Advertisement

Structure of the MCM2-7 Double Hexamer and Its Implications for the Mechanistic Functions of the Mcm2-7 Complex

  • Yuanliang Zhai
  • Bik-Kwoon TyeEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)

Abstract

The eukaryotic minichromosome maintenance 2–7 complex is the core of the inactive MCM replication licensing complex and the catalytic core of the Cdc45-MCM-GINS replicative helicase. The years of effort to determine the structure of parts or the whole of the heterohexameric complex by X-ray crystallography and conventional cryo-EM produced limited success. Modern cryo-EM technology ushered in a new era of structural biology that allowed the determination of the structure of the inactive double hexamer at an unprecedented resolution of 3.8 Å. This review will focus on the fine details observed in the Mcm2-7 double hexameric complex and their implications for the function of the Mcm2-7 hexamer in its different roles during DNA replication.

Keywords

DNA replication Replication licensing MCM2-7 Cryo-EM structure 

References

  1. Abid Ali F, Renault L, Gannon J, Gahlon HL, Kotecha A, Zhou JC, Rueda D, Costa A (2016) Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nat Commun 7:10708. https://doi.org/10.1038/ncomms10708 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bae B, Chen YH, Costa A, Onesti S, Brunzelle JS, Lin Y, Cann IK, Nair SK (2009) Insights into the architecture of the replicative helicase from the structure of an archaeal MCM homolog. Structure 17(2):211–222. https://doi.org/10.1016/j.str.2008.11.010 CrossRefPubMedGoogle Scholar
  3. Bell SP, Labib K (2016) Chromosome duplication in Saccharomyces cerevisiae. Genetics 203(3):1027–1067. https://doi.org/10.1534/genetics.115.186452 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bochman ML, Schwacha A (2008) The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31(2):287–293. https://doi.org/10.1016/j.molcel.2008.05.020 CrossRefPubMedGoogle Scholar
  5. Bochman ML, Schwacha A (2009) The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev: MMBR 73(4):652–683. https://doi.org/10.1128/MMBR.00019-09 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bowers JL, Randell JC, Chen S, Bell SP (2004) ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell 16(6):967–978. https://doi.org/10.1016/j.molcel.2004.11.038 CrossRefPubMedGoogle Scholar
  7. Brewster AS, Wang G, Yu X, Greenleaf WB, Carazo JM, Tjajadi M, Klein MG, Chen XS (2008) Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase. Proc Natl Acad Sci U S A 105(51):20191–20196. https://doi.org/10.1073/pnas.0808037105 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brewster AS, Slaymaker IM, Afif SA, Chen XS (2010) Mutational analysis of an archaeal minichromosome maintenance protein exterior hairpin reveals critical residues for helicase activity and DNA binding. BMC Mol Biol 11:62. https://doi.org/10.1186/1471-2199-11-62 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bruck I, Kaplan DL (2011) Origin single-stranded DNA releases Sld3 protein from the Mcm2-7 complex, allowing the GINS tetramer to bind the Mcm2-7 complex. J Biol Chem 286(21):18602–18613. https://doi.org/10.1074/jbc.M111.226332 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bruck I, Kaplan DL (2013) Cdc45 protein-single-stranded DNA interaction is important for stalling the helicase during replication stress. J Biol Chem 288(11):7550–7563. https://doi.org/10.1074/jbc.M112.440941 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chong JP, Mahbubani HM, Khoo CY, Blow JJ (1995) Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375(6530):418–421. https://doi.org/10.1038/375418a0 CrossRefPubMedGoogle Scholar
  12. Chong JP, Hayashi MK, Simon MN, Xu RM, Stillman B (2000) A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci U S A 97(4):1530–1535. https://doi.org/10.1073/pnas.030539597 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM (2011) The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 18(4):471–477. https://doi.org/10.1038/nsmb.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Costa A, Renault L, Swuec P, Petojevic T, Pesavento JJ, Ilves I, MacLellan-Gibson K, Fleck RA, Botchan MR, Berger JM (2014) DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. elife 3:e03273. https://doi.org/10.7554/eLife.03273 PubMedPubMedCentralGoogle Scholar
  15. Coster G, Frigola J, Beuron F, Morris EP, Diffley JF (2014) Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol Cell 55(5):666–677. https://doi.org/10.1016/j.molcel.2014.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Deegan TD, Yeeles JT, Diffley JF (2016) Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation. EMBO J 35(9):961–973. 10.15252/embj.201593552 CrossRefPubMedPubMedCentralGoogle Scholar
  17. van Deursen F, Sengupta S, De Piccoli G, Sanchez-Diaz A, Labib K (2012) Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J 31(9):2195–2206. https://doi.org/10.1038/emboj.2012.69 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Diffley JF, Cocker JH, Dowell SJ, Rowley A (1994) Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78(2):303–316CrossRefPubMedGoogle Scholar
