Advertisement

Termination of Eukaryotic Replication Forks

  • Agnieszka GambusEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)

Abstract

Termination of DNA replication forks takes place when two replication forks coming from neighbouring origins meet each other usually in the midpoint of the replicon. At this stage, the remaining fragments of DNA have to be unwound, all remaining DNA replicated and newly synthesised strands ligated to produce continuous sister chromatids. Finally, the replication machinery has to be taken off, chromatin re-assembled, and entwisted sister chromatids resolved topologically.

Over the last few decades, we have learned a lot about the assembly of the helicase and replisome and the initiation stage of DNA replication. We also know much more about the ability of forks to cope with replication stress. However, only within recent years we have gained the first glimpse of the mechanism of replication fork termination. In this chapter I will summarise the recent findings on replication termination, weigh this against the past literature and discuss relevant consequences and views for the future.

Keywords

Eukaryotic DNA replication Termination of DNA replication Ubiquitin Cdc48 p97 segregase Cullins 

References

  1. Adham IM, Khulan J, Held T, Schmidt B, Meyer BI, Meinhardt A, Engel W (2008) Fas-associated factor (FAF1) is required for the early cleavage-stages of mouse embryo. Mol Hum Reprod 14:207–213PubMedCrossRefGoogle Scholar
  2. Ahuja AK, Jodkowska K, Teloni F, Bizard AH, Zellweger R, Herrador R, Ortega S, Hickson ID, Altmeyer M, Mendez J et al (2016) A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun 7:10660PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ali N, Ismail IM, Khoder M, Shamy M, Alghamdi M, Costa M, Ali LN, Wang W, Eqani SA (2016) Polycyclic aromatic hydrocarbons (PAHs) in indoor dust samples from cities of Jeddah and Kuwait: levels, sources and non-dietary human exposure. Sci Total Environ 573:1607–1614PubMedCrossRefGoogle Scholar
  4. Balakrishnan L, Bambara RA (2013) Okazaki fragment metabolism. Cold Spring Harb Perspect Biol 5Google Scholar
  5. Barkley LR, Song IY, Zou Y, Vaziri C (2009) Reduced expression of GINS complex members induces hallmarks of pre-malignancy in primary untransformed human cells. Cell Cycle 8:1577–1588PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bastia D, Zaman S (2014) Mechanism and physiological significance of programmed replication termination. Semin Cell Dev Biol 30:165–173PubMedCrossRefGoogle Scholar
  7. Baxter J, Diffley JF (2008) Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast. Mol Cell 30:790–802PubMedCrossRefGoogle Scholar
  8. Been MD, Champoux JJ (1980) Breakage of single-stranded DNA by rat liver nicking-closing enzyme with the formation of a DNA-enzyme complex. Nucleic Acids Res 8:6129–6142PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bermejo R, Doksani Y, Capra T, Katou YM, Tanaka H, Shirahige K, Foiani M (2007) Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation. Genes Dev 21:1921–1936PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blake D, Luke B, Kanellis P, Jorgensen P, Goh T, Penfold S, Breitkreutz BJ, Durocher D, Peter M, Tyers M (2006) The F-box protein Dia2 overcomes replication impedance to promote genome stability in Saccharomyces cerevisiae. Genetics 174:1709–1727PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brewer BJ, Fangman WL (1988) A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55:637–643PubMedCrossRefGoogle Scholar
  12. Brill SJ, DiNardo S, Voelkel-Meiman K, Sternglanz R (1987) Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature 326:414–416PubMedCrossRefGoogle Scholar
  13. Bruderer RM, Brasseur C, Meyer HH (2004) The AAA ATPase p97/VCP interacts with its alternative co-factors, Ufd1-Npl4 and p47, through a common bipartite binding mechanism. J Biol Chem 279:49609–49616PubMedCrossRefGoogle Scholar
  14. Buchsbaum S, Morris C, Bochard V, Jalinot P (2007) Human INT6 interacts with MCM7 and regulates its stability during S phase of the cell cycle. Oncogene 26:5132–5144PubMedCrossRefGoogle Scholar
  15. Burger J, Merlet J, Tavernier N, Richaudeau B, Arnold A, Ciosk R, Bowerman B, Pintard L (2013) CRL2(LRR-1) E3-ligase regulates proliferation and progression through meiosis in the Caenorhabditis elegans germline. PLoS Genet 9:e1003375PubMedPubMedCentralCrossRefGoogle Scholar
  16. Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N, Domingo E, Kanu N, Dewhurst SM, Gronroos E et al (2013) Replication stress links structural and numerical cancer chromosomal instability. Nature 494:492–496PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chowdhury P, Lin GE, Liu K, Song Y, Lin FT, Lin WC (2014) Targeting TopBP1 at a convergent point of multiple oncogenic pathways for cancer therapy. Nat Commun 5:5476PubMedPubMedCentralCrossRefGoogle Scholar
  18. Conti C, Sacca B, Herrick J, Lalou C, Pommier Y, Bensimon A (2007) Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell 18:3059–3067PubMedPubMedCentralCrossRefGoogle Scholar
  19. Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM (2011) The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 18:471–477PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cuvier O, Stanojcic S, Lemaitre JM, Mechali M (2008) A topoisomerase II-dependent mechanism for resetting replicons at the S-M-phase transition. Genes Dev 22:860–865PubMedPubMedCentralCrossRefGoogle Scholar
  21. Daigaku Y, Keszthelyi A, Muller CA, Miyabe I, Brooks T, Retkute R, Hubank M, Nieduszynski CA, Carr AM (2015) A global profile of replicative polymerase usage. Nat Struct Mol Biol 22:192–198PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dalgaard JZ, Klar AJ (2000) swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S. pombe. Cell 102:745–751PubMedCrossRefGoogle Scholar
  23. Dalgaard JZ, Eydmann T, Koulintchenko M, Sayrac S, Vengrova S, Yamada-Inagawa T (2009) Random and site-specific replication termination. Methods Mol Biol 521:35–53PubMedCrossRefGoogle Scholar
  24. Deichsel A, Mouysset J, Hoppe T (2009) The ubiquitin-selective chaperone CDC-48/p97, a new player in DNA replication. Cell Cycle 8:185–190PubMedCrossRefGoogle Scholar
  25. Devbhandari S, Jiang J, Kumar C, Whitehouse I, Remus D (2017) Chromatin constrains the initiation and elongation of DNA replication. Mol Cell 65:131–141PubMedCrossRefGoogle Scholar
  26. Dewar JM, Budzowska M, Walter JC (2015) The mechanism of DNA replication termination in vertebrates. Nature 525:345–350PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dewar JM, Low E, Mann M, Raschle M, Walter JC (2017) CRL2Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev 31:275–290PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dimude JU, Midgley-Smith SL, Stein M, Rudolph CJ (2016). Replication termination: containing fork fusion-mediated pathologies in Escherichia coli. Genes (Basel) 7Google Scholar
  29. Downes CS, Clarke DJ, Mullinger AM, Gimenez-Abian JF, Creighton AM, Johnson RT (1994) A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. Nature 372:467–470PubMedCrossRefGoogle Scholar
  30. Duxin JP, Dewar JM, Yardimci H, Walter JC (2014) Repair of a DNA-protein crosslink by replication-coupled proteolysis. Cell 159:346–357PubMedPubMedCentralCrossRefGoogle Scholar
  31. Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 106:20240–20245PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fachinetti D, Bermejo R, Cocito A, Minardi S, Katou Y, Kanoh Y, Shirahige K, Azvolinsky A, Zakian VA, Foiani M (2010) Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol Cell 39:595–605PubMedPubMedCentralCrossRefGoogle Scholar
  33. Franz A, Orth M, Pirson PA, Sonneville R, Blow JJ, Gartner A, Stemmann O, Hoppe T (2011) CDC-48/p97 coordinates CDT-1 degradation with GINS chromatin dissociation to ensure faithful DNA replication. Mol Cell 44:85–96PubMedPubMedCentralCrossRefGoogle Scholar
  34. Franz A, Pirson PA, Pilger D, Halder S, Achuthankutty D, Kashkar H, Ramadan K, Hoppe T (2016) Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression. Nat Commun 7:10612PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146:931–941PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fullbright G, Rycenga HB, Gruber JD, Long DT (2016) p97 promotes a conserved mechanism of helicase unloading during DNA cross-link repair. Mol Cell Biol 36:2983–2994PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gaggioli V, Le Viet B, Germe T, Hyrien O (2013) DNA topoisomerase II alpha controls replication origin cluster licensing and firing time in Xenopus egg extracts. Nucleic Acids Res 41:7313–7331PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8:358–366PubMedCrossRefGoogle Scholar
  39. Gambus A, Khoudoli GA, Jones RC, Blow JJ (2011) MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem 286:11855–11864PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ganai RA, Zhang XP, Heyer WD, Johansson E (2016) Strand displacement synthesis by yeast DNA polymerase epsilon. Nucleic Acids Res 44:8229–8240PubMedPubMedCentralCrossRefGoogle Scholar
  41. Garg P, Stith CM, Sabouri N, Johansson E, Burgers PM (2004) Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev 18:2764–2773PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gasser R, Koller T, Sogo JM (1996) The stability of nucleosomes at the replication fork. J Mol Biol 258:224–239PubMedCrossRefGoogle Scholar
  43. Georgescu RE, Langston L, Yao NY, Yurieva O, Zhang D, Finkelstein J, Agarwal T, O'Donnell ME (2014) Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat Struct Mol Biol 21:664–670PubMedPubMedCentralCrossRefGoogle Scholar
  44. Georgescu RE, Schauer GD, Yao NY, Langston LD, Yurieva O, Zhang D, Finkelstein J, O’Donnell ME (2015) Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Elife 4:e04988PubMedPubMedCentralCrossRefGoogle Scholar
  45. Germe T, Hyrien O (2005) Topoisomerase II-DNA complexes trapped by ICRF-193 perturb chromatin structure. EMBO Rep 6:729–735PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gilbert DM (2010) Cell fate transitions and the replication timing decision point. J Cell Biol 191:899–903PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hanzelmann P, Buchberger A, Schindelin H (2011) Hierarchical binding of cofactors to the AAA ATPase p97. Structure 19:833–843PubMedCrossRefGoogle Scholar
  48. Hawkins M, Retkute R, Muller CA, Saner N, Tanaka TU, de Moura AP, Nieduszynski CA (2013) High-resolution replication profiles define the stochastic nature of genome replication initiation and termination. Cell Rep 5:1132–1141PubMedPubMedCentralCrossRefGoogle Scholar
  49. Huang C, Li G, Lennarz WJ (2012) Dynamic flexibility of the ATPase p97 is important for its interprotomer motion transmission. Proc Natl Acad Sci U S A 109:9792–9797PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hyrien O (2009) Topological analysis of plasmid DNA replication intermediates using two-dimensional agarose gels. Methods Mol Biol 521:139–167PubMedCrossRefGoogle Scholar
  51. Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258PubMedCrossRefGoogle Scholar
  52. Ivessa AS, Zhou JQ, Zakian VA (2000) The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100:479–489PubMedCrossRefGoogle Scholar
  53. Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA (2003) The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell 12:1525–1536PubMedCrossRefGoogle Scholar
  54. Jagannathan M, Nguyen T, Gallo D, Luthra N, Brown GW, Saridakis V, Frappier L (2014) A role for USP7 in DNA replication. Mol Cell Biol 34:132–145PubMedPubMedCentralCrossRefGoogle Scholar
  55. Johnson RE, Klassen R, Prakash L, Prakash S (2015) A major role of DNA polymerase delta in replication of both the leading and lagging DNA strands. Mol Cell 59:163–175PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kang YH, Galal WC, Farina A, Tappin I, Hurwitz J (2012) Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc Natl Acad Sci U S A 109:6042–6047PubMedPubMedCentralCrossRefGoogle Scholar
  57. Koepp DM, Kile AC, Swaminathan S, Rodriguez-Rivera V (2006) The F-box protein Dia2 regulates DNA replication. Mol Biol Cell 17:1540–1548PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kohler C, Koalick D, Fabricius A, Parplys AC, Borgmann K, Pospiech H, Grosse F (2016) Cdc45 is limiting for replication initiation in humans. Cell Cycle 15:974–985PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kuhne C, Banks L (1998) E3-ubiquitin ligase/E6-AP links multicopy maintenance protein 7 to the ubiquitination pathway by a novel motif, the L2G box. J Biol Chem 273:34302–34309PubMedCrossRefGoogle Scholar
  60. Langston L, O’Donnell M (2017) Action of CMG with strand-specific DNA blocks supports an internal unwinding mode for the eukaryotic replicative helicase. Elife 6Google Scholar
  61. Langston LD, Zhang D, Yurieva O, Georgescu RE, Finkelstein J, Yao NY, Indiani C, O’Donnell ME (2014) CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc Natl Acad Sci U S A 111:15390–15395PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lecona E, Fernandez-Capetillo O (2016) A SUMO and ubiquitin code coordinates protein traffic at replication factories. BioEssays 38:1209–1217PubMedCrossRefGoogle Scholar
  63. Lecona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I, Murga M, Munoz J, Mendez J, Fernandez-Capetillo O (2016) USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol 23:270–277PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lee JJ, Park JK, Jeong J, Jeon H, Yoon JB, Kim EE, Lee KJ (2013) Complex of Fas-associated factor 1 (FAF1) with valosin-containing protein (VCP)-Npl4-Ufd1 and polyubiquitinated proteins promotes endoplasmic reticulum-associated degradation (ERAD). J Biol Chem 288:6998–7011PubMedPubMedCentralCrossRefGoogle Scholar
  65. Li G, Huang C, Zhao G, Lennarz WJ (2012) Interprotomer motion-transmission mechanism for the hexameric AAA ATPase p97. Proc Natl Acad Sci U S A 109:3737–3741PubMedPubMedCentralCrossRefGoogle Scholar
  66. Lopez-Contreras AJ, Ruppen I, Nieto-Soler M, Murga M, Rodriguez-Acebes S, Remeseiro S, Rodrigo-Perez S, Rojas AM, Mendez J, Munoz J et al (2013) A proteomic characterization of factors enriched at nascent DNA molecules. Cell Rep 3:1105–1116PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lucas I, Germe T, Chevrier-Miller M, Hyrien O (2001) Topoisomerase II can unlink replicating DNA by precatenane removal. EMBO J 20:6509–6519PubMedPubMedCentralCrossRefGoogle Scholar
  68. Maculins T, Nkosi PJ, Nishikawa H, Labib K (2015) Tethering of SCF(Dia2) to the replisome promotes efficient ubiquitylation and disassembly of the CMG helicase. Curr Biol 25:2254–2259PubMedPubMedCentralCrossRefGoogle Scholar
  69. Magnaghi P, D'Alessio R, Valsasina B, Avanzi N, Rizzi S, Asa D, Gasparri F, Cozzi L, Cucchi U, Orrenius C et al (2013) Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat Chem Biol 9:548–556PubMedCrossRefGoogle Scholar
  70. Maric M, Maculins T, De Piccoli G, Labib K (2014) Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346:1253596PubMedPubMedCentralCrossRefGoogle Scholar
  71. McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C (2012) Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep 13:528–538PubMedPubMedCentralCrossRefGoogle Scholar
  72. McGuffee SR, Smith DJ, Whitehouse I (2013) Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. Mol Cell 50:123–135PubMedPubMedCentralCrossRefGoogle Scholar
  73. Menges CW, Altomare DA, Testa JR (2009) FAS-associated factor 1 (FAF1): diverse functions and implications for oncogenesis. Cell Cycle 8:2528–2534PubMedPubMedCentralCrossRefGoogle Scholar
  74. Merlet J, Burger J, Tavernier N, Richaudeau B, Gomes JE, Pintard L (2010) The CRL2LRR-1 ubiquitin ligase regulates cell cycle progression during C. elegans development. Development 137:3857–3866PubMedPubMedCentralCrossRefGoogle Scholar
  75. Meyer H, Bug M, Bremer S (2012) Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14:117–123PubMedCrossRefGoogle Scholar
  76. Montagnoli A, Moll J, Colotta F (2010) Targeting cell division cycle 7 kinase: a new approach for cancer therapy. Clin Cancer Res 16:4503–4508PubMedCrossRefGoogle Scholar
  77. Moreno SP, Bailey R, Campion N, Herron S, Gambus A (2014) Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science 346:477–481PubMedCrossRefGoogle Scholar
  78. Moreno A, Carrington JT, Albergante L, Al Mamun M, Haagensen EJ, Komseli ES, Gorgoulis VG, Newman TJ, Blow JJ (2016) Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc Natl Acad Sci U S A 113:E5757–E5764PubMedPubMedCentralCrossRefGoogle Scholar
  79. Morohashi H, Maculins T, Labib K (2009) The amino-terminal TPR domain of Dia2 tethers SCF(Dia2) to the replisome progression complex. Curr Biol 19:1943–1949PubMedCrossRefGoogle Scholar
  80. Mouysset J, Deichsel A, Moser S, Hoege C, Hyman AA, Gartner A, Hoppe T (2008) Cell cycle progression requires the CDC-48UFD-1/NPL-4 complex for efficient DNA replication. Proc Natl Acad Sci U S A 105:12879–12884PubMedPubMedCentralCrossRefGoogle Scholar
  81. Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103:10236–10241PubMedPubMedCentralCrossRefGoogle Scholar
  82. Muller JM, Deinhardt K, Rosewell I, Warren G, Shima DT (2007) Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality. Biochem Biophys Res Commun 354:459–465PubMedCrossRefGoogle Scholar
  83. Muramatsu S, Hirai K, Tak YS, Kamimura Y, Araki H (2010) CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol (epsilon), and GINS in budding yeast. Genes Dev 24:602–612PubMedPubMedCentralCrossRefGoogle Scholar
  84. Neelsen KJ, Lopes M (2015) Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol 16:207–220PubMedCrossRefGoogle Scholar
  85. Nishiyama A, Frappier L, Mechali M (2011) MCM-BP regulates unloading of the MCM2-7 helicase in late S phase. Genes Dev 25:165–175PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ossareh-Nazari B, Katsiarimpa A, Merlet J, Pintard L (2016) RNAi-based suppressor screens reveal genetic interactions between the CRL2LRR-1 E3-ligase and the DNA replication Machinery in Caenorhabditis elegans. G3 (Bethesda) 6:3431–3442Google Scholar
  87. Pavlov YI, Frahm C, Nick McElhinny SA, Niimi A, Suzuki M, Kunkel TA (2006) Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol 16:202–207PubMedCrossRefGoogle Scholar
  88. Pelisch F, Sonneville R, Pourkarimi E, Agostinho A, Blow JJ, Gartner A, Hay RT (2014) Dynamic SUMO modification regulates mitotic chromosome assembly and cell cycle progression in Caenorhabditis elegans. Nat Commun 5:5485PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pellegrini L, Costa A (2016) New insights into the mechanism of DNA duplication by the eukaryotic replisome. Trends Biochem Sci 41:859–871PubMedCrossRefGoogle Scholar
  90. Petryk N, Kahli M, d'Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y, Silvain M, Thermes C, Chen CL, Hyrien O (2016) Replication landscape of the human genome. Nat Commun 7:10208PubMedPubMedCentralCrossRefGoogle Scholar
  91. Piano F, Schetter AJ, Morton DG, Gunsalus KC, Reinke V, Kim SK, Kemphues KJ (2002) Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Curr Biol 12:1959–1964PubMedCrossRefGoogle Scholar
  92. Picard F, Cadoret JC, Audit B, Arneodo A, Alberti A, Battail C, Duret L, Prioleau MN (2014) The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells. PLoS Genet 10:e1004282PubMedPubMedCentralCrossRefGoogle Scholar
  93. Postow L, Crisona NJ, Peter BJ, Hardy CD, Cozzarelli NR (2001) Topological challenges to DNA replication: conformations at the fork. Proc Natl Acad Sci U S A 98:8219–8226PubMedPubMedCentralCrossRefGoogle Scholar
  94. Reijns MA, Kemp H, Ding J, de Proce SM, Jackson AP, Taylor MS (2015) Lagging-strand replication shapes the mutational landscape of the genome. Nature 518:502–506PubMedPubMedCentralCrossRefGoogle Scholar
  95. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139:719–730PubMedPubMedCentralCrossRefGoogle Scholar
  96. Reverdy C, Conrath S, Lopez R, Planquette C, Atmanene C, Collura V, Harpon J, Battaglia V, Vivat V, Sippl W et al (2012) Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem Biol 19:467–477PubMedCrossRefGoogle Scholar
  97. Roca J, Ishida R, Berger JM, Andoh T, Wang JC (1994) Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc Natl Acad Sci U S A 91:1781–1785PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rudolph CJ, Upton AL, Stockum A, Nieduszynski CA, Lloyd RG (2013) Avoiding chromosome pathology when replication forks collide. Nature 500:608–611PubMedCrossRefGoogle Scholar
  99. Schalbetter SA, Mansoubi S, Chambers AL, Downs JA, Baxter J (2015) Fork rotation and DNA precatenation are restricted during DNA replication to prevent chromosomal instability. Proc Natl Acad Sci U S A 112:E4565–E4570PubMedPubMedCentralCrossRefGoogle Scholar
  100. Scott DC, Rhee DY, Duda DM, Kelsall IR, Olszewski JL, Paulo JA, de Jong A, Ovaa H, Alpi AF, Harper JW et al (2016) Two distinct types of E3 ligases work in unison to regulate substrate ubiquitylation. Cell 166(1198–1214):e1124Google Scholar
  101. Sengupta S, van Deursen F, de Piccoli G, Labib K (2013) Dpb2 integrates the leading-strand DNA polymerase into the eukaryotic replisome. Curr Biol 23:543–552PubMedCrossRefGoogle Scholar
  102. Simon AC, Sannino V, Costanzo V, Pellegrini L (2016) Structure of human Cdc45 and implications for CMG helicase function. Nat Commun 7:11638PubMedPubMedCentralCrossRefGoogle Scholar
  103. Skoufias DA, Lacroix FB, Andreassen PR, Wilson L, Margolis RL (2004) Inhibition of DNA decatenation, but not DNA damage, arrests cells at metaphase. Mol Cell 15:977–990PubMedCrossRefGoogle Scholar
  104. Smith DJ, Whitehouse I (2012) Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483:434–438PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sonneville R, Moreno SP, Knebel A, Johnson C, Hastie CJ, Gartner A, Gambus A, Labib K (2017) CUL-2LRR-1 and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis. Nat Cell Biol 19(5):468–479PubMedPubMedCentralCrossRefGoogle Scholar
  106. Starostina NG, Simpliciano JM, McGuirk MA, Kipreos ET (2010) CRL2(LRR-1) targets a CDK inhibitor for cell cycle control in C. elegans and actin-based motility regulation in human cells. Dev Cell 19:753–764PubMedPubMedCentralCrossRefGoogle Scholar
  107. Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT, Li H, O’Donnell ME (2015) The architecture of a eukaryotic replisome. Nat Struct Mol Biol 22:976–982PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sundin O, Varshavsky A (1980) Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell 21:103–114PubMedCrossRefGoogle Scholar
  109. Tonddast-Navaei S, Stan G (2013) Mechanism of transient binding and release of substrate protein during the allosteric cycle of the p97 nanomachine. J Am Chem Soc 135:14627–14636PubMedCrossRefGoogle Scholar
  110. Uhlmann F (2009) A matter of choice: the establishment of sister chromatid cohesion. EMBO Rep 10:1095–1102PubMedPubMedCentralCrossRefGoogle Scholar
  111. Waga S, Masuda T, Takisawa H, Sugino A (2001) DNA polymerase epsilon is required for coordinated and efficient chromosomal DNA replication in Xenopus egg extracts. Proc Natl Acad Sci U S A 98:4978–4983PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440PubMedCrossRefGoogle Scholar
  113. Wei L, Zhao X (2016) A new MCM modification cycle regulates DNA replication initiation. Nat Struct Mol Biol 23:209–216PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wendel BM, Courcelle CT, Courcelle J (2014) Completion of DNA replication in Escherichia coli. Proc Natl Acad Sci U S A 111:16454–16459PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wojcik C, Yano M, DeMartino GN (2004) RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasome-dependent proteolysis. J Cell Sci 117:281–292PubMedCrossRefGoogle Scholar
  116. Wong PG, Winter SL, Zaika E, Cao TV, Oguz U, Koomen JM, Hamlin JL, Alexandrow MG (2011) Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS One 6:e17533PubMedPubMedCentralCrossRefGoogle Scholar
  117. Yardimci H, Loveland AB, Habuchi S, van Oijen AM, Walter JC (2010) Uncoupling of sister replisomes during eukaryotic DNA replication. Mol Cell 40:834–840PubMedPubMedCentralCrossRefGoogle Scholar
  118. Yeeles JT, Janska A, Early A, Diffley JF (2017) How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol Cell 65:105–116PubMedPubMedCentralCrossRefGoogle Scholar
  119. Yeung HO, Kloppsteck P, Niwa H, Isaacson RL, Matthews S, Zhang X, Freemont PS (2008) Insights into adaptor binding to the AAA protein p97. Biochem Soc Trans 36:62–67PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK

Personalised recommendations