Skip to main content

Nanotechnology in Food Packaging

  • Chapter
  • First Online:
An Introduction to Food Grade Nanoemulsions

Abstract

Packaging of the food products are the major and unavoidable stage of food supply chain as the better packaging leads to longer durability, shelf life and maintenance of mechanical, physical, chemical and physio-chemical properties of food products. Here in this review, (i) a details of nano-packaging have been discussed; (ii) different forms of nano-packaging systems have been discussed to meet specific requirements; (iii) additionally, the recent trends, future and opportunities of nano-food packaging have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agyei D, Shanbhag BK, He L (2015) Enzyme engineering (immobilization) for food applications. Improv Tailoring Enzym Food Qual Funct 1984:213–235. https://doi.org/10.1016/B978-1-78242-285-3.00011-9

    Article  Google Scholar 

  • Ahmad R, Millia J, Khatoon N et al (2013) Biosynthesis, characterization and application of TiO2 nanoparticles in biocatalysis and protein folding. J Proteins Proteomics 4:115–121

    Google Scholar 

  • Ahuja T, Mir IA, Kumar D, Rajesh (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791–805

    Google Scholar 

  • Alexandre B, Langevin D, Médéric P et al (2009) Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: structure and volume fraction effects. J Memb Sci 328:186–204

    Article  CAS  Google Scholar 

  • Anpo M, Takeuchi M (2001) Design and development of second-generation titanium oxide photocatalysts to better our environment – approaches in realizing the use of visible light. Int J Photoenergy 3:89–94

    Article  CAS  Google Scholar 

  • Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75. https://doi.org/10.1111/j.1750-3841.2009.01456.x

  • Arshak K, Adley C, Moore E et al (2007) Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sensors Actuators B Chem 126:226–231. https://doi.org/10.1016/j.snb.2006.12.006

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  PubMed  Google Scholar 

  • Bhattacharya S, Jang J, Yang L et al (2007) BioMEMS and nanotechnology-based approaches for rapid detection of biological entities. J Rapid Methods Autom Microbiol 15:1–32

    Article  CAS  Google Scholar 

  • Boussaad, S, Diner, B, Fan, J, Rostovtsev V (2006) Redox potential mediated carbon nanotubes biosensing in homogeneous format. WO2006137899 (2006)

    Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62. https://doi.org/10.1016/j.yrtph.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  • Burris KP, Stewart CN (2012) Fluorescent nanoparticles: sensing pathogens and toxins in foods and crops. Trends Food Sci Technol 28:143–152

    Article  CAS  Google Scholar 

  • Busolo MA, Fernandez P, Ocio MJ, Lagaron JM (2010) Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Addit Contam Part A 27:1617–1626. https://doi.org/10.1080/19440049.2010.506601

    Article  CAS  Google Scholar 

  • Cedervall T, Lynch I, Lindman S et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050–2055. https://doi.org/10.1073/pnas.0608582104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123:288–292

    Article  CAS  PubMed  Google Scholar 

  • Chellaram C, Murugaboopathi G, John AA et al (2014) Significance of Nanotechnology in food industry. APCBEE Procedia 8:109–113. https://doi.org/10.1016/j.apcbee.2014.03.010

    Article  CAS  Google Scholar 

  • Chen B, Evans JRG (2005) Thermoplastic starch--clay nanocomposites and their characteristics. Carbohydr Polym 61:455–463

    Article  CAS  Google Scholar 

  • Cheng Q, Li C, Pavlinek V et al (2006) Surface-modified antibacterial TiO 2/Ag+ nanoparticles: preparation and properties. Appl Surf Sci 252:4154–4160

    Article  CAS  Google Scholar 

  • Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679

    Article  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N et al (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Costa C, Conte A, Buonocore GG, Del Nobile MA (2011) Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int J Food Microbiol 148:164–167. https://doi.org/10.1016/j.ijfoodmicro.2011.05.018

    CAS  PubMed  Google Scholar 

  • Costa C, Conte A, Buonocore GG, Lavorgna EM, Del Nobile MA (2012) Calcium alginate coating loaded with silver-montmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots. Food Res Int 48:164–169

    Article  CAS  Google Scholar 

  • Cruz-Romero MC, Murphy T, Morris M, Cummins E, Kerry JP (2013) Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 34:393–397

    Article  CAS  Google Scholar 

  • Dalmas F, Cavaillé J-Y, Gauthier C et al (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67:829–839

    Article  CAS  Google Scholar 

  • David A, Yang A (2007) Immobilized enzymes and processes for preparing and using same

    Google Scholar 

  • Deka J, Paul A, Ramesh A, Chattopadhyay A (2008) Probing Au nanoparticle uptake by enzyme following the digestion of a starch-Au-nanoparticle composite. Langmuir 24:9945–9951. https://doi.org/10.1021/la801287p

    Article  CAS  PubMed  Google Scholar 

  • Dinu CZ, Zhu G, Bale SS et al (2010) Enzyme-based nanoscale composites for use as active decontamination surfaces. Adv Funct Mater 20:392–398. https://doi.org/10.1002/adfm.200901388

    Article  CAS  Google Scholar 

  • Dur´an N, Marcato PD (2013) Nanobiotechnology perspectives. Role of nanotechnology in the food industry: A review. Int J Food Sci Technol 48:1127–1134

    Article  Google Scholar 

  • Fernández A, Cava D, Ocio MJ, Lagarón JM (2008) Perspectives for biocatalysts in food packaging. Trends Food Sci Technol 19:198–206

    Article  Google Scholar 

  • Fu J, Park B, Siragusa G et al (2008) An Au/Si hetero-nanorod-based biosensor for Salmonella detection. Nanotechnology 19:155502

    Article  PubMed  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  • Gelover S, Gomez LA, Reyes K, Leal MT (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40:3274–3280

    Article  CAS  PubMed  Google Scholar 

  • Goettler LA, Lee KY, Thakkar H (2007) Layered silicate reinforced polymer nanocomposites: development and applications. Polym Rev 47:291–317

    Article  CAS  Google Scholar 

  • Gómez JM, Romero MD, Fernández TM (2005) Immobilization of??-Glucosidase on carbon nanotubes. Catal Letters 101:275–278. https://doi.org/10.1007/s10562-005-4904-4

    Article  Google Scholar 

  • Gopinath S, Sugunan S (2007) Enzymes immobilized on montmorillonite K 10: effect of adsorption and grafting on the surface properties and the enzyme activity. Appl Clay Sci 35:67–75

    Article  CAS  Google Scholar 

  • Gruère GP (2012) Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37:191–198. https://doi.org/10.1016/j.foodpol.2012.01.001

    Article  Google Scholar 

  • Gu Y, Cole BE (2011) Carbon nanotube-based glucose sensor

    Google Scholar 

  • Gu H, Ho PL, Tong E et al (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  • Gutie’rrez-Tauste D, Dome’nech X, Casan˜-Pastor N, Ayllon AJ (2007) Characterization of methylene blue/TiO2 hybrid thin films prepared by the liquid phase deposition (LPD) method: application for fabrication of light-activated colorimetric oxygen indicators. J Photochem Photobiol A 187:45–52

    Article  Google Scholar 

  • Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611

    Article  CAS  Google Scholar 

  • Horner SR, Mace CR, Rothberg LJ, Miller BL (2006) A proteomic biosensor for enteropathogenic E. coli. Biosens Bioelectron 21:1659–1663

    Article  CAS  PubMed  Google Scholar 

  • Huang Xiaojun XZ (2007) CN1948474A.pdf

    Google Scholar 

  • Huang L, Li D-Q, Lin Y-J et al (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993

    Article  CAS  PubMed  Google Scholar 

  • Ismail AA, Pinchuk L, Pinchuk OR, Pinchuk D (2008) Polymerbased antimicrobial agents, methods of making said agents, and products and applications using said agents

    Google Scholar 

  • Jh L, Park J, Jh A et al (2016) A peptide receptor – based bioelectronic nose for the realtime determination of seafood quality. PubMed Commons 39:22901715. https://doi.org/10.1016/j.bios.2012.07.054

    Google Scholar 

  • Jia H, Zhu G, Wang P (2003) Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng 84:406–414. https://doi.org/10.1002/bit.10781

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Li Y, Cheng Q et al (2007) Preparation and properties of poly (vinyl alcohol)/silica nanocomposites derived from copolymerization of vinyl silica nanoparticles and vinyl acetate. Eur Polym J 43:1123–1131

    Article  CAS  Google Scholar 

  • Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279

    Article  CAS  Google Scholar 

  • Jordan J, Jacob KI, Tannenbaum R et al (2005) Experimental trends in polymer nanocomposites – a review. Mater Sci Eng A 393:1–11

    Article  Google Scholar 

  • Kim M II, Ham HO, Oh SD, et al (2006) Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles. J Mol Catal B Enzym 39:62–68. doi: https://doi.org/10.1016/j.molcatb.2006.01.028

  • Kim JY, Han S II, Hong S (2008) Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer (Guildf) 49:3335–3345

    Article  CAS  Google Scholar 

  • Kishore D, Talat M, Srivastava ON, Kayastha AM (2012) Immobilization of β-galactosidase onto functionalized graphene nano-sheets using response surface methodology and its analytical applications. PLoS One 7:e40708. https://doi.org/10.1371/journal.pone.0040708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouassi GK, Irudayaraj J, McCarty G (2005) Examination of cholesterol oxidase attachment to magnetic nanoparticles. J Nanobiotechnology 3:1. https://doi.org/10.1186/1477-3155-3-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Kriegel C, Arrechi A, Kit K et al (2008) Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Crit Rev Food Sci Nutr 48:775–797

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088

    Article  CAS  PubMed  Google Scholar 

  • Kvitek L, Panáček A, Soukupova J et al (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834

    Article  CAS  Google Scholar 

  • Lagaron JM, Catalá R, Gavara R (2004) Structural characteristics defining high barrier properties in polymeric materials. Mater Sci Technol 20:1–7

    Article  CAS  Google Scholar 

  • Lee SK, Sheridan M, Mills A (2005) Novel UV-activated colorimetric oxygen indicator. Chem Mater 17(10):2744–2751

    Google Scholar 

  • Li H, Li F, Wang L et al (2009a) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114:547–552

    Article  CAS  Google Scholar 

  • Li H, Zhao X, Ma Y et al (2009b) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 133:238–244

    Article  CAS  PubMed  Google Scholar 

  • Liao F, Chen C, Subramanian V (2005) Organic TFTs as gas sensors for electronic nose applications. Sensors Actuators B Chem 107:849–855. https://doi.org/10.1016/j.snb.2004.12.026

    Article  CAS  Google Scholar 

  • Liau SY, Read DC, Pugh WJ et al (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett Appl Microbiol 25:279–283

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17:567–575. https://doi.org/10.1016/j.tifs.2006.04.012

    Article  CAS  Google Scholar 

  • Lu Y, Zhang Z, Emanetoglu N et al (2005) Multifunctional biosensor based on ZnO nanostructures

    Google Scholar 

  • Luduena LN, Alvarez VA, Vazquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 460:121–129

    Article  Google Scholar 

  • Luo PG, Stutzenberger FJ (2008) Nanotechnology in the detection and control of microorganisms. Adv Appl Microbiol 63:145–181

    Article  CAS  PubMed  Google Scholar 

  • Maness P-C, Smolinski S, Blake DM et al (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattoso LHC, Medeiros ES, Baker DA et al (2009) Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline. J Nanosci Nanotechnol 9:2917–2922

    Article  CAS  PubMed  Google Scholar 

  • Mihindukulasuriya SDF, Lim L-T (2013) Oxygen detection using UV-activated 835 electrospun poly (ethylene oxide) fibers encapsulated with TiO2 nanoparticles. J 836 Mater Sci 48:5489–5498

    Article  CAS  Google Scholar 

  • Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol 40:149–167. https://doi.org/10.1016/j.tifs.2014.09.009

    Article  CAS  Google Scholar 

  • Mills A, Hazafy D (2009) Nanocrystalline SnO2-based, UVBactivated, colourimetric oxygen indicator. Sensors Actuators B Chem 136(2):344–349

    Article  CAS  Google Scholar 

  • Mills A, Doyle G, Peiro AM, Durrant J (2006) Demonstration of a novel, flexible, photocatalytic oxygen-scavenging polymer film. J Photochem Photobiol A Chem 177:328–331. https://doi.org/10.1016/j.jphotochem.2005.06.001

    Article  CAS  Google Scholar 

  • Momin JK, Jayakumar C, Prajapati JB (2013) Potential of nanotechnology in functional foods. Emirates J Food Agric 25:10–19. https://doi.org/10.9755/ejfa.v25i1.9368

    Article  Google Scholar 

  • Monteiro-Riviere NA, Nemanich RJ, Inman AO et al (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384

    Article  CAS  PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

    Article  CAS  PubMed  Google Scholar 

  • Park C-J, Kim Y-S (2003) Method of providing antibacterial activity on a surface of a body using nano-sized metal particles

    Google Scholar 

  • Perez-Esteve E, Bernardos A, Martínez-Máñez R, Barat JM (2013) Nanotechnology in the development of novel functional foods or their package. An overview based in patent analysis. Recent Pat Food Nutr Agric 5:35–43

    Article  CAS  PubMed  Google Scholar 

  • Petkova GA, Záruba К, Žvátora P, Král V (2012) Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis. Nanoscale Res Lett 7:287. https://doi.org/10.1186/1556-276X-7-287

    Article  PubMed  PubMed Central  Google Scholar 

  • Podsiadlo P, Choi S-Y, Shim B et al (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6:2914–2918

    Article  CAS  PubMed  Google Scholar 

  • Prashantha K, Soulestin J, Lacrampe MF et al (2009) Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol 69:1756–1763

    Article  CAS  Google Scholar 

  • Qhobosheane M, Santra S, Zhang P, Tan W (2001) Biochemically functionalized silica nanoparticles. Analyst 126:1274–1278

    Article  CAS  PubMed  Google Scholar 

  • Qi LF, Xu ZR, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 69:491–499

    Article  CAS  Google Scholar 

  • Rabea EI, Badawy ME-T, Stevens CV et al (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  PubMed  Google Scholar 

  • Rajesh G, Takashima W, Kaneto K (2004) Amperometric phenol biosensor based on covalent immobilization of tyrosinase onto an electrochemically prepared novel copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film. Sensors Actuators B Chem 102:271–277. https://doi.org/10.1016/j.snb.2004.04.028

    Article  CAS  Google Scholar 

  • Rangnekar A, Sarma TK, Singh AK et al (2007) Retention of enzymatic activity of alpha-amylase in the reductive synthesis of gold nanoparticles. Langmuir 23:5700–5706. https://doi.org/10.1021/la062749e

    Article  CAS  PubMed  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR et al (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:1–23. https://doi.org/10.1007/s11051-014-2464-5

    Article  Google Scholar 

  • Reddy MP, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite-supported Ag--TiO 2 as Escherichia coli disinfection photocatalyst. Water Res 41:379–386

    Article  CAS  Google Scholar 

  • Rhim J-W, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433

    Article  CAS  PubMed  Google Scholar 

  • Robertson JMC, Robertson PKJ, Lawton LA (2005) A comparison of the effectiveness of TiO 2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. J Photochem Photobiol A Chem 175:51–56

    Article  CAS  Google Scholar 

  • Robinson DKR, Morrison MJ (2010) Nanotechnologies for food packaging: reporting the science and technology research trends: report for the observatory NANO. http://www.observatorynano.eu/project/filesystem/files/Food%20Packaging%20Report%202010%20DKR%20Robinson.pdf. Accessed 15 September

  • Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71:235–244

    Article  CAS  Google Scholar 

  • Saville BA, Khavkine MI (2007) Enhancement of enzyme activity through purification and immobilization

    Google Scholar 

  • Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 47:12–25. https://doi.org/10.1016/j.bios.2013.02.043

    Article  CAS  PubMed  Google Scholar 

  • Shan C, Yang H, Song J et al (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382. https://doi.org/10.1021/ac802193c

    Article  CAS  PubMed  Google Scholar 

  • Sharma AL, Singhal R, Kumar A et al (2004) Immobilization of glucose oxidase onto electrochemically prepared poly (aniline-co-fluoroaniline) films. J Appl Polym Sci 91:3999–4006

    Article  CAS  Google Scholar 

  • Singh N, Srivastava G, Talat M et al (2014) Cicer alpha-galactosidase immobilization onto functionalized graphene nanosheets using response surface method and its applications. Food Chem 142:430–438. https://doi.org/10.1016/j.foodchem.2013.07.079

    Article  CAS  PubMed  Google Scholar 

  • Smolander M, Hurme E, Koivisto M, Kivinen S (2004) Indicator. In (Vol. International Patent WO2004/102185 A1)

    Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182. https://doi.org/10.1016/j.jcis.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Liu H (2008) Cellulose nanofiber reinforced poly (vinyl alcohol) composite film with high visible light transmittance. Compos Part A Appl Sci Manuf 39:1638–1643

    Article  Google Scholar 

  • The Project on Emerging Nanotechnologies (2013) Nanotechnology Consumer Products Inventory. http://www.nanotechproject.org/cpi/browse/categories/food-and-beverage/. Accessed 29 Oct 2013

  • The Project on Emerging Nanotechnology (2013) The Project on Emerging Nanotechnologies (PEN). Nanotechnology Consumer Products Inventory. [Cited 2013 29th October]; Available from: http://www.nanotechproject.org/cpi/browse/categories/food-and-beverage/

  • Ulman A, Gross R (2003) Activity of Candida rugosa Lipase Immobilized on γ-Fe2O3 Magnetic Nanoparticles. 5–7. https://doi.org/10.1021/ja021223n

  • Vladimirov V, Betchev C, Vassiliou A et al (2006) Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties. Compos Sci Technol 66:2935–2944

    Article  CAS  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL et al (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Xu J, Feng Q et al (2001) A novel method for enzyme immobilization: direct encapsulation of acid phosphatase in nanoporous silica host materials. J Nanosci Nanotechnol 1:83–93. https://doi.org/10.1166/jnn.2001.014

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Zhang W, Lu H, Yang P (2010) Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis. Talanta 80:1298–1304. https://doi.org/10.1016/j.talanta.2009.09.029

    Article  CAS  PubMed  Google Scholar 

  • Han Wei, Yu YanJun, Li NingTao, Wang LB (2011) Application and safety assessment for nano-composite materials in food packaging. Chinese Science Bulletin 2011 APR 2011;56(12):1216–1225

    Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116

    Article  CAS  Google Scholar 

  • Xiao-e L, Green ANM, Haque SA, Mills ADJ (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol A 162:253–259

    Article  Google Scholar 

  • Xiaoning A (2007) CN1904043A.pdf

    Google Scholar 

  • Xiong H, Tang S, Tang H, Zou P (2008) The structure and properties of a starch-based biodegradable film. Carbohydr Polym 71:263–268

    Article  CAS  Google Scholar 

  • Yang L, Qian Z, Ma Xingyuan H (2012) CN102373192A.pdf

    Google Scholar 

  • Yu H, Xu X, Chen X et al (2007) Preparation and antibacterial effects of PVA-PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103:125–133

    Article  CAS  Google Scholar 

  • Zeng H, Gao C, Wang Y et al (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer (Guildf) 47:113–122

    Article  CAS  Google Scholar 

  • Zhang J, Zhang J, Zhang F et al (2010) Graphene oxide as a matrix for enzyme immobilization. Langmuir 26:6083–6085. https://doi.org/10.1021/la904014z

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Ye M, Chao Q et al (2008) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J Agric Food Chem 57:517–524

    Article  Google Scholar 

  • Zhou C (2013) Theoretical analysis of double-microfluidic-channels photonic crystal fiber sensor based on silver nanowires. Opt Commun 288:42–46. https://doi.org/10.1016/j.optcom.2012.09.060

    Article  CAS  Google Scholar 

  • Zhou X, Shin E, Wang KW, Bakis CE (2004) Interfacial damping characteristics of carbon nanotube-based composites. Compos Sci Technol 64:2425–2437

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dasgupta, N., Ranjan, S. (2018). Nanotechnology in Food Packaging. In: An Introduction to Food Grade Nanoemulsions. Environmental Chemistry for a Sustainable World. Springer, Singapore. https://doi.org/10.1007/978-981-10-6986-4_8

Download citation

Publish with us

Policies and ethics