  19. Donovan S, Harwood J, Drury LS, Diffley JF (1997) Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci U S A 94(11):5611–5616CrossRefPubMedPubMedCentralGoogle Scholar
  20. Eisenberg S, Korza G, Carson J, Liachko I, Tye BK (2009) Novel DNA binding properties of the Mcm10 protein from Saccharomyces cerevisiae. J Biol Chem 284(37):25412–25420. https://doi.org/10.1074/jbc.M109.033175 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Enemark EJ, Joshua-Tor L (2006) Mechanism of DNA translocation in a replicative hexameric helicase. Nature 442(7100):270–275. https://doi.org/10.1038/nature04943 CrossRefPubMedGoogle Scholar
  22. Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 106(48):20240–20245. https://doi.org/10.1073/pnas.0911500106 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fernandez-Leiro R, Scheres SHW (2016) Unravelling biological macromolecules with cryo-electron microscopy. Nature 537(7620):339–346. https://doi.org/10.1038/nature19948 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146(6):931–941. https://doi.org/10.1016/j.cell.2011.07.045 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gambus A, Blow JJ (2013) Mcm8 and Mcm9 form a dimeric complex in Xenopus laevis egg extract that is not essential for DNA replication initiation. Cell Cycle 12(8):1225–1232. https://doi.org/10.4161/cc.24310 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8(4):358–366. https://doi.org/10.1038/ncb1382 CrossRefPubMedGoogle Scholar
  27. Georgescu RE, Schauer GD, Yao NY, Langston LD, Yurieva O, Zhang D, Finkelstein J, O’Donnell ME (2015) Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. elife 4:e04988. https://doi.org/10.7554/eLife.04988 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP (2011) Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146(1):80–91. https://doi.org/10.1016/j.cell.2011.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Homesley L, Lei M, Kawasaki Y, Sawyer S, Christensen T, Tye BK (2000) Mcm10 and the MCM2-7 complex interact to initiate DNA synthesis and to release replication factors from origins. Genes Dev 14(8):913–926PubMedPubMedCentralGoogle Scholar
  30. Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37(2):247–258. https://doi.org/10.1016/j.molcel.2009.12.030 CrossRefPubMedGoogle Scholar
  31. Johnston LH, Thomas AP (1982) The isolation of new DNA synthesis mutants in the yeast Saccharomyces cerevisiae. Mol Gen Genet 186(3):439–444CrossRefPubMedGoogle Scholar
  32. Kang S, Warner MD, Bell SP (2014) Multiple functions for Mcm2-7 ATPase motifs during replication initiation. Mol Cell 55(5):655–665. https://doi.org/10.1016/j.molcel.2014.06.033 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kelman Z, Lee J-K, Hurwitz J (1999) The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum ΔH contains DNA helicase activity. Proc Natl Acad Sci 96(26):14783–14788. https://doi.org/10.1073/pnas.96.26.14783 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kornberg R (2007) The molecular basis of eukaryotic transcription (Nobel lecture). Angew Chem 46(37):6956–6965. https://doi.org/10.1002/anie.200701832 CrossRefGoogle Scholar
  35. Kumar C, Remus D (2016) Eukaryotic replication origins: strength in flexibility. Nucleus 7(3):292–300. https://doi.org/10.1080/19491034.2016.1187353 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Labib K, Tercero JA, Diffley JF (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288(5471):1643–1647CrossRefPubMedGoogle Scholar
  37. Lei M, Kawasaki Y, Young MR, Kihara M, Sugino A, Tye BK (1997) Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev 11(24):3365–3374CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li N, Zhai Y, Zhang Y, Li W, Yang M, Lei J, Tye BK, Gao N (2015) Structure of the eukaryotic MCM complex at 3.8 A. Nature 524(7564):186–191. https://doi.org/10.1038/nature14685 CrossRefPubMedGoogle Scholar
  39. Lutzmann M, Maiorano D, Mechali M (2005) Identification of full genes and proteins of MCM9, a novel, vertebrate-specific member of the MCM2-8 protein family. Gene 362:51–56. https://doi.org/10.1016/j.gene.2005.07.031 CrossRefPubMedGoogle Scholar
  40. Maine GT, Sinha P, Tye BK (1984) Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 106(3):365–385PubMedPubMedCentralGoogle Scholar
  41. Maiorano D, Cuvier O, Danis E, Mechali M (2005) MCM8 is an MCM2-7-related protein that functions as a DNA helicase during replication elongation and not initiation. Cell 120(3):315–328. https://doi.org/10.1016/j.cell.2004.12.010 CrossRefPubMedGoogle Scholar
  42. Miller JM, Arachea BT, Epling LB, Enemark EJ (2014) Analysis of the crystal structure of an active MCM hexamer. elife 3:e03433. https://doi.org/10.7554/eLife.03433 PubMedPubMedCentralGoogle Scholar
  43. Moir D, Stewart SE, Osmond BC, Botstein D (1982) Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics 100(4):547–563PubMedPubMedCentralGoogle Scholar
  44. Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103(27):10236–10241. https://doi.org/10.1073/pnas.0602400103 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nishimura K, Ishiai M, Horikawa K, Fukagawa T, Takata M, Takisawa H, Kanemaki MT (2012) Mcm8 and Mcm9 form a complex that functions in homologous recombination repair induced by DNA interstrand crosslinks. Mol Cell 47(4):511–522. https://doi.org/10.1016/j.molcel.2012.05.047 CrossRefPubMedGoogle Scholar
  46. On KF, Beuron F, Frith D, Snijders AP, Morris EP, Diffley JF (2014) Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J 33(6):605–620. https://doi.org/10.1002/embj.201387369 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ramakrishnan V (2010) Unraveling the structure of the ribosome (Nobel lecture). Angew Chem 49(26):4355–4380. https://doi.org/10.1002/anie.201001436 CrossRefGoogle Scholar
  48. Randell JC, Fan A, Chan C, Francis LI, Heller RC, Galani K, Bell SP (2010) Mec1 is one of multiple kinases that prime the Mcm2-7 helicase for phosphorylation by Cdc7. Mol Cell 40(3):353–363. https://doi.org/10.1016/j.molcel.2010.10.017 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139(4):719–730. https://doi.org/10.1016/j.cell.2009.10.015 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sheu YJ, Stillman B (2006) Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell 24(1):101–113. https://doi.org/10.1016/j.molcel.2006.07.033 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Siddiqui K, On KF, Diffley JF (2013) Regulating DNA replication in eukarya. Cold Spring Harb Perspect Biol 5(9). https://doi.org/10.1101/cshperspect.a012930
  52. Steitz TA (2010) From the structure and function of the ribosome to new antibiotics (Nobel lecture). Angew Chem 49(26):4381–4398. https://doi.org/10.1002/anie.201000708 CrossRefGoogle Scholar
  53. Sun J, Evrin C, Samel SA, Fernandez-Cid A, Riera A, Kawakami H, Stillman B, Speck C, Li H (2013) Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat Struct Mol Biol 20(8):944–951. https://doi.org/10.1038/nsmb.2629 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H (2014) Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev 28(20):2291–2303. https://doi.org/10.1101/gad.242313.114 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT, Li H, O’Donnell ME (2015) The architecture of a eukaryotic replisome. Nat Struct Mol Biol 22(12):976–982. https://doi.org/10.1038/nsmb.3113 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tang GQ, Patel SS (2006) T7 RNA polymerase-induced bending of promoter DNA is coupled to DNA opening. Biochemistry 45(15):4936–4946. https://doi.org/10.1021/bi0522910 CrossRefPubMedGoogle Scholar
  57. Thommes P, Kubota Y, Takisawa H, Blow JJ (1997) The RLF-M component of the replication licensing system forms complexes containing all six MCM/P1 polypeptides. EMBO J 16(11):3312–3319. https://doi.org/10.1093/emboj/16.11.3312 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP (2015) Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161(3):513–525. https://doi.org/10.1016/j.cell.2015.03.012 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Traver S, Coulombe P, Peiffer I, Hutchins JR, Kitzmann M, Latreille D, Mechali M (2015) MCM9 is required for mammalian DNA mismatch repair. Mol Cell 59(5):831–839. https://doi.org/10.1016/j.molcel.2015.07.010 CrossRefPubMedGoogle Scholar
  60. Tye BK (1999a) MCM proteins in DNA replication. Annu Rev Biochem 68:649–686. https://doi.org/10.1146/annurev.biochem.68.1.649 CrossRefPubMedGoogle Scholar
  61. Tye BK (1999b) Minichromosome maintenance as a genetic assay for defects in DNA replication. Methods 18(3):329–334. https://doi.org/10.1006/meth.1999.0793 CrossRefPubMedGoogle Scholar
  62. Yardimci H, Loveland AB, Habuchi S, van Oijen AM, Walter JC (2010) Uncoupling of sister replisomes during eukaryotic DNA replication. Mol Cell 40(5):834–840. https://doi.org/10.1016/j.molcel.2010.11.027 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF (2015) Regulated eukaryotic DNA replication origin firing with purified proteins. Nature. https://doi.org/10.1038/nature14285
  64. Yonath A (2010) Polar bears, antibiotics, and the evolving ribosome (Nobel lecture). Angew Chem 49(26):4341–4354. https://doi.org/10.1002/anie.201001297 CrossRefGoogle Scholar
  65. Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O’Donnell ME, Li H (2016) Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol 23(3):217–224. https://doi.org/10.1038/nsmb.3170 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Division of Life ScienceHong Kong University of Science and TechnologyHong KongChina
  2. 2.Institute for Advanced StudyHong Kong University of Science and TechnologyHong KongChina
  3. 3.Department of Molecular Biology and Genetics, College of Agriculture and Life SciencesCornell UniversityIthacaUSA

Personalised recommendations