Skip to main content

Genetic Polymorphism Analysis in Predicting Prognosis of Advanced Prostate Cancer

  • Chapter
  • First Online:
Hormone Therapy and Castration Resistance of Prostate Cancer
  • 588 Accesses

Abstract

The human genome project has revealed significant interindividual genomic variation, including over ten million single-nucleotide polymorphisms (SNP). The finding accelerated a large number of studies exploring genes involved in the predisposition of various types of cancer. Previous case-control studies or genome-wide association studies discovered hundreds of prostate cancer (PC)-associated genes. Meanwhile, clinical applications of the genetic polymorphisms have been investigated. Polymorphisms associated with early-onset aggressive phenotypes, prognosis of hormone-sensitive metastatic or castration-resistant prostate cancer, and outcomes after specific treatments are expected as useful markers, which are of great help in the therapeutic decision making of PC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stemmermann GN, Nomura AM, Chyou PH, et al. A prospective comparison of prostate cancer at autopsy and as a clinical event: the Hawaii Japanese experience. Cancer Epidemiol Biomarkers Prev. 1992;1(3):189–93.

    CAS  PubMed  Google Scholar 

  2. Sweeney CJ, Chen YH, Carducci M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med. 2015;373(8):737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gravis G, Fizazi K, Joly F, et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(2):149–58.

    Article  CAS  PubMed  Google Scholar 

  4. Gandaglia G, Karakiewicz PI, Briganti A, et al. Impact of the site of metastases on survival in patients with metastatic prostate cancer. Eur Urol. 2015;68(2):325–34.

    Article  PubMed  Google Scholar 

  5. Smith CG, Fisher D, Harris R, et al. Analyses of 7,635 patients with colorectal cancer using independent training and validation cohorts show that rs9929218 in CDH1 is a prognostic marker of survival. Clin Cancer Res. 2015;21(15):3453–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Megias-Vericat JE, Herrero MJ, Rojas L, et al. A systematic review and meta-analysis of the impact of WT1 polymorphism rs16754 in the effectiveness of standard chemotherapy in patients with acute myeloid leukemia. Pharmacogenomics J. 2016;16(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  7. Lin DW, Porter M, Montgomery B. Treatment and survival outcomes in young men diagnosed with prostate cancer: a Population-based Cohort Study. Cancer. 2009;115(13):2863–71.

    Article  PubMed  Google Scholar 

  8. Hughes L, Zhu F, Ross E, et al. Assessing the clinical role of genetic markers of early-onset prostate cancer among high-risk men enrolled in prostate cancer early detection. Cancer Epidemiol Biomarkers Prev. 2012;21(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  9. Lange EM, Salinas CA, Zuhlke KA, et al. Early onset prostate cancer has a significant genetic component. Prostate. 2012;72(2):147–56.

    Article  PubMed  Google Scholar 

  10. Camp NJ, Farnham JM, Wong J, et al. Replication of the 10q11 and Xp11 prostate cancer risk variants: results from a Utah pedigree-based study. Cancer Epidemiol Biomarkers Prev. 2009;18(4):1290–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Al Olama AA, Kote-Jarai Z, Berndt SI, et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet. 2014;46(10):1103–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shui IM, Mucci LA, Kraft P, et al. Vitamin D-related genetic variation, plasma vitamin D, and risk of lethal prostate cancer: a prospective nested case-control study. J Natl Cancer Inst. 2012;104(9):690–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gudmundsson J, Sulem P, Rafnar T, et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet. 2008;40(3):281–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng I, Plummer SJ, Jorgenson E, et al. 8q24 and prostate cancer: association with advanced disease and meta-analysis. Eur J Hum Genet. 2008;16(4):496–505.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng I, Plummer SJ, Neslund-Dudas C, et al. Prostate cancer susceptibility variants confer increased risk of disease progression. Cancer Epidemiol Biomarkers Prev. 2010;19(9):2124–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kader AK, Sun J, Isaacs SD, et al. Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate. 2009;69(11):1195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McGuire BB, Helfand BT, Kundu S, et al. Association of prostate cancer risk alleles with unfavourable pathological characteristics in potential candidates for active surveillance. BJU Int. 2012;110(3):338–43.

    Article  CAS  PubMed  Google Scholar 

  18. Narod SA, Neuhausen S, Vichodez G, et al. Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer. 2008;99(2):371–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pomerantz MM, Werner L, Xie W, et al. Association of prostate cancer risk Loci with disease aggressiveness and prostate cancer-specific mortality. Cancer Prev Res. 2011;4(5):719–28.

    Article  CAS  Google Scholar 

  20. Gudmundsson J, Besenbacher S, Sulem P, et al. Genetic correction of PSA values using sequence variants associated with PSA levels. Sci Transl Med. 2010;2(62):62ra92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimbo M, Suzuki H, Kamiya N, et al. CAG polymorphic repeat length in androgen receptor gene combined with pretreatment serum testosterone level as prognostic factor in patients with metastatic prostate cancer. Eur Urol. 2005;47(4):557–63.

    Article  CAS  PubMed  Google Scholar 

  22. Tsuchiya N, Wang L, Suzuki H, et al. Impact of IGF-I and CYP19 gene polymorphisms on the survival of patients with metastatic prostate cancer. J Clin Oncol. 2006;24(13):1982–9.

    Article  CAS  PubMed  Google Scholar 

  23. Fukuda H, Tsuchiya N, Narita S, et al. Clinical implication of vascular endothelial growth factor T-460C polymorphism in the risk and progression of prostate cancer. Oncol Rep. 2007;18(5):1155–63.

    CAS  PubMed  Google Scholar 

  24. Narita N, Yuasa T, Tsuchiya N, et al. A genetic polymorphism of the osteoprotegerin gene is associated with an increased risk of advanced prostate cancer. BMC Cancer. 2008;8:224.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang W, Yuasa T, Tsuchiya N, et al. The novel tumor-suppressor Mel-18 in prostate cancer: its functional polymorphism, expression and clinical significance. Int J Cancer. 2009;125(12):2836–43.

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki M, Liu M, Kurosaki T, et al. Association of rs6983561 polymorphism at 8q24 with prostate cancer mortality in a Japanese population. Clin Genitourin Cancer. 2011;9(1):46–52.

    Article  PubMed  Google Scholar 

  27. Huang SP, Bao BY, Hour TC, et al. Genetic variants in CASP3, BMP5, and IRS2 genes may influence survival in prostate cancer patients receiving androgen-deprivation therapy. PLoS One. 2012;7(7):e41219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanda S, Tsuchiya N, Narita S, et al. Effects of functional genetic polymorphisms in the CYP19A1 gene on prostate cancer risk and survival. Int J Cancer. 2015;136(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  29. Tsuchiya N, Matsui S, Narita S, et al. Distinct cancer-specific survival in metastatic prostate cancer patients classified by a panel of single nucleotide polymorphisms of cancer-associated genes. Genes Cancer. 2013;4(1–2):54–60.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shiota M, Fujimoto N, Yokomizo A, et al. SRD5A gene polymorphism in Japanese men predicts prognosis of metastatic prostate cancer with androgen-deprivation therapy. Eur J Cancer. 2015;51(14):1962–9.

    Article  CAS  PubMed  Google Scholar 

  31. Shiota M, Fujimoto N, Yokomizo A, et al. The prognostic impact of serum testosterone during androgen-deprivation therapy in patients with metastatic prostate cancer and the SRD5A2 polymorphism. Prostate Cancer Prostatic Dis. 2016;19(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  32. Ryan CJ, Smith MR, de Bono JS, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368(2):138–48.

    Article  CAS  PubMed  Google Scholar 

  33. de Bono JS, Logothetis CJ, Molina A, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364(21):1995–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang F, Zou YF, Feng XL, et al. CYP17 gene polymorphisms and prostate cancer risk: a meta-analysis based on 38 independent studies. Prostate. 2011;71(11):1167–77.

    Article  CAS  PubMed  Google Scholar 

  35. Binder M, Zhang BY, Hillman DW, et al. Common genetic variation in CYP17A1 and response to abiraterone acetate in patients with metastatic castration-resistant prostate cancer. Int J Mol Sci. 2016;17(7):1097.

    Article  PubMed Central  Google Scholar 

  36. Salvi S, Casadio V, Burgio SL, et al. CYP17A1 polymorphisms and clinical outcome of castration-resistant prostate cancer patients treated with abiraterone. Int J Biol Markers. 2016;31(3):e264–9.

    Article  PubMed  Google Scholar 

  37. Sissung TM, Baum CE, Deeken J, et al. ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen independent prostate cancer treated with docetaxel. Clin Cancer Res. 2008;14(14):4543–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hahn NM, Marsh S, Fisher W, et al. Hoosier Oncology Group randomized phase II study of docetaxel, vinorelbine, and estramustine in combination in hormone-refractory prostate cancer with pharmacogenetic survival analysis. Clin Cancer Res. 2006;12(20 Pt 1):6094–9.

    Article  CAS  PubMed  Google Scholar 

  39. Landi MT, Bergen AW, Baccarelli A, et al. CYP1A1 and CYP1B1 genotypes, haplotypes, and TCDD-induced gene expression in subjects from Seveso, Italy. Toxicology. 2005;207(2):191–202.

    Article  CAS  PubMed  Google Scholar 

  40. Sissung TM, Danesi R, Price DK, et al. Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel. Mol Cancer Ther. 2008;7(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  41. Pastina I, Giovannetti E, Chioni A, et al. Cytochrome 450 1B1 (CYP1B1) polymorphisms associated with response to docetaxel in Castration-Resistant Prostate Cancer (CRPC) patients. BMC Cancer. 2010;10:511.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Suzuki M, Mamun MR, Hara K, et al. The Val158Met polymorphism of the catechol-O-methyltransferase gene is associated with the PSA-progression-free survival in prostate cancer patients treated with estramustine phosphate. Eur Urol. 2005;48(5):752–9.

    Article  CAS  PubMed  Google Scholar 

  43. Orlandi P, Fontana A, Fioravanti A, et al. VEGF-A polymorphisms predict progression-free survival among advanced castration-resistant prostate cancer patients treated with metronomic cyclophosphamide. Br J Cancer. 2013;109(4):957–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Whitburn J, Edwards CM, Sooriakumaran P. Metformin and prostate cancer: a new role for an old drug. Curr Urol Rep. 2017;18(6):46.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Joerger M, van Schaik RH, Becker ML, et al. Multidrug and toxin extrusion 1 and human organic cation transporter 1 polymorphisms in patients with castration-resistant prostate cancer receiving metformin (SAKK 08/09). Prostate Cancer Prostatic Dis. 2015;18(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  46. Kelly WK, Halabi S, Carducci M, et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol. 2012;30(13):1534–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Afshar M, Evison F, James ND, et al. Shifting paradigms in the estimation of survival for castration-resistant prostate cancer: a tertiary academic center experience. Urol Oncol. 2015;33(8):338.e1–7.

    Article  Google Scholar 

  48. Freedland SJ, Humphreys EB, Mangold LA, et al. Death in patients with recurrent prostate cancer after radical prostatectomy: prostate-specific antigen doubling time subgroups and their associated contributions to all-cause mortality. J Clin Oncol. 2007;25(13):1765–71.

    Article  PubMed  Google Scholar 

  49. Zhang BY, Riska SM, Mahoney DW, et al. Germline genetic variation in JAK2 as a prognostic marker in castration-resistant prostate cancer. BJU Int. 2017;119(3):489–95.

    Article  CAS  PubMed  Google Scholar 

  50. Chang KH, Li R, Kuri B, et al. A gain-of-function mutation in DHT synthesis in castration-resistant prostate cancer. Cell. 2013;154(5):1074–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hearn JW, AbuAli G, Reichard CA, et al. HSD3B1 and resistance to androgen-deprivation therapy in prostate cancer: a retrospective, multicohort study. Lancet Oncol. 2016;17(10):1435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiko Tsuchiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsuchiya, N. (2018). Genetic Polymorphism Analysis in Predicting Prognosis of Advanced Prostate Cancer. In: Arai, Y., Ogawa, O. (eds) Hormone Therapy and Castration Resistance of Prostate Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-10-7013-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7013-6_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7012-9

  • Online ISBN: 978-981-10-7013-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics