Advertisement

Cyclin E Deregulation and Genomic Instability

  • Leonardo K. Teixeira
  • Steven I. ReedEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)

Abstract

Precise replication of genetic material and its equal distribution to daughter cells are essential to maintain genome stability. In eukaryotes, chromosome replication and segregation are temporally uncoupled, occurring in distinct intervals of the cell cycle, S and M phases, respectively. Cyclin E accumulates at the G1/S transition, where it promotes S phase entry and progression by binding to and activating CDK2. Several lines of evidence from different models indicate that cyclin E/CDK2 deregulation causes replication stress in S phase and chromosome segregation errors in M phase, leading to genomic instability and cancer. In this chapter, we will discuss the main findings that link cyclin E/CDK2 deregulation to genomic instability and the molecular mechanisms by which cyclin E/CDK2 induces replication stress and chromosome aberrations during carcinogenesis.

Keywords

Cell cycle Cyclin E CDK2 FBW7 Replication stress Chromosome aberration Genomic instability Fragile sites Cancer 

References

  1. Accordi B, Espina V, Giordan M, VanMeter A, Milani G, Galla L, Ruzzene M, Sciro M, Trentin L, De Maria R, te Kronnie G, Petricoin E, Liotta L, Basso G (2010) Functional protein network activation mapping reveals new potential molecular drug targets for poor prognosis pediatric BCP-ALL. PLoS One 5(10):e13552. https://doi.org/10.1371/journal.pone.0013552 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ait-Si-Ali S, Ramirez S, Barre FX, Dkhissi F, Magnaghi-Jaulin L, Girault JA, Robin P, Knibiehler M, Pritchard LL, Ducommun B, Trouche D, Harel-Bellan A (1998) Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396(6707):184–186. https://doi.org/10.1038/24190 PubMedCrossRefGoogle Scholar
  3. Akli S, Van Pelt CS, Bui T, Multani AS, Chang S, Johnson D, Tucker S, Keyomarsi K (2007) Overexpression of the low molecular weight cyclin E in transgenic mice induces metastatic mammary carcinomas through the disruption of the ARF-p53 pathway. Cancer Res 67(15):7212–7222. https://doi.org/10.1158/0008-5472.can-07-0599 PubMedCrossRefGoogle Scholar
  4. Bagheri-Yarmand R, Nanos-Webb A, Biernacka A, Bui T, Keyomarsi K (2010) Cyclin E deregulation impairs mitotic progression through premature activation of Cdc25C. Cancer Res 70(12):5085–5095. https://doi.org/10.1158/0008-5472.can-09-4095 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bailey ML, Singh T, Mero P, Moffat J, Hieter P (2015) Dependence of human colorectal cells lacking the FBW7 tumor suppressor on the spindle assembly checkpoint. Genetics 201(3):885–895. https://doi.org/10.1534/genetics.115.180653 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(7035):864–870. https://doi.org/10.1038/nature03482 PubMedCrossRefGoogle Scholar
  7. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, Vassiliou LV, Kolettas E, Niforou K, Zoumpourlis VC, Takaoka M, Nakagawa H, Tort F, Fugger K, Johansson F, Sehested M, Andersen CL, Dyrskjot L, Orntoft T, Lukas J, Kittas C, Helleday T, Halazonetis TD, Bartek J, Gorgoulis VG (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444(7119):633–637. https://doi.org/10.1038/nature05268 PubMedCrossRefGoogle Scholar
  8. Bermejo R, Lai MS, Foiani M (2012) Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription. Mol Cell 45(6):710–718. https://doi.org/10.1016/j.molcel.2012.03.001 PubMedCrossRefGoogle Scholar
  9. Berti M, Vindigni A (2016) Replication stress: getting back on track. Nat Struct Mol Biol 23(2):103–109. https://doi.org/10.1038/nsmb.3163 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145(3):435–446. https://doi.org/10.1016/j.cell.2011.03.044 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, Buck G, Chen L, Beare D, Latimer C, Widaa S, Hinton J, Fahey C, Fu B, Swamy S, Dalgliesh GL, Teh BT, Deloukas P, Yang F, Campbell PJ, Futreal PA, Stratton MR (2010) Signatures of mutation and selection in the cancer genome. Nature 463(7283):893–898. https://doi.org/10.1038/nature08768 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blake MC, Azizkhan JC (1989) Transcription factor E2F is required for efficient expression of the hamster dihydrofolate reductase gene in vitro and in vivo. Mol Cell Biol 9(11):4994–5002PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bortner DM, Rosenberg MP (1997) Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol Cell Biol 17(1):453–459PubMedPubMedCentralCrossRefGoogle Scholar
  14. Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N, Domingo E, Kanu N, Dewhurst SM, Gronroos E, Chew SK, Rowan AJ, Schenk A, Sheffer M, Howell M, Kschischo M, Behrens A, Helleday T, Bartek J, Tomlinson IP, Swanton C (2013) Replication stress links structural and numerical cancer chromosomal instability. Nature 494(7438):492–496. https://doi.org/10.1038/nature11935 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Burrow AA, Williams LE, Pierce LC, Wang YH (2009) Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites. BMC Genomics 10:59. https://doi.org/10.1186/1471-2164-10-59 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Caldon CE, Musgrove EA (2010) Distinct and redundant functions of cyclin E1 and cyclin E2 in development and cancer. Cell Div 5:2. https://doi.org/10.1186/1747-1028-5-2 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65(6):1053–1061PubMedCrossRefGoogle Scholar
  18. Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD (2002) CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell 3(3):339–350PubMedCrossRefGoogle Scholar
  19. Clurman BE, Sheaff RJ, Thress K, Groudine M, Roberts JM (1996) Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev 10(16):1979–1990PubMedCrossRefGoogle Scholar
  20. Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E, Helleday T, Haber JE, Iliakis G, Kallioniemi OP, Halazonetis TD (2014) Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343(6166):88–91. https://doi.org/10.1126/science.1243211 PubMedCrossRefGoogle Scholar
  21. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale AL, Brenton JD, Tavare S, Caldas C, Aparicio S (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352. https://doi.org/10.1038/nature10983 PubMedPubMedCentralGoogle Scholar
  22. Davis RJ, Welcker M, Clurman BE (2014) Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell 26(4):455–464. https://doi.org/10.1016/j.ccell.2014.09.013 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d’Adda di Fagagna F (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642. https://doi.org/10.1038/nature05327 PubMedCrossRefGoogle Scholar
  24. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448(7152):445–451. https://doi.org/10.1038/nature05953 PubMedCrossRefGoogle Scholar
  25. Dou QP, Zhao S, Levin AH, Wang J, Helin K, Pardee AB (1994) G1/S-regulated E2F-containing protein complexes bind to the mouse thymidine kinase gene promoter. J Biol Chem 269(2):1306–1313PubMedGoogle Scholar
  26. Dulic V, Lees E, Reed SI (1992) Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257(5078):1958–1961PubMedCrossRefGoogle Scholar
  27. Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12(15):2245–2262PubMedCrossRefGoogle Scholar
  28. Ekholm-Reed S, Mendez J, Tedesco D, Zetterberg A, Stillman B, Reed SI (2004) Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol 165(6):789–800. https://doi.org/10.1083/jcb.200404092 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Erlanson M, Portin C, Linderholm B, Lindh J, Roos G, Landberg G (1998) Expression of cyclin E and the cyclin-dependent kinase inhibitor p27 in malignant lymphomas-prognostic implications. Blood 92(3):770–777PubMedGoogle Scholar
  30. Fechter A, Buettel I, Kuehnel E, Savelyeva L, Schwab M (2007) Common fragile site FRA11G and rare fragile site FRA11B at 11q23.3 encompass distinct genomic regions. Genes Chromosom Cancer 46(1):98–106. https://doi.org/10.1002/gcc.20389 PubMedCrossRefGoogle Scholar
  31. Fisk HA, Winey M (2001) The mouse Mps1p-like kinase regulates centrosome duplication. Cell 106(1):95–104PubMedCrossRefGoogle Scholar
  32. Fukuse T, Hirata T, Naiki H, Hitomi S, Wada H (2000) Prognostic significance of cyclin E overexpression in resected non-small cell lung cancer. Cancer Res 60(2):242–244PubMedGoogle Scholar
  33. Ge XQ, Jackson DA, Blow JJ (2007) Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 21(24):3331–3341. https://doi.org/10.1101/gad.457807 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Geisen C, Karsunky H, Yucel R, Moroy T (2003) Loss of p27Kip1 cooperates with cyclin E in T-cell lymphomagenesis. Oncogene 22(11):1724–1729. https://doi.org/10.1038/sj.onc.1206340 PubMedCrossRefGoogle Scholar
  35. Geng Y, Eaton EN, Picon M, Roberts JM, Lundberg AS, Gifford A, Sardet C, Weinberg RA (1996) Regulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene 12(6):1173–1180PubMedGoogle Scholar
  36. Godinho SA, Pellman D (2014) Causes and consequences of centrosome abnormalities in cancer. Philos Trans R Soc Lond B Biol Sci 369(1650):20130467. https://doi.org/10.1098/rstb.2013.0467 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434(7035):907–913. https://doi.org/10.1038/nature03485 PubMedCrossRefGoogle Scholar
  38. Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K, Pandolfi PP (2005) Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437(7055):147–153. https://doi.org/10.1038/nature03915 PubMedCrossRefGoogle Scholar
  39. Grisendi S, Mecucci C, Falini B, Pandolfi PP (2006) Nucleophosmin and cancer. Nat Rev Cancer 6(7):493–505. https://doi.org/10.1038/nrc1885 PubMedCrossRefGoogle Scholar
  40. Gu Y, Turck CW, Morgan DO (1993) Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366(6456):707–710. https://doi.org/10.1038/366707a0 PubMedCrossRefGoogle Scholar
  41. Gudas JM, Payton M, Thukral S, Chen E, Bass M, Robinson MO, Coats S (1999) Cyclin E2, a novel G1 cyclin that binds Cdk2 and is aberrantly expressed in human cancers. Mol Cell Biol 19(1):612–622PubMedCrossRefGoogle Scholar
  42. Guo SS, Arora C, Shimoide AT, Sawicki MP (2002) Frequent deletion of chromosome 3 in malignant sporadic pancreatic endocrine tumors. Mol Cell Endocrinol 190(1–2):109–114PubMedCrossRefGoogle Scholar
  43. Hanashiro K, Kanai M, Geng Y, Sicinski P, Fukasawa K (2008) Roles of cyclins A and E in induction of centrosome amplification in p53-compromised cells. Oncogene 27(40):5288–5302. https://doi.org/10.1038/onc.2008.161 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14(19):2393–2409PubMedCrossRefGoogle Scholar
  45. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75(4):805–816PubMedCrossRefGoogle Scholar
  46. Helmrich A, Ballarino M, Tora L (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44(6):966–977. https://doi.org/10.1016/j.molcel.2011.10.013 PubMedCrossRefGoogle Scholar
  47. Helmrich A, Ballarino M, Nudler E, Tora L (2013) Transcription-replication encounters, consequences and genomic instability. Nat Struct Mol Biol 20(4):412–418. https://doi.org/10.1038/nsmb.2543 PubMedCrossRefGoogle Scholar
  48. Hills SA, Diffley JF (2014) DNA replication and oncogene-induced replicative stress. Curr Biol 24(10):R435–R444. https://doi.org/10.1016/j.cub.2014.04.012 PubMedCrossRefGoogle Scholar
  49. Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G (1999) Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283(5403):851–854PubMedCrossRefGoogle Scholar
  50. Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA (1992) Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70(6):993–1006PubMedCrossRefGoogle Scholar
  51. Hochegger H, Takeda S, Hunt T (2008) Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol 9(11):910–916. https://doi.org/10.1038/nrm2510 PubMedCrossRefGoogle Scholar
  52. Hosseini SA, Horton S, Saldivar JC, Miuma S, Stampfer MR, Heerema NA, Huebner K (2013) Common chromosome fragile sites in human and murine epithelial cells and FHIT/FRA3B loss-induced global genome instability. Genes Chromosom Cancer 52(11):1017–1029. https://doi.org/10.1002/gcc.22097 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hughes BT, Sidorova J, Swanger J, Monnat RJ Jr, Clurman BE (2013) Essential role for Cdk2 inhibitory phosphorylation during replication stress revealed by a human Cdk2 knockin mutation. Proc Natl Acad Sci U S A 110(22):8954–8959. https://doi.org/10.1073/pnas.1302927110 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hwang HC, Clurman BE (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene 24(17):2776–2786. https://doi.org/10.1038/sj.onc.1208613 PubMedCrossRefGoogle Scholar
  55. Hydbring P, Bahram F, Su Y, Tronnersjo S, Hogstrand K, von der Lehr N, Sharifi HR, Lilischkis R, Hein N, Wu S, Vervoorts J, Henriksson M, Grandien A, Luscher B, Larsson LG (2010) Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proc Natl Acad Sci U S A 107(1):58–63. https://doi.org/10.1073/pnas.0900121106 PubMedCrossRefGoogle Scholar
  56. Ibarra A, Schwob E, Mendez J (2008) Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad Sci U S A 105(26):8956–8961. https://doi.org/10.1073/pnas.0803978105 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Iida H, Towatari M, Tanimoto M, Morishita Y, Kodera Y, Saito H (1997) Overexpression of cyclin E in acute myelogenous leukemia. Blood 90(9):3707–3713PubMedGoogle Scholar
  58. Jones RM, Mortusewicz O, Afzal I, Lorvellec M, Garcia P, Helleday T, Petermann E (2013) Increased replication initiation and conflicts with transcription underlie cyclin E-induced replication stress. Oncogene 32(32):3744–3753. https://doi.org/10.1038/onc.2012.387 PubMedCrossRefGoogle Scholar
  59. Karsunky H, Geisen C, Schmidt T, Haas K, Zevnik B, Gau E, Moroy T (1999) Oncogenic potential of cyclin E in T-cell lymphomagenesis in transgenic mice: evidence for cooperation between cyclin E and Ras but not Myc. Oncogene 18(54):7816–7824. https://doi.org/10.1038/sj.onc.1203205 PubMedCrossRefGoogle Scholar
  60. Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, Botchan MR, Shima N (2011) Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell 41(5):543–553. https://doi.org/10.1016/j.molcel.2011.02.006 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kawamura K, Izumi H, Ma Z, Ikeda R, Moriyama M, Tanaka T, Nojima T, Levin LS, Fujikawa-Yamamoto K, Suzuki K, Fukasawa K (2004) Induction of centrosome amplification and chromosome instability in human bladder cancer cells by p53 mutation and cyclin E overexpression. Cancer Res 64(14):4800–4809. https://doi.org/10.1158/0008-5472.can-03-3908 PubMedCrossRefGoogle Scholar
  62. Keck JM, Summers MK, Tedesco D, Ekholm-Reed S, Chuang LC, Jackson PK, Reed SI (2007) Cyclin E overexpression impairs progression through mitosis by inhibiting APCCdh1. J Cell Biol 178(3):371–385. https://doi.org/10.1083/jcb.200703202 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Keyomarsi K, Tucker SL, Buchholz TA, Callister M, Ding Y, Hortobagyi GN, Bedrosian I, Knickerbocker C, Toyofuku W, Lowe M, Herliczek TW, Bacus SS (2002) Cyclin E and survival in patients with breast cancer. N Engl J Med 347(20):1566–1575. https://doi.org/10.1056/NEJMoa021153 PubMedCrossRefGoogle Scholar
  64. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ (2001) Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294(5540):173–177. https://doi.org/10.1126/science.1065203 PubMedCrossRefGoogle Scholar
  65. Koff A, Cross F, Fisher A, Schumacher J, Leguellec K, Philippe M, Roberts JM (1991) Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66(6):1217–1228PubMedCrossRefGoogle Scholar
  66. Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, Nishimoto T, Morgan DO, Franza BR, Roberts JM (1992) Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257(5077):1689–1694PubMedCrossRefGoogle Scholar
  67. Koundrioukoff S, Carignon S, Techer H, Letessier A, Brison O, Debatisse M (2013) Stepwise activation of the ATR signaling pathway upon increasing replication stress impacts fragile site integrity. PLoS Genet 9(7):e1003643. https://doi.org/10.1371/journal.pgen.1003643 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2011) Direct regulation of Treslin by cyclin-dependent kinase is essential for the onset of DNA replication. J Cell Biol 193(6):995–1007. https://doi.org/10.1083/jcb.201102003 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lacey KR, Jackson PK, Stearns T (1999) Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci U S A 96(6):2817–2822PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lane AN, Fan TW (2015) Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 43(4):2466–2485. https://doi.org/10.1093/nar/gkv047 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lauper N, Beck AR, Cariou S, Richman L, Hofmann K, Reith W, Slingerland JM, Amati B (1998) Cyclin E2: a novel CDK2 partner in the late G1 and S phases of the mammalian cell cycle. Oncogene 17(20):2637–2643. https://doi.org/10.1038/sj.onc.1202477 PubMedCrossRefGoogle Scholar
  72. Le Tallec B, Dutrillaux B, Lachages AM, Millot GA, Brison O, Debatisse M (2011) Molecular profiling of common fragile sites in human fibroblasts. Nat Struct Mol Biol 18(12):1421–1423. https://doi.org/10.1038/nsmb.2155 PubMedCrossRefGoogle Scholar
  73. Le Tallec B, Millot GA, Blin ME, Brison O, Dutrillaux B, Debatisse M (2013) Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep 4(3):420–428. https://doi.org/10.1016/j.celrep.2013.07.003 PubMedCrossRefGoogle Scholar
  74. Le Tallec B, Koundrioukoff S, Wilhelm T, Letessier A, Brison O, Debatisse M (2014) Updating the mechanisms of common fragile site instability: how to reconcile the different views? Cell Mol Life Sci 71(23):4489–4494. https://doi.org/10.1007/s00018-014-1720-2 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Lee EB, Park TI, Park SH, Park JY (2003) Loss of heterozygosity on the long arm of chromosome 21 in non-small cell lung cancer. Ann Thorac Surg 75(5):1597–1600PubMedCrossRefGoogle Scholar
  76. Letessier A, Millot GA, Koundrioukoff S, Lachages AM, Vogt N, Hansen RS, Malfoy B, Brison O, Debatisse M (2011) Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470(7332):120–123. https://doi.org/10.1038/nature09745 PubMedCrossRefGoogle Scholar
  77. Lew DJ, Dulic V, Reed SI (1991) Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66(6):1197–1206PubMedCrossRefGoogle Scholar
  78. Liberal V, Martinsson-Ahlzen HS, Liberal J, Spruck CH, Widschwendter M, McGowan CH, Reed SI (2012) Cyclin-dependent kinase subunit (Cks) 1 or Cks2 overexpression overrides the DNA damage response barrier triggered by activated oncoproteins. Proc Natl Acad Sci U S A 109(8):2754–2759. https://doi.org/10.1073/pnas.1102434108 PubMedCrossRefGoogle Scholar
  79. Liu E, Li X, Yan F, Zhao Q, Wu X (2004) Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem 279(17):17283–17288. https://doi.org/10.1074/jbc.C300549200 PubMedCrossRefGoogle Scholar
  80. Loeb KR, Kostner H, Firpo E, Norwood T, D Tsuchiya K, Clurman BE, Roberts JM (2005) A mouse model for cyclin E-dependent genetic instability and tumorigenesis. Cancer Cell 8(1):35–47. https://doi.org/10.1016/j.ccr.2005.06.010 PubMedCrossRefGoogle Scholar
  81. Ma T, Van Tine BA, Wei Y, Garrett MD, Nelson D, Adams PD, Wang J, Qin J, Chow LT, Harper JW (2000) Cell cycle-regulated phosphorylation of p220NPAT by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Genes Dev 14(18):2298–2313PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ma Y, Fiering S, Black C, Liu X, Yuan Z, Memoli VA, Robbins DJ, Bentley HA, Tsongalis GJ, Demidenko E, Freemantle SJ, Dmitrovsky E (2007) Transgenic cyclin E triggers dysplasia and multiple pulmonary adenocarcinomas. Proc Natl Acad Sci U S A 104(10):4089–4094. https://doi.org/10.1073/pnas.0606537104 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Macheret M, Halazonetis TD (2015) DNA replication stress as a hallmark of cancer. Annu Rev Pathol 10:425–448. https://doi.org/10.1146/annurev-pathol-012414-040424 PubMedCrossRefGoogle Scholar
  84. Mailand N, Diffley JF (2005) CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122(6):915–926. https://doi.org/10.1016/j.cell.2005.08.013 PubMedCrossRefGoogle Scholar
  85. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166. https://doi.org/10.1038/nrc2602 PubMedCrossRefGoogle Scholar
  86. Matsumoto Y, Maller JL (2004) A centrosomal localization signal in cyclin E required for Cdk2-independent S phase entry. Science 306(5697):885–888. https://doi.org/10.1126/science.1103544 PubMedCrossRefGoogle Scholar
  87. Matsumoto Y, Hayashi K, Nishida E (1999) Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 9(8):429–432PubMedCrossRefGoogle Scholar
  88. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F (2004) Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430(6996):226–231. https://doi.org/10.1038/nature02650 PubMedCrossRefGoogle Scholar
  89. Maya-Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, Merchut-Maya JM, Hodny Z, Bartkova J, Christensen C, Bartek J (2015) Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol 9(3):601–616. https://doi.org/10.1016/j.molonc.2014.11.001 PubMedCrossRefGoogle Scholar
  90. McIntosh D, Blow JJ (2012) Dormant origins, the licensing checkpoint, and the response to replicative stresses. Cold Spring Harb Perspect Biol 4(10):012955. https://doi.org/10.1101/cshperspect.a012955 CrossRefGoogle Scholar
  91. Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA (1999) Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol 1(2):88–93. https://doi.org/10.1038/10054 PubMedCrossRefGoogle Scholar
  92. Minella AC, Swanger J, Bryant E, Welcker M, Hwang H, Clurman BE (2002) p53 and p21 form an inducible barrier that protects cells against cyclin E-cdk2 deregulation. Curr Biol 12(21):1817–1827PubMedCrossRefGoogle Scholar
  93. Minella AC, Grim JE, Welcker M, Clurman BE (2007) p53 and SCFFbw7 cooperatively restrain cyclin E-associated genome instability. Oncogene 26(48):6948–6953. https://doi.org/10.1038/sj.onc.1210518 PubMedCrossRefGoogle Scholar
  94. Minella AC, Loeb KR, Knecht A, Welcker M, Varnum-Finney BJ, Bernstein ID, Roberts JM, Clurman BE (2008) Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo. Genes Dev 22(12):1677–1689. https://doi.org/10.1101/gad.1650208 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Miron K, Golan-Lev T, Dvir R, Ben-David E, Kerem B (2015) Oncogenes create a unique landscape of fragile sites. Nat Commun 6:7094. https://doi.org/10.1038/ncomms8094 PubMedCrossRefGoogle Scholar
  96. Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK (2001) Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413(6853):311–316. https://doi.org/10.1038/35095068 PubMedCrossRefGoogle Scholar
  97. Mohebi S, Mizuno K, Watson A, Carr AM, Murray JM (2015) Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements. Nat Commun 6:6357. https://doi.org/10.1038/ncomms7357 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Morris L, Allen KE, La Thangue NB (2000) Regulation of E2F transcription by cyclin E-Cdk2 kinase mediated through p300/CBP co-activators. Nat Cell Biol 2(4):232–239. https://doi.org/10.1038/35008660 PubMedCrossRefGoogle Scholar
  99. Muller-Tidow C, Metzger R, Kugler K, Diederichs S, Idos G, Thomas M, Dockhorn-Dworniczak B, Schneider PM, Koeffler HP, Berdel WE, Serve H (2001) Cyclin E is the only cyclin-dependent kinase 2-associated cyclin that predicts metastasis and survival in early stage non-small cell lung cancer. Cancer Res 61(2):647–653PubMedGoogle Scholar
  100. Muntean AG, Hess JL (2012) The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol 7:283–301. https://doi.org/10.1146/annurev-pathol-011811-132434 PubMedCrossRefGoogle Scholar
  101. Mussman JG, Horn HF, Carroll PE, Okuda M, Tarapore P, Donehower LA, Fukasawa K (2000) Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 19(13):1635–1646. https://doi.org/10.1038/sj.onc.1203460 PubMedCrossRefGoogle Scholar
  102. Neelsen KJ, Lopes M (2015) Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol 16(4):207–220. https://doi.org/10.1038/nrm3935 PubMedCrossRefGoogle Scholar
  103. Neelsen KJ, Zanini IM, Herrador R, Lopes M (2013) Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates. J Cell Biol 200(6):699–708. https://doi.org/10.1083/jcb.201212058 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB, Martin S, Wedge DC, Van Loo P, Ju YS, Smid M, Brinkman AB, Morganella S, Aure MR, Lingjaerde OC, Langerod A, Ringner M, Ahn SM, Boyault S, Brock JE, Broeks A, Butler A, Desmedt C, Dirix L, Dronov S, Fatima A, Foekens JA, Gerstung M, Hooijer GK, Jang SJ, Jones DR, Kim HY, King TA, Krishnamurthy S, Lee HJ, Lee JY, Li Y, McLaren S, Menzies A, Mustonen V, O’Meara S, Pauporte I, Pivot X, Purdie CA, Raine K, Ramakrishnan K, Rodriguez-Gonzalez FG, Romieu G, Sieuwerts AM, Simpson PT, Shepherd R, Stebbings L, Stefansson OA, Teague J, Tommasi S, Treilleux I, Van den Eynden GG, Vermeulen P, Vincent-Salomon A, Yates L, Caldas C, van’t Veer L, Tutt A, Knappskog S, Tan BK, Jonkers J, Borg A, Ueno NT, Sotiriou C, Viari A, Futreal PA, Campbell PJ, Span PN, Van Laere S, Lakhani SR, Eyfjord JE, Thompson AM, Birney E, Stunnenberg HG, van de Vijver MJ, Martens JW, Borresen-Dale AL, Richardson AL, Kong G, Thomas G, Stratton MR (2016) Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534(7605):47–54. https://doi.org/10.1038/nature17676 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ohtani K, DeGregori J, Nevins JR (1995) Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci U S A 92(26):12146–12150PubMedPubMedCentralCrossRefGoogle Scholar
  106. Ohtani K, DeGregori J, Leone G, Herendeen DR, Kelly TJ, Nevins JR (1996) Expression of the HsOrc1 gene, a human ORC1 homolog, is regulated by cell proliferation via the E2F transcription factor. Mol Cell Biol 16(12):6977–6984PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ohtani K, Tsujimoto A, Ikeda M, Nakamura M (1998) Regulation of cell growth-dependent expression of mammalian CDC6 gene by the cell cycle transcription factor E2F. Oncogene 17(14):1777–1785. https://doi.org/10.1038/sj.onc.1202105 PubMedCrossRefGoogle Scholar
  108. Ohtani K, Iwanaga R, Nakamura M, Ikeda M, Yabuta N, Tsuruga H, Nojima H (1999) Cell growth-regulated expression of mammalian MCM5 and MCM6 genes mediated by the transcription factor E2F. Oncogene 18(14):2299–2309. https://doi.org/10.1038/sj.onc.1202544 PubMedCrossRefGoogle Scholar
  109. Ohtsubo M, Roberts JM (1993) Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259(5103):1908–1912PubMedCrossRefGoogle Scholar
  110. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE, Fukasawa K (2000) Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103(1):127–140PubMedCrossRefGoogle Scholar
  111. Oswald F, Dobner T, Lipp M (1996) The E2F transcription factor activates a replication-dependent human H2A gene in early S phase of the cell cycle. Mol Cell Biol 16(5):1889–1895PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ozeri-Galai E, Lebofsky R, Rahat A, Bester AC, Bensimon A, Kerem B (2011) Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol Cell 43(1):122–131. https://doi.org/10.1016/j.molcel.2011.05.019 PubMedCrossRefGoogle Scholar
  113. Ozeri-Galai E, Tur-Sinai M, Bester AC, Kerem B (2014) Interplay between genetic and epigenetic factors governs common fragile site instability in cancer. Cell Mol Life Sci 71(23):4495–4506. https://doi.org/10.1007/s00018-014-1719-8 PubMedCrossRefGoogle Scholar
  114. Pearson BE, Nasheuer HP, Wang TS (1991) Human DNA polymerase α gene: sequences controlling expression in cycling and serum-stimulated cells. Mol Cell Biol 11(4):2081–2095PubMedPubMedCentralCrossRefGoogle Scholar
  115. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massague J (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1):59–66PubMedCrossRefGoogle Scholar
  116. Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, Roberts JM (1997) Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med 3(2):222–225PubMedCrossRefGoogle Scholar
  117. Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B, Lengauer C (2004) Inactivation of hCDC4 can cause chromosomal instability. Nature 428(6978):77–81. https://doi.org/10.1038/nature02313 PubMedCrossRefGoogle Scholar
  118. Resnitzky D, Gossen M, Bujard H, Reed SI (1994) Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 14(3):1669–1679PubMedPubMedCentralCrossRefGoogle Scholar
  119. Reynaud EG, Pelpel K, Guillier M, Leibovitch MP, Leibovitch SA (1999) p57Kip2 stabilizes the MyoD protein by inhibiting cyclin E-Cdk2 kinase activity in growing myoblasts. Mol Cell Biol 19(11):7621–7629PubMedPubMedCentralCrossRefGoogle Scholar
  120. Rohban S, Campaner S (2015) Myc induced replicative stress response: how to cope with it and exploit it. Biochim Biophys Acta 1849(5):517–524. https://doi.org/10.1016/j.bbagrm.2014.04.008 PubMedCrossRefGoogle Scholar
  121. Ruffner H, Jiang W, Craig AG, Hunter T, Verma IM (1999) BRCA1 is phosphorylated at serine 1497 in vivo at a cyclin-dependent kinase 2 phosphorylation site. Mol Cell Biol 19(7):4843–4854PubMedPubMedCentralCrossRefGoogle Scholar
  122. Schraml P, Bucher C, Bissig H, Nocito A, Haas P, Wilber K, Seelig S, Kononen J, Mihatsch MJ, Dirnhofer S, Sauter G (2003) Cyclin E overexpression and amplification in human tumours. J Pathol 200(3):375–382. https://doi.org/10.1002/path.1356 PubMedCrossRefGoogle Scholar
  123. Schwaenen C, Viardot A, Berger H, Barth TF, Bentink S, Dohner H, Enz M, Feller AC, Hansmann ML, Hummel M, Kestler HA, Klapper W, Kreuz M, Lenze D, Loeffler M, Moller P, Muller-Hermelink HK, Ott G, Rosolowski M, Rosenwald A, Ruf S, Siebert R, Spang R, Stein H, Truemper L, Lichter P, Bentz M, Wessendorf S (2009) Microarray-based genomic profiling reveals novel genomic aberrations in follicular lymphoma which associate with patient survival and gene expression status. Genes Chromosom Cancer 48(1):39–54. https://doi.org/10.1002/gcc.20617 PubMedCrossRefGoogle Scholar
  124. Scuderi R, Palucka KA, Pokrovskaja K, Bjorkholm M, Wiman KG, Pisa P (1996) Cyclin E overexpression in relapsed adult acute lymphoblastic leukemias of B-cell lineage. Blood 87(8):3360–3367PubMedGoogle Scholar
  125. Shima N, Alcaraz A, Liachko I, Buske TR, Andrews CA, Munroe RJ, Hartford SA, Tye BK, Schimenti JC (2007) A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat Genet 39(1):93–98. https://doi.org/10.1038/ng1936 PubMedCrossRefGoogle Scholar
  126. Silva FP, Morolli B, Storlazzi CT, Anelli L, Wessels H, Bezrookove V, Kluin-Nelemans HC, Giphart-Gassler M (2003) Identification of RUNX1/AML1 as a classical tumor suppressor gene. Oncogene 22(4):538–547. https://doi.org/10.1038/sj.onc.1206141 PubMedCrossRefGoogle Scholar
  127. Siu KT, Rosner MR, Minella AC (2012) An integrated view of cyclin E function and regulation. Cell Cycle (Georgetown, Tex) 11(1):57–64. https://doi.org/10.4161/cc.11.1.18775 CrossRefGoogle Scholar
  128. Siu KT, Xu Y, Swartz KL, Bhattacharyya M, Gurbuxani S, Hua Y, Minella AC (2014) Chromosome instability underlies hematopoietic stem cell dysfunction and lymphoid neoplasia associated with impaired Fbw7-mediated cyclin E regulation. Mol Cell Biol 34(17):3244–3258. https://doi.org/10.1128/mcb.01528-13 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Smith AP, Henze M, Lee JA, Osborn KG, Keck JM, Tedesco D, Bortner DM, Rosenberg MP, Reed SI (2006) Deregulated cyclin E promotes p53 loss of heterozygosity and tumorigenesis in the mouse mammary gland. Oncogene 25(55):7245–7259. https://doi.org/10.1038/sj.onc.1209713 PubMedCrossRefGoogle Scholar
  130. Spruck CH, Won KA, Reed SI (1999) Deregulated cyclin E induces chromosome instability. Nature 401(6750):297–300. https://doi.org/10.1038/45836 PubMedCrossRefGoogle Scholar
  131. Srinivasan SV, Dominguez-Sola D, Wang LC, Hyrien O, Gautier J (2013) Cdc45 is a critical effector of myc-dependent DNA replication stress. Cell Rep 3(5):1629–1639. https://doi.org/10.1016/j.celrep.2013.04.002 PubMedCrossRefGoogle Scholar
  132. Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI (2001) Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413(6853):316–322. https://doi.org/10.1038/35095076 PubMedCrossRefGoogle Scholar
  133. Teixeira LK, Wang X, Li Y, Ekholm-Reed S, Wu X, Wang P, Reed SI (2015) Cyclin E deregulation promotes loss of specific genomic regions. Curr Biol 25(10):1327–1333. https://doi.org/10.1016/j.cub.2015.03.022 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Thean LF, Loi C, Ho KS, Koh PK, Eu KW, Cheah PY (2010) Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. Genes Chromosom Cancer 49(2):99–106. https://doi.org/10.1002/gcc.20724 PubMedGoogle Scholar
  135. Thys RG, Lehman CE, Pierce LC, Wang YH (2015) DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 16(1):60–70. https://doi.org/10.2174/1389202916666150114223205 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K (2001) Specific phosphorylation of nucleophosmin on Thr199 by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 276(24):21529–21537. https://doi.org/10.1074/jbc.M100014200 PubMedCrossRefGoogle Scholar
  137. Torres-Rosell J, De Piccoli G, Cordon-Preciado V, Farmer S, Jarmuz A, Machin F, Pasero P, Lisby M, Haber JE, Aragon L (2007) Anaphase onset before complete DNA replication with intact checkpoint responses. Science 315(5817):1411–1415. https://doi.org/10.1126/science.1134025 PubMedCrossRefGoogle Scholar
  138. Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78(1):67–74PubMedCrossRefGoogle Scholar
  139. Varetti G, Pellman D, Gordon DJ (2014) Aurea mediocritas: the importance of a balanced genome. Cold Spring Harb Perspect Biol 6(11):a015842. https://doi.org/10.1101/cshperspect.a015842 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Weddington N, Stuy A, Hiratani I, Ryba T, Yokochi T, Gilbert DM (2008) Replication domain: a visualization tool and comparative database for genome-wide replication timing data. BMC Bioinformatics 9:530. https://doi.org/10.1186/1471-2105-9-530 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Won KA, Reed SI (1996) Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J 15(16):4182–4193PubMedPubMedCentralGoogle Scholar
  142. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366(6456):701–704. https://doi.org/10.1038/366701a0 PubMedCrossRefGoogle Scholar
  143. Yamada H, Yanagisawa K, Tokumaru S, Taguchi A, Nimura Y, Osada H, Nagino M, Takahashi T (2008) Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes Chromosom Cancer 47(9):810–818. https://doi.org/10.1002/gcc.20582 PubMedCrossRefGoogle Scholar
  144. Yan Z, DeGregori J, Shohet R, Leone G, Stillman B, Nevins JR, Williams RS (1998) Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proc Natl Acad Sci U S A 95(7):3603–3608PubMedPubMedCentralCrossRefGoogle Scholar
  145. Yoshida K, Inoue I (2004) Regulation of geminin and Cdt1 expression by E2F transcription factors. Oncogene 23(21):3802–3812. https://doi.org/10.1038/sj.onc.1207488 PubMedCrossRefGoogle Scholar
  146. Zariwala M, Liu J, Xiong Y (1998) Cyclin E2, a novel human G1 cyclin and activating partner of CDK2 and CDK3, is induced by viral oncoproteins. Oncogene 17(21):2787–2798. https://doi.org/10.1038/sj.onc.1202505 PubMedCrossRefGoogle Scholar
  147. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16(1):2–9. https://doi.org/10.1038/ncb2897 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zhao J, Kennedy BK, Lawrence BD, Barbie DA, Matera AG, Fletcher JA, Harlow E (2000) NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev 14(18):2283–2297PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zhao H, Chen X, Gurian-West M, Roberts JM (2012) Loss of cyclin-dependent kinase 2 (CDK2) inhibitory phosphorylation in a CDK2AF knock-in mouse causes misregulation of DNA replication and centrosome duplication. Mol Cell Biol 32(8):1421–1432. https://doi.org/10.1128/mcb.06721-11 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Program of Cell BiologyBrazilian National Cancer Institute (INCA)Rio de JaneiroBrazil
  2. 2.Department of Cell and Molecular BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations