oriented control design for networked surveillance robots with multiple physical constraints. IEEE Trans Comput-Aided Design Integr Circuits Syst 35(5):778–791

    Article  Google Scholar 

  46. Khan M, Li S, Wang Q, Shao Z (2016) Formation control and tracking for co-operative robots with non-holonomic constraints. J Intell Robot Syst 82(1):163–174

    Article  Google Scholar 

  47. Wang H, Yang H, Liu X, Liu L, Li S (2016) Direct adaptive neural control of nonlinear strict-feedback systems with un-modeled dynamics using small-gain approach. Int J Adapt Control Signal Process 30(6):906–927

    Article  Google Scholar 

  48. Li S, You Z, Guo H, Luo X, Zhao Z (2015) Inverse-free extreme learning machine with optimal information updating. IEEE Trans Cybern 46(5):1229–1241

    Article  Google Scholar 

  49. Wang Z, Liu X, Liu K, Li S, Wang H (2016) Backstepping-based lyapunov function construction using approximate dynamic programming and sum of square techniques. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2016.2574747

  50. Muhammad A, Li S (2016) Dynamic neural networks for kinematic redundancy resolution of parallel stewart platforms. IEEE Trans Cybern 46(7):1538–1550

    Article  Google Scholar 

  51. Li S, Kong R, Guo Y (2014) Cooperative distributed source seeking by multiple robots: algorithms and experiments. IEEE/ASME Trans Mechatron 19(6):1810–1820

    Article  Google Scholar 

  52. Li S, Guo Y (2014) Distributed consensus filtering on directed switching graphs. Int J Robust Nonlinear Control 25:2019–2040

    Article  MATH  Google Scholar 

  53. Li S, Lou Y, Liu B (2014) Bluetooth aided mobile phone localization: a nonlinear neural circuit approach. ACM Trans Embedded Comput Syst 13(4):78

    Article  Google Scholar 

  54. Li S, Li Y (2013) Nonlinearly activated neural network for solving time-varying complex Sylvester equation. IEEE Trans Cybern 44(8):1397–1407

    Article  MathSciNet  Google Scholar 

  55. Li S, Liu B, Li Y (2013) Selective positive-negative feedback produces the winner-take-all competition in recurrent neural networks. IEEE Trans Neural Netw Learn Syst 24(2):301–309

    Article  Google Scholar 

  56. Li S, Li Y, Wang Z (2013) A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application. Neural Netw 39:27–39

    Article  MATH  Google Scholar 

  57. Li S, Guo Y (2013) Dynamic consensus estimation of weighted average on directed graphs. Int J Syst Sci 46(10):1839–1853

    Article  MATH  MathSciNet  Google Scholar 

  58. Li S, Qin F (2013) A dynamic neural network approach for solving nonlinear inequalities defined on a graph and its application to distributed, routing-free, range-free localization of WSNs. Neurocomputing 117:72–80

    Article  Google Scholar 

  59. Li S, Guo Y, Fang J, Li H (2013) Average consensus with weighting matrix design for quantized communication on directed switching graphs. Int J Adapt Control Signal Process 27:519–540

    Article  MATH  MathSciNet  Google Scholar 

  60. Li S, Li Y, Liu B (2012) Model-free control of Lorenz chaos using an approximate optimal control strategy. Commun Nonlinear Sci Numer Simul 17:4891–4900

    Article  MATH  MathSciNet  Google Scholar 

  61. Li S, Wang Y, Yu J, Liu B (2013) A nonlinear model to generate the winner-take-all competition. Commun Nonlinear Sci Numer Simul 18:435–442

    Article  MATH  MathSciNet  Google Scholar 

  62. Li S, Wang Z, Li Y (2013) Using Laplacian eigenmap as heuristic information to solve nonlinear constraints defined on a graph and its application in distributed range-free localization of wireless sensor networks. Neural Process Lett 37:411–424

    Article  Google Scholar 

  63. Li S, Chen S, Liu B (2013) Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural Process Lett 37:189–205

    Article  Google Scholar 

  64. Li S, Yu J, Pan M, Chen S (2012) Winner-take-all based on discrete-time dynamic feedback. Appl Math Comput 219:1569–1575

    Article  MATH  MathSciNet  Google Scholar 

  65. Li Y, Li S (2013) A biologically inspired solution to simultaneous localization and consistent mapping in dynamic environments. Neurocomputing 104:170–179

    Article  Google Scholar 

  66. Chen S, Li S, Liu B, Lou Y, Liang Y (2012) Self-learning variable structure control for a class of sensor-actuator systems. Sensors 12:6117–6128

    Article  Google Scholar 

  67. Armstrong B, Khatib O, Burdick J (1986) The explicit dynamic model and inertial parameters of the PUMA 560 arm. In: Proceedings of IEEE International conference on robotics and automation, pp 510–518

    Google Scholar 

  68. Spong M, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, New York

    Google Scholar 

  69. Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys Rep 446(5):97–216

    Article  MathSciNet  Google Scholar 

  70. Basar T, Olsder G (1999) Dynamic noncooperative game theory. Academic Press

    Google Scholar 

  71. Mohar B (1991) Graph theory. Wiley, Combinatorics and Applications

    Google Scholar 

  72. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press

    Google Scholar 

  73. Raafat R, Chater N, Frith C (2009) Herding in humans. Trends Cognit Sci 13(10):420–428

    Article  Google Scholar 

  74. Toner J, Tu Y (1998) Flocks, herds, and schools: a quantitative theory of flocking. Phys Rev E 58(4):4828

    Article  MathSciNet  Google Scholar 

  75. Karsenti E (2008) Self-organization in cell biology: A brief history. Nat Rev Mol Cell Biol 9(3):255–262

    Article  Google Scholar 

  76. Slotine J, Li W (1991) Applied nonlinear control. Prentice Hall

    Google Scholar 

  77. Dattorro J (2006) Convex optimization and Euclidean distance geometry. Meboo Publishing

    Google Scholar 

  78. Mastroeni G (2005) Gap functions and descent methods for minty variational inequality. Springer, Optimization and Control with Applications

    Book  MATH  Google Scholar 

  79. Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, Mutter D (2002) Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg 235(4):487–493

    Article  Google Scholar 

  80. Kypson A, Nifong L, Chitwood W (2003) Robotic cardiac surgery. J Long Term Effects Med Implants 13(6):451–464

    Article  Google Scholar 

  81. Aiyama Y, Hara M, Yabuki T, Ota J, Arai T (1999) Cooperative transportation by two four-legged robots with implicit communication. Robot Auton Syst 29(1):13–19

    Article  Google Scholar 

  82. Welch J, Backer D (2009) The Allen Telescope array: the first Widefield, panchromatic, snapshot radio camera for radio astronomy and SETI. Proc IEEE 97(8):1438–1447

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, S., Zhang, Y. (2018). Neural Networks for Robot Arm Cooperation with a Full Distributed Control Topology. In: Neural Networks for Cooperative Control of Multiple Robot Arms. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-10-7037-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7037-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7036-5

  • Online ISBN: 978-981-10-7037-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics