Skip to main content

Initiation of DNA Replication at the Chromosomal Origin of E. coli, oriC

  • Chapter
  • First Online:
DNA Replication

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1042))

Abstract

The Escherichia coli chromosomal origin consists of a duplex-unwinding region and a region bearing a DNA-bending protein, IHF-binding site, and clusters of binding sites for the initiator protein DnaA. ATP-DnaA molecules form highly organized oligomers in a process stimulated by DiaA, a DnaA-binding protein. The resultant ATP-DnaA complexes promote local unwinding of oriC with the aid of IHF, for which specific interaction of DnaA with the single-stranded DNA is crucial. DnaA complexes also interact with DnaB helicases bound to DnaC loaders, promoting loading of DnaB onto the unwound DNA strands for bidirectional replication. Initiation of replication is strictly regulated during the cell cycle by multiple regulatory systems for oriC and DnaA. The activity of oriC is regulated by its methylation state, whereas that of DnaA depends on the form of the bound nucleotide. ATP-DnaA can be yielded from initiation-inactive ADP-DnaA in a timely manner depending on specific chromosomal DNA elements termed DARS (DnaA-reactivating sequences). After initiation, DnaA-bound ATP is hydrolyzed by two systems, yielding ADP-DnaA. In this review, these and other mechanisms of initiation and its regulation in E. coli are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe Y, Jo T, Matsuda Y, Matsunaga C, Katayama T, Ueda T (2007) Structure and function of DnaA N-terminal domains: specific sites and mechanisms in inter-DnaA interaction and in DnaB helicase loading on oriC. J Biol Chem 282:17816–17827

    Article  CAS  PubMed  Google Scholar 

  • Aranovich A, Gdalevsky GY, Cohen-Luria R, Fishov I, Parola AH (2006) Membrane-catalyzed nucleotide exchange on DnaA: effect of surface molecular crowding. J Biol Chem 281:12526–12534

    Article  CAS  PubMed  Google Scholar 

  • Atlung T, Løbner-Olesen A, Hansen FG (1987) Overproduction of DnaA protein stimulates initiation of chromosome and minichromosome replication in Escherichia coli. Mol Gen Genet 206:51–59

    Article  CAS  PubMed  Google Scholar 

  • Bates DB, Boye E, Asai T, Kogoma T (1987) The absence of effect of gid or mioC transcription on the initiation of chromosomal replication in Escherichia coli. Proc Natl Acad Sci USA 94:12497–12502

    Article  Google Scholar 

  • Baxter JC, Sutton MD (2012) Evidence for roles of the Escherichia coli Hda protein beyond regulatory inactivation of DnaA. Mol Microbiol 85:648–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogan JA, Helmstetter CE (1997) DNA sequestration and transcription in the oriC region of Escherichia coli. Mol Microbiol 26:889–896

    Article  CAS  PubMed  Google Scholar 

  • Cagliero C, Grand RS, Jones MB, Jin DJ, O’Sullivan JM (2013) Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription. Nucleic Acids Res 41:6058–6071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camara JE, Breier AM, Brendler T, Austin S, Cozzarelli NR, Crooke E (2005) Hda inactivation of DnaA is the predominant mechanism preventing hyperinitiation of Escherichia coli DNA replication. EMBO Rep 6:736–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charbon G, Bjørn L, Mendoza-Chamizo B, Frimodt-Møller J, Løbner-Olesen A (2014) Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli. Nucleic Acids Res 42(21):13228–13241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chodavarapu S, Felczak MM, Rouvière-Yaniv J, Kaguni JM (2008) Escherichia coli DnaA interacts with HU in initiation at the E. coli replication origin. Mol Microbiol 67:781–792

    Article  CAS  PubMed  Google Scholar 

  • Chung YS1, Brendler T, Austin S, Guarné A (2009) Structural insights into the cooperative binding of SeqA to a tandem GATC repeat. Nucleic Acids Res 37:3143–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier J, Shapiro L (2009) Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter. J Bacteriol 191:5706–5716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa A, Hood IV, Berger JM (2013) Mechanisms for initiating cellular DNA replication. Annu Rev Biochem 82:25–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crooke E, Castuma CE, Kornberg A (1992) The chromosome origin of Escherichia coli stabilizes DnaA protein during rejuvenation by phospholipids. J Biol Chem 267:16779–16782

    CAS  PubMed  Google Scholar 

  • Duderstadt KE, Chuang K, Berger JM (2011) DNA stretching by bacterial initiators promotes replication origin opening. Nature 478:209–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erzberger JP, Pirruccello MM, Berger JM (2002) The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J 21:4763–4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erzberger JP, Mott ML, Berger JM (2006) Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nat Struct Mol Biol 13:676–683

    Article  CAS  PubMed  Google Scholar 

  • Felczak MM, Kaguni JM (2004) The box VII motif of Escherichia coli DnaA protein is required for DnaA oligomerization at the E. coli replication origin. J Biol Chem 279:51156–51162

    Article  CAS  PubMed  Google Scholar 

  • Felczak MM, Simmons LA, Kaguni JM (2005) An essential tryptophan of Escherichia coli DnaA protein functions in oligomerization at the E. coli replication origin. J Biol Chem 280:24627–24633

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Fernandez C, Gonzalez D, Collier J (2011) Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus. PLoS One 6:e26028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fingland N, FlÃ¥tten I, Downey CD, Fossum-Raunehaug S, Skarstad K, Crooke E (2012) Depletion of acidic phospholipids influences chromosomal replication in Escherichia coli. Microbiology 1:450–466

    CAS  Google Scholar 

  • FlÃ¥tten I, Fossum-Raunehaug S, Taipale R, Martinsen S, Skarstad K (2015) The DnaA protein is not the limiting factor for initiation of replication in Escherichia coli. PLoS Genet 11:e1005276

    Article  PubMed  PubMed Central  Google Scholar 

  • Fossum-Raunehaug S, Helgesen E, Stokke C, Skarstad K (2014) Escherichia coli SeqA structures relocalize abruptly upon termination of origin sequestration during multifork DNA replication. PLoS One 9:e110575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frimodt-Møller J, Charbon G, Krogfelt KA, Løbner-Olesen A (2016) DNA replication control is linked to genomic positioning of control regions in Escherichia coli. PLoS Genet 12:e1006286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujikawa N, Kurumizaka H, Nureki O, Terada T, Shirouzu M, Katayama T, Yokoyama S (2003) Structural basis of replication origin recognition by the DnaA protein. Nucleic Acids Res 31:2077–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujikawa N, Kurumizaka H, Nureki O, Tanaka Y, Yamazoe M, Hiraga S, Yokoyama S (2004) Structural and biochemical analyses of hemimethylated DNA binding by the SeqA protein. Nucleic Acids Res 32:82–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimitsu K, Su’etsugu M, Yamaguchi Y, Mazda K, Fu N, Kawakami H, Katayama T (2008) Modes of overinitiation, dnaA gene expression, and inhibition of cell division in a novel cold-sensitive hda mutant of Escherichia coli. J Bacteriol 190:5368–5381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimitsu K, Senriuchi T, Katayama T (2009) Specific genomic sequences of E. coli promote replicational initiation by directly reactivating ADP-DnaA. Genes Dev 23:1221–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner J, Crooke E (1996) Membrane regulation of the chromosomal replication activity of E. coli DnaA requires a discrete site on the protein. EMBO J 15:3477–3485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimwade JE, Ryan VT, Leonard AC (2000) IHF redistributes bound initiator protein, DnaA, on supercoiled oriC of Escherichia coli. Mol Microbiol 35:835–844

    Article  CAS  PubMed  Google Scholar 

  • Guarné A, Brendler T, Zhao Q, Ghirlando R, Austin S, Yang W (2005) Crystal structure of a SeqA-N filament: implications for DNA replication and chromosome organization. EMBO J 24:1502–1511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Helgesen E, Fossum-Raunehaug S, Sætre F, Schink KO, Skarstad K (2015) Dynamic Escherichia coli SeqA complexes organize the newly replicated DNA at a considerable distance from the replisome. Nucleic Acids Res 43:2730–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang DS, Kornberg A (1992) Opening of the replication origin of Escherichia coli by DnaA protein with protein HU or IHF. J Biol Chem 267:23083–23086

    CAS  PubMed  Google Scholar 

  • Inoue Y, Tanaka H, Kasho K, Fujimitsu K, Oshima T, Katayama T (2016) Chromosomal location of the DnaA-reactivating sequence DARS2 is important to regulate timely initiation of DNA replication in Escherichia coli. Genes Cells 21:1015–1023

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Akimitsu N, Kashioka T, Hatano M, Kubota T, Ogata Y, Sekimizu K, Katayama T (2004) DiaA, a novel DnaA-binding protein, ensures the initiation timing of E. coli chromosome replication. J Biol Chem 279:45546–45555

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146:11–31

    Article  CAS  PubMed  Google Scholar 

  • Jameson KH, Rostami N, Fogg MJ, Turkenburg JP, Grahl A, Murray H, Wilkinson AJ (2014) Structure and interactions of the Bacillus subtilis sporulation inhibitor of DNA replication, SirA, with domain I of DnaA. Mol Microbiol 93:975–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaguni JM (2011) Replication initiation at the Escherichia coli chromosomal origin. Curr Opin Chem Biol 15:606–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Lee H, Han JS, Hwang DS (1999) Interaction of SeqA and Dam methylase on the hemimethylated origin of Escherichia coli chromosomal DNA replication. J Biol Chem 274:11463–11468

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Han JS, Park JH, Skarstad K, Hwang DS (2003) SeqA protein stimulates the relaxing and decatenating activities of Topoisomerase IV. J Biol Chem 278:48779–48785

    Article  CAS  PubMed  Google Scholar 

  • Kano Y, Imamoto F (1990) Requirement of integration host factor (IHF) for growth of Escherichia coli deficient in HU protein. Gene 89:133–137

    Article  CAS  PubMed  Google Scholar 

  • Kasho K, Katayama T (2013) DnaA binding locus datA promotes ATP-DnaA hydrolysis to enable cell cycle-coordinated replication initiation. Proc Natl Acad Sci USA 110:936–941

    Article  CAS  PubMed  Google Scholar 

  • Kasho K, Fujimitsu K, Matoba T, Oshima T, Katayama T (2014) Timely binding of IHF and Fis to DARS2 regulates ATP-DnaA production and replication initiation. Nucleic Acids Res 42:13134–13149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasho K, Tanaka H, Sakai R, Katayama T (2017) Cooperative DnaA binding to the negatively supercoiled locus stimulates DnaA-ATP hydrolysis. J Biol Chem 292:1251–1266

    Article  CAS  PubMed  Google Scholar 

  • Katayama T (2008) Roles for the AAA+ motifs of DnaA in the initiation of DNA replication. Biochem Soc Trans 36:78–82

    Article  CAS  PubMed  Google Scholar 

  • Katayama T, Kubota T, Kurokawa K, Crooke E, Sekimizu K (1998) The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 94:61–71

    Article  CAS  PubMed  Google Scholar 

  • Katayama T, Ozaki S, Keyamura K, Fujimitsu K (2010) Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol 8:163–170

    Article  CAS  PubMed  Google Scholar 

  • Kato J, Katayama T (2001) Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli. EMBO J 20:4253–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami H, Keyamura K, Katayama T (2005) Formation of an ATP-DnaA-specific initiation complex requires DnaA Arginine 285, a conserved motif in the AAA+ protein family. J Biol Chem 280:27420–27430

    Article  CAS  PubMed  Google Scholar 

  • Kawakami H, Ozaki S, Suzuki S, Nakamura K, Senriuchi T, Su’etsugu M, Fujimitsu K, Katayama T (2006) The exceptionally tight affinity of DnaA for ATP/ADP requires a unique aspartic acid residue in the AAA+ sensor 1 motif. Mol Microbiol 62:1310–1324

    Article  CAS  PubMed  Google Scholar 

  • Keyamura K, Katayama T (2011) DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA. J Biol Chem 286:29336–29346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyamura K, Fujikawa N, Ishida T, Ozaki S, Su’etsugu M, Fujimitsu K, Kagawa W, Yokoyama S, Kurumizaka H, Katayama T (2007) The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP-DnaA-specific initiation complexes. Genes Dev 21:2083–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyamura K, Abe Y, Higashi M, Ueda T, Katayama T (2009) DiaA dynamics are coupled with changes in initial origin complexes leading to helicase loading. J Biol Chem 284:25038–25050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitagawa R, Ozaki T, Moriya S, Ogawa T (1998) Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein. Genes Dev 12:3032–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa K, Nishida S, Emoto A, Sekimizu K, Katayama T (1999) Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli. EMBO J 18:6642–6652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard AC, Grimwade JE (2015) The orisome: structure and function. Front Microbiol 6:545

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu M, Campbell JL, Boye E, Kleckner N (1994) SeqA: a negative modulator of replication initiation in E. coli. Cell 77:413–426

    Article  CAS  PubMed  Google Scholar 

  • Marszalek J, Zhang W, Hupp TR, Margulies C, Carr KM, Cherry S, Kaguni JM (1996) Domains of DnaA protein involved in interaction with DnaB protein, and in unwinding the Escherichia coli chromosomal origin. J Biol Chem 271:18535–18542

    Article  CAS  PubMed  Google Scholar 

  • McGarry KC, Ryan VT, Grimwade JE, Leonard AC (2004) Two discriminatory binding sites in the Escherichia coli replication origin are required for DNA strand opening by initiator DnaA-ATP. Proc Natl Acad Sci USA 101:2811–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DT, Grimwade JE, Betteridge T, Rozgaja T, Torgue JJ, Leonard AC (2009) Bacterial origin recognition complexes direct assembly of higher-order DnaA oligomeric structures. Proc Natl Acad Sci USA 106:18479–18484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morigen, Løbner-Olesen A, Skarstad K (2003) Titration of the Escherichia coli DnaA protein to excess datA sites causes destabilization of replication forks, delayed replication initiation and delayed cell division. Mol Microbiol 50:349–362

    Article  CAS  PubMed  Google Scholar 

  • Morigen, Molina F, Skarstad K (2005) Deletion of the datA site does not affect once-per-cell-cycle timing but induces rifampin-resistant replication. J Bacteriol 187:3913–3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natrajan G, Noirot-Gros MF, Zawilak-Pawlik A, Kapp U, Terradot L (2009) The structure of a DnaA/HobA complex from Helicobacter pylori provides insight into regulation of DNA replication in bacteria. Proc Natl Acad Sci U S A 106:21115–21120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43

    CAS  PubMed  Google Scholar 

  • Nievera C, Torgue JJ, Grimwade JE, Leonard AC (2006) SeqA blocking of DnaA-oriC interactions ensures staged assembly of the E coli pre-RC. Mol Cell 24:581–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niki H, Yamaichi Y, Hiraga S (2000) Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev 14:212–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida S, Fujimitsu K, Sekimizu K, Ohmura T, Ueda T, Katayama T (2002) A nucleotide switch in the Escherichia coli DnaA protein initiates chromosomal replication: evidence from a mutant DnaA protein defective in regulatory ATP hydrolysis in vitro and in vivo. J Biol Chem 277:14986–14995

    Article  CAS  PubMed  Google Scholar 

  • Noguchi Y, Katayama T (2016) The Escherichia coli cryptic prophage protein YfdR binds to DnaA and initiation of chromosomal replication is inhibited by overexpression of the gene cluster yfdQ-yfdR-yfdS-yfdT. Front Microbiol 7:239

    Article  PubMed  PubMed Central  Google Scholar 

  • Noguchi Y, Sakiyama Y, Kawakami H, Katayama T (2015) The Arg fingers of key DnaA protomers are oriented inward within the replication origin oriC and stimulate DnaA subcomplexes in the initiation complex. J Biol Chem 290:20295–20312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noirot-Gros MF, Velten M, Yoshimura M, McGovern S, Morimoto T, Ehrlich SD, Ogasawara N, Polard P, Noirot P (2006) Functional dissection of YabA, a negative regulator of DNA replication initiation in Bacillus subtilis. Proc Natl Acad Sci USA 103:2368–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki S, Ogawa T (2008) Determination of the minimum domain II size of Escherichia coli DnaA protein essential for cell viability. Microbiology 154:3379–3384

    Article  CAS  PubMed  Google Scholar 

  • Nozaki S, Niki H, Ogawa T (2009a) Replication initiator DnaA of Escherichia coli changes its assembly form on the replication origin during the cell cycle. J Bacteriol 191:4807–4814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki S, Yamada Y, Ogawa T (2009b) Initiator titration complex formed at datA with the aid of IHF regulates replication timing in Escherichia coli. Genes Cells 14:329–341

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell M, Langston L, Stillman B (2013) Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol 5:a010108

    PubMed  PubMed Central  Google Scholar 

  • Obita T, Iwura T, Su’etsugu M, Yoshida Y, Tanaka Y, Katayama T, Ueda T, Imoto T (2002) Determination of the secondary structure in solution of the Escherichia coli DnaA DNA-binding domain. Biochem Biophys Res Commun 299:42–48

    Article  CAS  PubMed  Google Scholar 

  • Odsbu I, Klungsoyr HK, Fossum S, Skarstad K (2005) Specific N-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells 10:1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Okazaki T (1994) Cell cycle-dependent transcription from the gid and mioC promoters of Escherichia coli. J Bacteriol 176:1609–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa T, Yamada Y, Kuroda T, Kishi T, Moriya S (2002) The datA locus predominantly contributes to the initiator titration mechanism in the control of replication initiation in Escherichia coli. Mol Microbiol 44:1367–1375

    Article  CAS  PubMed  Google Scholar 

  • Okumura H, Yoshimura M, Ueki M, Oshima T, Ogasawara N, Ishikawa S (2012) Regulation of chromosomal replication initiation by oriC proximal DnaA-box clusters in Bacillus subtilis. Nucleic Acids Res 40:220–234

    Article  CAS  PubMed  Google Scholar 

  • Ozaki S, Katayama T (2009) DnaA structure, function, and dynamics in the initiation at the chromosomal origin. Plasmid 62:71–82

    Article  CAS  PubMed  Google Scholar 

  • Ozaki S, Katayama T (2012) Highly organized DnaA-oriC complexes recruit the single-stranded DNA for replication initiation. Nucleic Acids Res 40:1648–1665

    Article  CAS  PubMed  Google Scholar 

  • Ozaki S, Kawakami H, Nakamura K, Fujikawa N, Kagawa W, Park SY, Yokoyama S, Kurumizaka H, Katayama T (2008) A common mechanism for the ATP-DnaA-dependent formation of open complexes at the replication origin. J Biol Chem 283:8351–8362

    Article  CAS  PubMed  Google Scholar 

  • Ozaki S, Noguchi Y, Hayashi Y, Miyazaki E, Katayama T (2012a) Differentiation of the DnaA-oriC subcomplex for DNA unwinding in a replication initiation complex. J Biol Chem 287:37458–37471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki S, Noguchi Y, Nishimura M, Katayama T (2012b) Stable nucleotide binding to DnaA requires a specific glutamic acid residue within the AAA+ box II motif. J Struct Biol 179:242–250

    Article  CAS  PubMed  Google Scholar 

  • Riber L, Løbner-Olesen A (2005) Coordinated replication and sequestration of oriC and dnaA are required for maintaining controlled once-per-cell-cycle initiation in Escherichia coli. J Bacteriol 187:5605–5613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riber L, Frimodt-Møller J, Charbon G, Løbner-Olesen A (2016) Multiple DNA binding proteins contribute to timing of chromosome replication in E. coli. Front Mol Biosci 3:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richardson TT, Harran O, Murray H (2016) The bacterial DnaA-trio replication origin element specifies single-stranded DNA initiator binding. Nature 534:412–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozgaja TA, Grimwade JE, Iqbal M, Czerwonka C, Vora M, Leonard AC (2011) Two oppositely oriented arrays of low-affinity recognition sites in oriC guide progressive binding of DnaA during Escherichia coli pre-RC assembly. Mol Microbiol 82:475–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samitt CE, Hansen FG, Miller JF, Schaechter M (1989) In vivo studies of DnaA binding to the origin of replication of Escherichia coli. EMBO J 8:989–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena R, Rozgaja T, Grimwade J, Crooke E (2011) Remodeling of nucleoprotein complexes is independent of the nucleotide state of a mutant AAA+ protein. J Biol Chem 286:33770–33777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena R, Fingland N, Patil D, Sharma AK, Crooke E (2013) Crosstalk between DnaA protein, the initiator of Escherichia coli chromosomal replication, and acidic phospholipids present in bacterial membranes. Int J Mol Sci 14:8517–8537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena R, Vasudevan S, Patil D, Ashoura N, Grimwade JE, Crooke E (2015) Nucleotide-induced conformational changes in Escherichia coli DnaA protein are required for bacterial ORC to pre-RC conversion at the chromosomal origin. Int J Mol Sci 16:27897–27911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholefield G, Errington J, Murray H (2012) Soj/ParA stalls DNA replication by inhibiting helix formation of the initiator protein DnaA. EMBO J 31:1542–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitz H, Weigel C, Messer W (2000) The interaction domains of the DnaA and DnaB replication proteins of Escherichia coli. Mol Microbiol 37:1270–1279

    Article  CAS  PubMed  Google Scholar 

  • Sekimizu K, Kornberg A (1988) Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. J Biol Chem 263:7131–7135

    CAS  PubMed  Google Scholar 

  • Sekimizu K, Yung BY, Kornberg A (1988) The dnaA protein of Escherichia coli. Abundance, improved purification, and membrane binding. J Biol Chem 263:7136–7140

    CAS  PubMed  Google Scholar 

  • Shimizu M, Noguchi Y, Sakiyama Y, Kawakami H, Katayama T, Takada S (2016) Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights. Proc Natl Acad Sci U S A 113:E8021–E8030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skarstad K, Katayama T (2013) Regulating DNA replication in bacteria. Cold Spring Harb Perspect Biol 5:a012922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slater S, Wold S, Lu M, Boye E, Skarstad K, Kleckner N (1995) E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell 82:927–936

    Article  CAS  PubMed  Google Scholar 

  • Smulczyk-Krawczyszyn A, Jakimowicz D, Ruban-Osmialowska B, Zawilak-Pawlik A, Majka J, Chater K, Zakrzewska-Czerwinska J (2006) Cluster of DnaA boxes involved in regulation of Streptomyces chromosome replication: from in silico to in vivo studies. J Bacteriol 188:6184–6194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soufo CD, Soufo HJ, Noirot-Gros MF, Steindorf A, Noirot P, Graumann PL (2008) Cell-cycle-dependent spatial sequestration of the DnaA replication initiator protein in Bacillus subtilis. Dev Cell 15:935–941

    Article  PubMed  CAS  Google Scholar 

  • Speck C, Weigel C, Messer W (1999) ATP- and ADP-DnaA protein, a molecular switch in gene regulation. EMBO J 18:6169–6176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stauffer ME, Chazin WJ (2004) Structural mechanisms of DNA replication, repair, and recombination. J Biol Chem 279:30915–30918

    Article  CAS  PubMed  Google Scholar 

  • Su’etsugu M, Emoto A, Fujimitsu K, Keyamura K, Katayama T (2003) Transcriptional control for initiation of chromosomal replication in Escherichia coli: fluctuation of the level of origin transcription ensures timely initiation. Genes Cells 8:731–745

    Article  PubMed  Google Scholar 

  • Su’etsugu M, Nakamura K, Keyamura K, Kudo Y, Katayama T (2008) Hda monomerization by ADP binding promotes replicase clamp mediated DnaA-ATP hydrolysis. J Biol Chem 283:36118–36131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su’etsugu M, Shimuta TR, Ishida T, Kawakami H, Katayama T (2005) Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex. J Biol Chem 280:6528–6536

    Article  PubMed  CAS  Google Scholar 

  • Su’etsugu M, Harada Y, Keyamura K, Matsunaga C, Kasho K, Abe Y, Ueda T, Katayama T (2013) The DnaA N-terminal domain interacts with Hda to facilitate replicase clamp-mediated inactivation of DnaA. Environ Microbiol 15:3183–3195

    Article  PubMed  CAS  Google Scholar 

  • Sutton MD, Carr KM, Vicente M, Kaguni JM (1998) Escherichia coli DnaA protein: the N-terminal domain and loading of DnaB helicase at the E. coli chromosomal origin. J Biol Chem 273:34255–34262

    Article  CAS  PubMed  Google Scholar 

  • Theisen PW, Grimwade JE, Leonard AC, Bogan JA, Helmstetter CE (1993) Correlation of gene transcription with the time of initiation of chromosome replication in Escherichia coli. Mol Microbiol 10:575–584

    Article  CAS  PubMed  Google Scholar 

  • Torheim NK, Skarstad K (1999) Escherichia coli SeqA protein affects DNA topology and inhibits open complex formation at oriC. EMBO J 18:4882–4888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valens M, Penaud S, Rossignol M, Cornet F, Boccard F (2004) Macrodomain organization of the Escherichia coli chromosome. EMBO J 23:4330–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldminghaus T, Skarstad K (2009) The Escherichia coli SeqA protein. Plasmid 61:141–150

    Article  CAS  PubMed  Google Scholar 

  • Wawrzycka A, Gross M, Wasaznik A, Konieczny I (2015) Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly. Proc Natl Acad Sci USA 112:E4188–E4296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegrzyn K, Fuentes-Perez ME, Bury K, Rajewska M, Moreno-Herrero F, Konieczny I (2014) Sequence-specific interactions of Rep proteins with ssDNA in the AT-rich region of the plasmid replication origin. Nucleic Acids Res 42:7807–7818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WolaÅ„ski M, Donczew R, Zawilak-Pawlik A, Zakrzewska-CzerwiÅ„ska J (2015) oriC-encoded instructions for the initiation of bacterial chromosome replication. Front Microbiol 5:735

    PubMed  PubMed Central  Google Scholar 

  • Yoshida Y, Obita T, Kokusho Y, Ohmura T, Katayama T, Ueda T, Imoto T (2003) Identification of the region in Escherichia coli DnaA protein required for specific recognition of the DnaA box. Cell Mol Life Sci 60:1998–2008

    Article  CAS  PubMed  Google Scholar 

  • Yung BY, Kornberg A (1988) Membrane attachment activates dnaA protein, the initiation protein of chromosome replication in Escherichia coli. Proc Natl Acad Sci U S A 85:7202–7205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawilak-Pawlik A, Kois A, Stingl K, Boneca IG, Skrobuk P, Piotr J, Lurz R, Zakrzewska-CzerwiÅ„ska J, Labigne A (2007) HobA – a novel protein involved in initiation of chromosomal replication in Helicobacter pylori. Mol Microbiol 65:9799–9794

    Article  CAS  Google Scholar 

  • Zhang Q, Zhou A, Li S, Ni J, Tao J, Lu J, Wan B, Li S, Zhang J, Zhao S, Zhao GP, Shao F, Yao YF (2016) Reversible lysine acetylation is involved in DNA replication initiation by regulating activities of initiator DnaA in Escherichia coli. Sci Rep 6:30837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 26291004, 16H00775, 17H03656, and 26650127. I apologize that many papers cannot be cited because of the limitation of space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Katayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katayama, T. (2017). Initiation of DNA Replication at the Chromosomal Origin of E. coli, oriC . In: Masai, H., Foiani, M. (eds) DNA Replication. Advances in Experimental Medicine and Biology, vol 1042. Springer, Singapore. https://doi.org/10.1007/978-981-10-6955-0_4

Download citation

Publish with us

Policies and ethics