Advertisement

Initiation of DNA Replication in the Archaea

  • Stephen D. BellEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)

Abstract

Organisms within the archaeal domain of life possess a simplified version of the eukaryotic DNA replication machinery. While some archaea possess a bacterial-like mode of DNA replication with single origins of replication per chromosome, the majority of species characterized to date possess chromosomes with multiple replication origins. Genetic, structural, and biochemical studies have revealed the nature of archaeal origin specification. Recent work has begun to shed light on the mechanisms of replication initiation in these organisms.

Keywords

DNA replication Initiator protein Helicase Replication origin Archaea Sulfolobus 

Notes

Acknowledgments

I would like to thank Rachel Samson for helpful discussions of this material.

References

  1. Barry ER, Bell SD (2006) DNA replication in the archaea. Microbiol Mol Biol Rev 70(4):876–887. https://doi.org/10.1128/mmbr.00029-06 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bell SD (2012) Archaeal orc1/cdc6 proteins. Subcell Biochem 62:59–69. https://doi.org/10.1007/978-94-007-4572-8_4 CrossRefPubMedGoogle Scholar
  3. Bell SP, Labib K (2016) Chromosome duplication in Saccharomyces cerevisiae. Genetics 203(3):1027–1067. https://doi.org/10.1534/genetics.115.186452 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bleichert F, Botchan MR, Berger JM (2017) Mechanisms for initiating cellular DNA replication. Science 355:eaah6317. https://doi.org/10.1126/science.aah6317 CrossRefPubMedGoogle Scholar
  5. Bochman ML, Schwacha A (2009) The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev 73(4):652–683. https://doi.org/10.1128/mmbr.00019-09 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Breuert S, Allers T, Spohn G, Soppa J (2006) Regulated polyploidy in halophilic archaea. PLoS One 1(1):e92. https://doi.org/10.1371/journal.pone.0000092 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6(3):245–252. https://doi.org/10.1038/nrmicro1852 CrossRefPubMedGoogle Scholar
  8. Chen YJ, Yu XO, Kasiviswanathan R, Shin JH, Kelman Z, Egelman EH (2005) Structural polymorphism of Methanothermobacter thermautotrophicus MCM. J Mol Biol 346(2):389–394. https://doi.org/10.1016/j.jmb.2004.11.076 CrossRefPubMedGoogle Scholar
  9. Costa A, Onesti S (2009) Structural biology of MCM helicases. Crit Rev Biochem Mol Biol 44(5):326–342. https://doi.org/10.1080/10409230903186012 CrossRefPubMedGoogle Scholar
  10. Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM (2011) The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 18(4):471-U110. https://doi.org/10.1038/nsmb.2004 CrossRefGoogle Scholar
  11. Dueber ELC, Corn JE, Bell SD, Berger JM (2007) Replication origin recognition and deformation by a heterodimeric archaeal Orc1 complex. Science 317(5842):1210–1213. https://doi.org/10.1126/science.1143690 CrossRefPubMedGoogle Scholar
  12. Dueber EC, Costa A, Corn JE, Bell SD, Berger JM (2011) Molecular determinants of origin discrimination by Orc1 initiators in archaea. Nucleic Acids Res 39(9):3621–3631. https://doi.org/10.1093/nar/gkq1308 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Duggin IG, McCallum SA, Bell SD (2008) Chromosome replication dynamics in the archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci U S A 105(43):16737–16742. https://doi.org/10.1073/pnas.0806414105 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Edgell DR, Doolittle WF (1997) Archaea and the origin(s) of DNA replication proteins. Cell 89(7):995–998CrossRefPubMedGoogle Scholar
  15. Forterre P (2015) The universal tree of life: an update. Front Microbiol 6:717. https://doi.org/10.3389/fmicb.2015.00717 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Frols S, Gordon PM, Panlilio MA, Duggin IG, Bell SD, Sensen CW, Schleper C (2007) Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage. J Bacteriol 189(23):8708–8718. https://doi.org/10.1128/JB.01016-07 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gaudier M, Schuwirth BS, Westcott SL, Wigley DB (2007) Structural basis of DNA replication origin recognition by an ORC protein. Science 317(5842):1213–1216. https://doi.org/10.1126/science.1143664 CrossRefPubMedGoogle Scholar
  18. Gotz D, Paytubi S, Munro S, Lundgren M, Bernander R, White MF (2007) Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol 8(10):R220. https://doi.org/10.1186/gb-2007-8-10-r220 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Grainge I, Gaudier M, Schuwirth BS, Westcott SL, Sandall J, Atanassova N, Wigley DB (2006) Biochemical analysis of a DNA replication origin in the archaeon Aeropyrum pernix. J Mol Biol 363(2):355–369. https://doi.org/10.1016/jmb.2006.07.076 CrossRefPubMedGoogle Scholar
  20. Guy L, Ettema TJ (2011) The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol 19(12):580–587. https://doi.org/10.1016/j.tim.2011.09.002 CrossRefPubMedGoogle Scholar
  21. Hawkins M, Malla S, Blythe MJ, Nieduszynski CA, Allers T (2013) Accelerated growth in the absence of DNA replication origins. Nature 503(7477):544–547. https://doi.org/10.1038/nature12650 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hildenbrand C, Stock T, Lange C, Rother M, Soppa J (2011) Genome copy numbers and gene conversion in methanogenic archaea. J Bacteriol 193:734–743CrossRefPubMedGoogle Scholar
  23. Kelman LM, Kelman Z (2014) Archaeal DNA replication. Annu Rev Genet 48:71–97. https://doi.org/10.1146/annurev-genet-120213-092148 CrossRefPubMedGoogle Scholar
  24. Labib K, Gambus A (2007) A key role for the GINS complex at DNA replication forks. Trends Cell Biol 17(6):271–278. https://doi.org/10.1016/j.tcb.2007.04.002 CrossRefPubMedGoogle Scholar
  25. Lang S, Huang L (2015) The Sulfolobus solfataricus GINS complex stimulates DNA binding and processive DNA unwinding by minichromosome maintenance helicase. J Bacteriol 197(21):3409–3420. https://doi.org/10.1128/JB.00496-15 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li Z, Pan M, Santangelo TJ, Chemnitz W, Yuan W, Edwards JL, Hurwitz J, Reeve JN, Kelman Z (2011) A novel DNA nuclease is stimulated by association with the GINS complex. Nucleic Acids Res 39(14):6114–6123. https://doi.org/10.1093/nar/gkr181 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lundgren M, Andersson A, Chen LM, Nilsson P, Bernander R (2004) Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. Proc Natl Acad Sci U S A 101(18):7046–7051. https://doi.org/10.1073/pnas.0400656101 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lundgren M, Malandrin L, Eriksson S, Huber H, Bernander R (2008) Cell cycle characteristics of Crenarchaeota: unity among diversity. J Bacteriol 190(15):5362–5367. https://doi.org/10.1128/jb.00330-08 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Maaty WS, Wiedenheft B, Tarlykov P, Schaff N, Heinemann J, Robison-Cox J, Valenzuela J, Dougherty A, Blum P, Lawrence CM, Douglas T, Young MJ, Bothner B (2009) Something old, something new, something borrowed; how the thermoacidophilic archaeon Sulfolobus solfataricus responds to oxidative stress. PLoS One 4(9):e6964. https://doi.org/10.1371/journal.pone.0006964 CrossRefPubMedPubMedCentralGoogle Scholar
  30. MacNeill SA (2010) Structure and function of the GINS complex, a key component of the eukaryotic replisome. Biochem J 425(3):489–500. https://doi.org/10.1042/BJ20091531 CrossRefPubMedGoogle Scholar
  31. Makarova KS, Koonin EV, Kelman Z (2012) The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. Biol Direct 7:7. https://doi.org/10.1186/1745-6150-7-7 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Majernik AI, Chong JP (2008) A conserved mechanism for replication origin recognition and binding in archaea. Biochem J 409(2):511–518Google Scholar
  33. Marinsek N, Barry ER, Makarova KS, Dionne I, Koonin EV, Bell SD (2006) GINS, a central nexus in the archaeal DNA replication fork. EMBO Rep 7(5):539–545. https://doi.org/10.1038/sj.embor.7400649 PubMedPubMedCentralGoogle Scholar
  34. McGeoch AT, Bell SD (2008) Extra-chromosomal elements and the evolution of cellular DNA replication machineries. Nat Rev Mol Cell Biol 9(7):569–574. https://doi.org/10.1038/nrm2426 CrossRefPubMedGoogle Scholar
  35. Michel B, Bernander R (2014) Chromosome replication origins: do we really need them? BioEssays 36(6):585–590. https://doi.org/10.1002/bies.201400003 CrossRefPubMedGoogle Scholar
  36. Myllykallio H, Lopez P, Lopez-Garcia P, Heilig R, Saurin W, Zivanovic Y, Philippe H, Forterre P (2000) Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288(5474):2212–2215CrossRefPubMedGoogle Scholar
  37. Naor A, Lapierre P, Mevarech M, Papke RT, Gophna U (2012) Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr Biol 22(15):1444–1448. https://doi.org/10.1016/j.cub.2012.05.056 CrossRefPubMedGoogle Scholar
  38. Norais C, Hawkins M, Hartman AL, Eisen JA, Myllykallio H, Allers T (2007) Genetic and physical mapping of DNA replication origins in Haloferax volcanii. PLoS Genet 3:729–743. https://doi.org/10.1371/journal.pgen.0030077 CrossRefGoogle Scholar
  39. Oyama T, Ishino S, Fujino S, Ogino H, Shirai T, Mayanagi K, Saito M, Nagasawa N, Ishino Y, Morikawa K (2011) Architectures of archaeal GINS complexes, essential DNA replication initiation factors. BMC Biol 9:28. https://doi.org/10.1186/1741-7007-9-28 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Oyama T, Ishino S, Shirai T, Yamagami T, Nagata M, Ogino H, Kusunoki M, Ishino Y (2016) Atomic structure of an archaeal GAN suggests its dual roles as an exonuclease in DNA repair and a CMG component in DNA replication. Nucleic Acids Res 44(19):9505–9517. https://doi.org/10.1093/nar/gkw789 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pape T, Meka H, Chen SX, Vicentini G, van Heel M, Onesti S (2003) Hexameric ring structure of the full-length archaeal MCM protein complex. EMBO Rep 4(11):1079–1083. https://doi.org/10.1038/sj.embor.7400010 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pelve EA, Lindas AC, Knoppel A, Mira A, Bernander R (2012) Four chromosome replication origins in the archaeon Pyrobaculum calidifontis. Mol Microbiol 85(5):986–995. https://doi.org/10.1111/j.1365-2958.2012.08155.x CrossRefPubMedGoogle Scholar
  43. Pelve EA, Martens-Habbena W, Stahl DA, Bernander R (2013) Mapping of active replication origins in vivo in thaum- and euryarchaeal replicons. Mol Microbiol 90(3):538–550. https://doi.org/10.1111/mmi.12382 CrossRefPubMedGoogle Scholar
  44. Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431(7005):152–155. https://doi.org/10.1038/nature02848 CrossRefPubMedGoogle Scholar
  45. Robinson NP, Bell SD (2007) Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proc Natl Acad Sci U S A 104(14):5806–5811. https://doi.org/10.1073/pnas.0700206104 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Robinson NP, Dionne I, Lundgren M, Marsh VL, Bernander R, Bell SD (2004) Identification of two origins of replication in the single chromosome of the Archaeon Sulfolobus solfataricus. Cell 116(1):25–38CrossRefPubMedGoogle Scholar
  47. Robinson NP, Blood KA, McCallum SA, Edwards PAW, Bell SD (2007) Sister chromatid junctions in the hyperthermophilic archaeon Sulfolobus solfataricus. EMBO J 26(3):816–824. https://doi.org/10.1038/sj.emboj.7601529 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sakakibara N, Kelman LM, Kelman Z (2009) How is the archaeal MCM helicase assembled at the origin? Possible mechanisms. Biochem Soc Trans 37(Pt 1):7–11. https://doi.org/10.1042/BST0370007 CrossRefPubMedGoogle Scholar
  49. Samel SA, Fernandez-Cid A, Sun J, Riera A, Tognetti S, Herrera MC, Li H, Speck C (2014) A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev 28(15):1653–1666. https://doi.org/10.1101/gad.242404.114 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Samson RY, Bell SD (2014) Archaeal chromosome biology. J Mol Microbiol Biotechnol 24(5–6):420–427. https://doi.org/10.1159/000368854 CrossRefPubMedGoogle Scholar
  51. Samson RY, Bell SD (2016) Archaeal DNA replication origins and recruitment of the MCM replicative helicase. Enzyme 39:169–190. https://doi.org/10.1016/bs.enz.2016.03.002 Google Scholar
  52. Samson RY, Xu Y, Gadelha C, Stone TA, Faqiri JN, Li D, Qin N, Pu F, Liang YX, She Q, Bell SD (2013) Specificity and function of archaeal DNA replication initiator proteins. Cell Rep 3(2):485–496. https://doi.org/10.1016/j.celrep.2013.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Samson RY, Abeyrathne PD, Bell SD (2016) Mechanism of archaeal MCM helicase recruitment to DNA replication origins. Mol Cell 61(2):287–296. https://doi.org/10.1016/j.molcel.2015.12.005 CrossRefPubMedGoogle Scholar
  54. Sanchez-Pulido L, Ponting CP (2011) Cdc45: the missing RecJ ortholog in eukaryotes? Bioinformatics 27(14):1885–1888. https://doi.org/10.1093/bioinformatics/btr332 CrossRefPubMedGoogle Scholar
  55. Sherratt DJ (2003) Bacterial chromosome dynamics. Science 301(5634):780–785CrossRefPubMedGoogle Scholar
  56. Siddiqui K, On KF, Diffley JF (2013) Regulating DNA replication in eukarya. Cold Spring Harb Perspect Biol 5(9):a010371. https://doi.org/10.1101/cshperspect.a012930 CrossRefGoogle Scholar
  57. Simon AC, Sannino V, Costanzo V, Pellegrini L (2016) Structure of human Cdc45 and implications for CMG helicase function. Nat Commun 7:11638. https://doi.org/10.1038/ncomms11638 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Slaymaker IM, Fu Y, Toso DB, Ranatunga N, Brewster A, Forsburg SL, Zhou ZH, Chen XS (2013) Mini-chromosome maintenance complexes form a filament to remodel DNA structure and topology. Nucleic Acids Res 41(5):3446–3456. https://doi.org/10.1093/nar/gkt022 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tanaka S, Araki H (2013) Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol 5(12):a010371. https://doi.org/10.1101/cshperspect.a010371 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tiengwe C, Marcello L, Farr H, Gadelha C, Burchmore R, Barry JD, Bell SD, McCulloch R (2012) Identification of ORC1/CDC6-interacting factors in Trypanosoma brucei reveals critical features of origin recognition complex architecture. PLoS One 7(3):e32674. https://doi.org/10.1371/journal.pone.0032674 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Williams TA, Foster PG, Cox CJ, Embley TM (2013) An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504(7479):231–236. https://doi.org/10.1038/nature12779 CrossRefPubMedGoogle Scholar
  62. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74(11):5088–5090CrossRefPubMedPubMedCentralGoogle Scholar
  63. Xu Y, Gristwood T, Hodgson B, Trinidad JC, Albers SV, Bell SD (2016) Archaeal orthologs of Cdc45 and GINS form a stable complex that stimulates the helicase activity of MCM. Proc Natl Acad Sci U S A 113(47):13390–13395. https://doi.org/10.1073/pnas.1613825113 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yang H, Wu Z, Liu J, Liu X, Wang L, Cai S, Xiang H (2015) Activation of a dormant replication origin is essential for Haloferax mediterranei lacking the primary origins. Nat Commun 6:8321. https://doi.org/10.1038/ncomms9321 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Yao NY, O’Donnell ME (2016) Evolution of replication machines. Crit Rev Biochem Mol Biol 51(3):135–149. https://doi.org/10.3109/10409238.2015.1125845 CrossRefPubMedGoogle Scholar
  66. Yardimci H, Walter JC (2014) Prereplication-complex formation: a molecular double take? Nat Struct Mol Biol 21(1):20–25. https://doi.org/10.1038/nsmb.2738 CrossRefPubMedGoogle Scholar
  67. Yoshimochi T, Fujikane R, Kawanami M, Matsunaga F, Ishino Y (2008) The GINS complex from Pyrococcus furiosus stimulates the MCM helicase activity. J Biol Chem 283(3):1601–1609. https://doi.org/10.1074/jbc.M707654200 CrossRefPubMedGoogle Scholar
  68. Zerulla K, Soppa J (2014) Polyploidy in haloarchaea: advantages for growth and survival. Front Microbiol 5:274. https://doi.org/10.3389/fmicb.2014.00274 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zerulla K, Chimileski S, Nather D, Gophna U, Papke RT, Soppa J (2014) DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival. PLoS One 9(4):e94819. https://doi.org/10.1371/journal.pone.0094819 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Molecular and Cellular Biochemistry, Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations