Advertisement

Regulation of Mammalian DNA Replication via the Ubiquitin-Proteasome System

  • Tarek AbbasEmail author
  • Anindya Dutta
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)

Abstract

Proper regulation of DNA replication ensures the faithful transmission of genetic material essential for optimal cellular and organismal physiology. Central to this regulation is the activity of a set of enzymes that induce or reverse posttranslational modifications of various proteins critical for the initiation, progression, and termination of DNA replication. This is particularly important when DNA replication proceeds in cancer cells with elevated rates of genomic instability and increased proliferative capacities. Here, we describe how DNA replication in mammalian cells is regulated via the activity of the ubiquitin-proteasome system as well as the consequence of derailed ubiquitylation signaling involved in this important cellular activity.

Keywords

DNA replication Ubiquitin Ubiquitylation E3 ligases DNA rereplication Cancer 

Notes

Acknowledgment

Work in the author’s laboratories is supported by NIH grants, R00 CA140774 to TA and R01 CA60499 and GM84465 to AD.

References

  1. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9(6):400–414. https://doi.org/10.1038/nrc2657 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abbas T, Dutta A (2011) CRL4Cdt2: master coordinator of cell cycle progression and genome stability. Cell Cycle 10(2):241–249PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A (2008) PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev 22(18):2496–2506. https://doi.org/10.1101/gad.1676108 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Abbas T, Shibata E, Park J, Jha S, Karnani N, Dutta A (2010) CRL4(Cdt2) regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. Mol Cell 40(1):9–21. https://doi.org/10.1016/j.molcel.2010.09.014 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Abbas T, Keaton MA, Dutta A (2013) Genomic instability in cancer. Cold Spring Harb Perspect Biol 5(3):a012914. https://doi.org/10.1101/cshperspect.a012914 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alexandrow MG, Hamlin JL (2004) Cdc6 chromatin affinity is unaffected by serine-54 phosphorylation, S-phase progression, and overexpression of cyclin a. Mol Cell Biol 24(4):1614–1627PubMedPubMedCentralCrossRefGoogle Scholar
  7. Almouzni G, Cedar H (2016) Maintenance of epigenetic information. Cold Spring Harb Perspect Biol 8(5). https://doi.org/10.1101/cshperspect.a019372
  8. Amador V, Ge S, Santamaria PG, Guardavaccaro D, Pagano M (2007) APC/C(Cdc20) controls the ubiquitin-mediated degradation of p21 in prometaphase. Mol Cell 27(3):462–473. https://doi.org/10.1016/j.molcel.2007.06.013 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Amir R, Ciechanover A, Cohen S (2001) The ubiquitin-proteasome system: the relationship between protein degradation and human diseases. Harefuah 140(12):1172–1176. 1229PubMedGoogle Scholar
  10. Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N (2006) Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443(7111):590–593PubMedGoogle Scholar
  11. Aparicio OM, Weinstein DM, Bell SP (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91(1):59–69PubMedCrossRefGoogle Scholar
  12. Araki M, Wharton RP, Tang Z, Yu H, Asano M (2003) Degradation of origin recognition complex large subunit by the anaphase-promoting complex in drosophila. EMBO J 22(22):6115–6126. https://doi.org/10.1093/emboj/cdg573 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Araki M, Yu H, Asano M (2005) A novel motif governs APC-dependent degradation of drosophila ORC1 in vivo. Genes Dev 19(20):2458–2465. https://doi.org/10.1101/gad.1361905 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Arias EE, Walter JC (2006) PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat Cell Biol 8(1):84–90. https://doi.org/10.1038/ncb1346 PubMedCrossRefGoogle Scholar
  15. Barthelme D, Chen JZ, Grabenstatter J, Baker TA, Sauer RT (2014) Architecture and assembly of the archaeal Cdc48*20S proteasome. Proc Natl Acad Sci U S A 111(17):E1687–E1694. https://doi.org/10.1073/pnas.1404823111 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M (2004) Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428(6979):190–193. https://doi.org/10.1038/nature02330 PubMedCrossRefGoogle Scholar
  17. Beck DB, Burton A, Oda H, Ziegler-Birling C, Torres-Padilla ME, Reinberg D (2012) The role of PR-Set7 in replication licensing depends on Suv4-20h. Genes Dev 26(23):2580–2589. https://doi.org/10.1101/gad.195636.112 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Behrends C, Harper JW (2011) Constructing and decoding unconventional ubiquitin chains. Nat Struct Mol Biol 18(5):520–528. https://doi.org/10.1038/nsmb.2066 PubMedCrossRefGoogle Scholar
  19. Bell SP (2014) DNA replication. Terminating the replisome. Science 346(6208):418–419. https://doi.org/10.1126/science.1261245 PubMedCrossRefGoogle Scholar
  20. Bembenek J, Yu H (2001) Regulation of the anaphase-promoting complex by the dual specificity phosphatase human Cdc14a. J Biol Chem 276(51):48237–48242. https://doi.org/10.1074/jbc.M108126200 PubMedCrossRefGoogle Scholar
  21. Benamar M, Guessous F, Du K, Corbett P, Obeid J, Gioeli D, Slingluff CL Jr, Abbas T (2016) Inactivation of the CRL4-CDT2-SET8/p21 ubiquitylation and degradation axis underlies the therapeutic efficacy of pevonedistat in melanoma. EBioMedicine 10:85–100. https://doi.org/10.1016/j.ebiom.2016.06.023 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Berti M, Vindigni A (2016) Replication stress: getting back on track. Nat Struct Mol Biol 23(2):103–109. https://doi.org/10.1038/nsmb.3163 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann AR, Hofmann K, Dikic I (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310(5755):1821–1824. https://doi.org/10.1126/science.1120615 PubMedCrossRefGoogle Scholar
  24. Bosu DR, Kipreos ET (2008) Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div 3:7.:https://doi.org/10.1186/1747-1028-3-7
  25. Branzei D (2011) Ubiquitin family modifications and template switching. FEBS Lett 585(18):2810–2817. https://doi.org/10.1016/j.febslet.2011.04.053 PubMedCrossRefGoogle Scholar
  26. Cappell SD, Chung M, Jaimovich A, Spencer SL, Meyer T (2016) Irreversible APC(Cdh1) inactivation underlies the point of no return for cell-cycle entry. Cell 166(1):167–180. https://doi.org/10.1016/j.cell.2016.05.077 PubMedCrossRefGoogle Scholar
  27. Cardozo T, Pagano M (2004) The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5(9):739–751. https://doi.org/10.1038/nrm1471 PubMedCrossRefGoogle Scholar
  28. Centore RC, Havens CG, Manning AL, Li JM, Flynn RL, Tse A, Jin J, Dyson NJ, Walter JC, Zou L (2010) CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol Cell 40(1):22–33. https://doi.org/10.1016/j.molcel.2010.09.015 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chan CH, Morrow JK, Li CF, Gao Y, Jin G, Moten A, Stagg LJ, Ladbury JE, Cai Z, Xu D, Logothetis CJ, Hung MC, Zhang S, Lin HK (2013) Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154(3):556–568. https://doi.org/10.1016/j.cell.2013.06.048 PubMedCrossRefGoogle Scholar
  30. Chandrasekaran S, Tan TX, Hall JR, Cook JG (2011) Stress-stimulated mitogen-activated protein kinases control the stability and activity of the Cdt1 DNA replication licensing factor. Mol Cell Biol 31(22):4405–4416. https://doi.org/10.1128/MCB.06163-11 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chattopadhyay S, Bielinsky AK (2007) Human Mcm10 regulates the catalytic subunit of DNA polymerase-alpha and prevents DNA damage during replication. Mol Biol Cell 18(10):4085–4095. https://doi.org/10.1091/mbc.E06-12-1148 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chen Z, Sui J, Zhang F, Zhang C (2015) Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms. J Cancer 6(3):233–242. https://doi.org/10.7150/jca.11076 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chen NP, Uddin B, Voit R, Schiebel E (2016) Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion. Proc Natl Acad Sci USA 113(4):990–995. https://doi.org/10.1073/pnas.1515605113 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Choe KN, Moldovan GL (2017) Forging ahead through darkness: PCNA, still the principal conductor at the replication fork. Mol Cell 65(3):380–392. https://doi.org/10.1016/j.molcel.2016.12.020 PubMedCrossRefGoogle Scholar
  35. Ciechanover A, Schwartz AL (2002) Ubiquitin-mediated degradation of cellular proteins in health and disease. Hepatology 35(1):3–6PubMedCrossRefGoogle Scholar
  36. Clijsters L, Wolthuis R (2014) PIP-box-mediated degradation prohibits re-accumulation of Cdc6 during S phase. J Cell Sci 127(Pt 6):1336–1345. https://doi.org/10.1242/jcs.145862 PubMedCrossRefGoogle Scholar
  37. Clurman BE, Sheaff RJ, Thress K, Groudine M, Roberts JM (1996) Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev 10(16):1979–1990PubMedCrossRefGoogle Scholar
  38. Das-Bradoo S, Ricke RM, Bielinsky AK (2006) Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast. Mol Cell Biol 26(13):4806–4817. https://doi.org/10.1128/MCB.02062-05 PubMedPubMedCentralCrossRefGoogle Scholar
  39. den Elzen N, Pines J (2001) Cyclin a is destroyed in prometaphase and can delay chromosome alignment and anaphase. J Cell Biol 153(1):121–136CrossRefGoogle Scholar
  40. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434. https://doi.org/10.1146/annurev.biochem.78.101807.093809 PubMedCrossRefGoogle Scholar
  41. Devault A, Vallen EA, Yuan T, Green S, Bensimon A, Schwob E (2002) Identification of Tah11/Sid2 as the ortholog of the replication licensing factor Cdt1 in Saccharomyces cerevisiae. Curr Biol 12(8):689–694PubMedCrossRefGoogle Scholar
  42. Dewar JM, Low E, Mann M, Raschle M, Walter JC (2017) CRL2Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev 31(3):275–290. https://doi.org/10.1101/gad.291799.116 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Di Fiore B, Pines J (2007) Emi1 is needed to couple DNA replication with mitosis but does not regulate activation of the mitotic APC/C. J Cell Biol 177(3):425–437. https://doi.org/10.1083/jcb.200611166 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M, Draetta GF (2002) Dual mode of degradation of Cdc25 a phosphatase. EMBO J 21(18):4875–4884PubMedPubMedCentralCrossRefGoogle Scholar
  45. Duan S, Cermak L, Pagan JK, Rossi M, Martinengo C, di Celle PF, Chapuy B, Shipp M, Chiarle R, Pagano M (2012) FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 481(7379):90–93. https://doi.org/10.1038/nature10688 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N, Schulman BA (2011) Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol 21(2):257–264. https://doi.org/10.1016/j.sbi.2011.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Frampton J, Irmisch A, Green CM, Neiss A, Trickey M, Ulrich HD, Furuya K, Watts FZ, Carr AM, Lehmann AR (2006) Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol Biol Cell 17(7):2976–2985. https://doi.org/10.1091/mbc.E05-11-1008 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Fujimitsu K, Grimaldi M, Yamano H (2016) Cyclin-dependent kinase 1-dependent activation of APC/C ubiquitin ligase. Science 352(6289):1121–1124. https://doi.org/10.1126/science.aad3925 PubMedCrossRefGoogle Scholar
  49. Fujita M, Yamada C, Goto H, Yokoyama N, Kuzushima K, Inagaki M, Tsurumi T (1999) Cell cycle regulation of human CDC6 protein. Intracellular localization, interaction with the human mcm complex, and CDC2 kinase-mediated hyperphosphorylation. J Biol Chem 274(36):25927–25932PubMedCrossRefGoogle Scholar
  50. Gallego-Sanchez A, Andres S, Conde F, San-Segundo PA, Bueno A (2012) Reversal of PCNA ubiquitylation by Ubp10 in Saccharomyces cerevisiae. PLoS Genet 8(7):e1002826. https://doi.org/10.1371/journal.pgen.1002826 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ganai RA, Johansson E (2016) DNA replication-a matter of fidelity. Mol Cell 62(5):745–755. https://doi.org/10.1016/j.molcel.2016.05.003 PubMedCrossRefGoogle Scholar
  52. Garcia-Rodriguez N, Wong RP, Ulrich HD (2016) Functions of ubiquitin and SUMO in DNA replication and replication stress. Front Genet 7:87. https://doi.org/10.3389/fgene.2016.00087 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428. https://doi.org/10.1152/physrev.00027.2001 PubMedCrossRefGoogle Scholar
  54. Godbersen JC, Humphries LA, Danilova OV, Kebbekus PE, Brown JR, Eastman A, Danilov AV (2014) The Nedd8-activating enzyme inhibitor MLN4924 thwarts microenvironment-driven NF-kappaB activation and induces apoptosis in chronic lymphocytic leukemia B cells. Clin Cancer Res 20(6):1576–1589. https://doi.org/10.1158/1078-0432.CCR-13-0987 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Green BM, Finn KJ, Li JJ (2010) Loss of DNA replication control is a potent inducer of gene amplification. Science 329(5994):943–946. https://doi.org/10.1126/science.1190966 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gregan J, Lindner K, Brimage L, Franklin R, Namdar M, Hart EA, Aves SJ, Kearsey SE (2003) Fission yeast Cdc23/Mcm10 functions after pre-replicative complex formation to promote Cdc45 chromatin binding. Mol Biol Cell 14(9):3876–3887. https://doi.org/10.1091/mbc.E03-02-0090 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Groll M, Huber R (2003) Substrate access and processing by the 20S proteasome core particle. Int J Biochem Cell Biol 35(5):606–616PubMedCrossRefGoogle Scholar
  58. Gu Y, Kaufman JL, Bernal L, Torre C, Matulis SM, Harvey RD, Chen J, Sun SY, Boise LH, Lonial S (2014) MLN4924, an NAE inhibitor, suppresses AKT and mTOR signaling via upregulation of REDD1 in human myeloma cells. Blood 123(21):3269–3276. https://doi.org/10.1182/blood-2013-08-521914 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK, Yamasaki L, Pagano M (2003) Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 4(6):799–812PubMedCrossRefGoogle Scholar
  60. Havens CG, Walter JC (2009) Docking of a specialized PIP box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Mol Cell 35(1):93–104. https://doi.org/10.1016/j.molcel.2009.05.012 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Havens CG, Walter JC (2011) Mechanism of CRL4(Cdt2), a PCNA-dependent E3 ubiquitin ligase. Genes Dev 25(15):1568–1582. https://doi.org/10.1101/gad.2068611 PubMedPubMedCentralCrossRefGoogle Scholar
  62. He YJ, McCall CM, Hu J, Zeng Y, Xiong Y (2006) DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 20(21):2949–2954PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hedglin M, Benkovic SJ (2015) Regulation of Rad6/Rad18 activity during DNA damage tolerance. Annu Rev Biophys 44:207–228. https://doi.org/10.1146/annurev-biophys-060414-033841 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Henikoff S (2016) Mechanisms of nucleosome dynamics in vivo. Cold Spring Harb Perspect Med 6(9). https://doi.org/10.1101/cshperspect.a026666
  65. Heo J, Eki R, Abbas T (2016) Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis. Semin Cancer Biol 36:33–51. https://doi.org/10.1016/j.semcancer.2015.09.015 PubMedCrossRefGoogle Scholar
  66. Hershko A (2005) The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 12(9):1191–1197. https://doi.org/10.1038/sj.cdd.4401702 PubMedCrossRefGoogle Scholar
  67. Higa LA, Zhang H (2007) Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. Cell Div 2:5PubMedPubMedCentralCrossRefGoogle Scholar
  68. Higa LA, Mihaylov IS, Banks DP, Zheng J, Zhang H (2003) Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nat Cell Biol 5(11):1008–1015. https://doi.org/10.1038/ncb1061 PubMedCrossRefGoogle Scholar
  69. Higa LA, Banks D, Wu M, Kobayashi R, Sun H, Zhang H (2006) L2DTL/CDT2 interacts with the CUL4/DDB1 complex and PCNA and regulates CDT1 proteolysis in response to DNA damage. Cell Cycle 5(15):1675–1680PubMedCrossRefGoogle Scholar
  70. Hotton SK, Callis J (2008) Regulation of cullin RING ligases. Annu Rev Plant Biol 59:467–489. https://doi.org/10.1146/annurev.arplant.58.032806.104011 PubMedCrossRefGoogle Scholar
  71. Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62:299–334. https://doi.org/10.1146/annurev-arplant-042809-112256 PubMedCrossRefGoogle Scholar
  72. Huang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W, Gygi SP, Ploegh HL, Bernards R, D'Andrea AD (2006) Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8(4):339–347. https://doi.org/10.1038/ncb1378 PubMedGoogle Scholar
  73. Huang H-L, Zheng W-L, Zhao R, Zhang B, Ma W-L (2010) FBXO31 is down-regulated and may function as a tumor suppressor in hepatocellular carcinoma. Oncol Rep 24:715–720PubMedCrossRefGoogle Scholar
  74. Hustedt N, Durocher D (2016) The control of DNA repair by the cell cycle. Nat Cell Biol 19(1):1–9. https://doi.org/10.1038/ncb3452 PubMedCrossRefGoogle Scholar
  75. Jackson S, Xiong Y (2009) CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 34(11):562–570. https://doi.org/10.1016/j.tibs.2009.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Jaspersen SL, Charles JF, Morgan DO (1999) Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr Biol 9(5):227–236PubMedCrossRefGoogle Scholar
  77. Jazaeri AA, Shibata E, Park J, Bryant JL, Conaway MR, Modesitt SC, Smith PG, Milhollen MA, Berger AJ, Dutta A (2013) Overcoming platinum resistance in preclinical models of ovarian cancer using the neddylation inhibitor MLN4924. Mol Cancer Ther 12(10):1958–1967. https://doi.org/10.1158/1535-7163.MCT-12-1028 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Jiang Y, Jia L (2015) Neddylation pathway as a novel anti-cancer target: mechanistic investigation and therapeutic implication. Anti Cancer Agents Med Chem 15(9):1127–1133CrossRefGoogle Scholar
  79. Jiang W, Wells NJ, Hunter T (1999) Multistep regulation of DNA replication by Cdk phosphorylation of HsCdc6. Proc Natl Acad Sci U S A 96(11):6193–6198PubMedPubMedCentralCrossRefGoogle Scholar
  80. Jin J, Arias EE, Chen J, Harper JW, Walter JC (2006) A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 23(5):709–721PubMedCrossRefGoogle Scholar
  81. Johansson P, Jeffery J, Al-Ejeh F, Schulz RB, Callen DF, Kumar R, Khanna KK (2014) SCF-FBXO31 E3 ligase targets DNA replication factor Cdt1 for proteolysis in the G2 phase of cell cycle to prevent re-replication. J Biol Chem 289:18514–18525. https://doi.org/10.1074/jbc.M114.559930 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jorgensen S, Eskildsen M, Fugger K, Hansen L, Larsen MS, Kousholt AN, Syljuasen RG, Trelle MB, Jensen ON, Helin K, Sorensen CS (2011) SET8 is degraded via PCNA-coupled CRL4(CDT2) ubiquitylation in S phase and after UV irradiation. J Cell Biol 192(1):43–54. https://doi.org/10.1083/jcb.201009076 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Jung YS, Liu G, Chen X (2010) Pirh2 E3 ubiquitin ligase targets DNA polymerase eta for 20S proteasomal degradation. Mol Cell Biol 30(4):1041–1048. https://doi.org/10.1128/MCB.01198-09 PubMedCrossRefGoogle Scholar
  84. Jung YS, Hakem A, Hakem R, Chen X (2011) Pirh2 E3 ubiquitin ligase monoubiquitinates DNA polymerase eta to suppress translesion DNA synthesis. Mol Cell Biol 31(19):3997–4006. https://doi.org/10.1128/MCB.05808-11 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Jung YS, Qian Y, Chen X (2012) DNA polymerase eta is targeted by Mdm2 for polyubiquitination and proteasomal degradation in response to ultraviolet irradiation. DNA Repair (Amst) 11(2):177–184. https://doi.org/10.1016/j.dnarep.2011.10.017 CrossRefGoogle Scholar
  86. Kaiser BK, Zimmerman ZA, Charbonneau H, Jackson PK (2002) Disruption of centrosome structure, chromosome segregation, and cytokinesis by misexpression of human Cdc14A phosphatase. Mol Biol Cell 13(7):2289–2300. https://doi.org/10.1091/mbc.01-11-0535 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kanke M, Kodama Y, Takahashi TS, Nakagawa T, Masukata H (2012) Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J 31(9):2182–2194. https://doi.org/10.1038/emboj.2012.68 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kashiwaba S, Kanao R, Masuda Y, Kusumoto-Matsuo R, Hanaoka F, Masutani C (2015) USP7 is a suppressor of PCNA ubiquitination and oxidative-stress-induced mutagenesis in human cells. Cell Rep 13(10):2072–2080. https://doi.org/10.1016/j.celrep.2015.11.014 PubMedCrossRefGoogle Scholar
  89. Kaur M, Khan MM, Kar A, Sharma A, Saxena S (2012) CRL4-DDB1-VPRBP ubiquitin ligase mediates the stress triggered proteolysis of Mcm10. Nucleic Acids Res 40(15):7332–7346. https://doi.org/10.1093/nar/gks366 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kim Y, Starostina NG, Kipreos ET (2008) The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes Dev 22(18):2507–2519Google Scholar
  91. Kipreos ET, Pagano M (2000) The F-box protein family. Genome Biol 1(5):REVIEWS3002.:https://doi.org/10.1186/gb-2000-1-5-reviews3002
  92. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ (2001) Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294(5540):173–177. https://doi.org/10.1126/science.1065203 PubMedCrossRefGoogle Scholar
  93. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563. doi:nrm2731 [pii] 1038/nrm2731PubMedCrossRefGoogle Scholar
  94. Kornitzer D, Ciechanover A (2000) Modes of regulation of ubiquitin-mediated protein degradation. J Cell Physiol 182(1):1–11. https://doi.org/10.1002/(SICI)1097-4652(200001)182:1<1::AID-JCP1>3.0.CO;2-VPubMedCrossRefGoogle Scholar
  95. Leach CA, Michael WM (2005) Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. J Cell Biol 171(6):947–954. https://doi.org/10.1083/jcb.200508100 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lee EK, Diehl JA (2014) SCFs in the new millennium. Oncogene 33(16):2011–2018. https://doi.org/10.1038/onc.2013.144 PubMedCrossRefGoogle Scholar
  97. Lei M (2005) The MCM complex: its role in DNA replication and implications for cancer therapy. Curr Cancer Drug Targets 5(5):365–380PubMedCrossRefGoogle Scholar
  98. Lengronne A, Pasero P (2014) Closing the MCM cycle at replication termination sites. EMBO Rep 15(12):1226–1227. 10.15252/embr.201439774 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Li X, Zhao Q, Liao R, Sun P, Wu X (2003) The SiCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 278(33):30854–30858. https://doi.org/10.1074/jbc.C300251200 PubMedCrossRefGoogle Scholar
  100. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CA (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One 3(1):e1487. https://doi.org/10.1371/journal.pone.0001487 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Li H, Tan M, Jia L, Wei D, Zhao Y, Chen G, Xu J, Zhao L, Thomas D, Beer DG, Sun Y (2014a) Inactivation of SAG/RBX2 E3 ubiquitin ligase suppresses KrasG12D-driven lung tumorigenesis. J Clin Invest 124(2):835–846. https://doi.org/10.1172/JCI70297 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Li L, Wang M, Yu G, Chen P, Li H, Wei D, Zhu J, Xie L, Jia H, Shi J, Li C, Yao W, Wang Y, Gao Q, Jeong LS, Lee HW, Yu J, Hu F, Mei J, Wang P, Chu Y, Qi H, Yang M, Dong Z, Sun Y, Hoffman RM, Jia L (2014b) Overactivated neddylation pathway as a therapeutic target in lung cancer. J Natl Cancer Inst 106(6):dju083. https://doi.org/10.1093/jnci/dju083 PubMedCrossRefGoogle Scholar
  103. Lin JJ, Milhollen MA, Smith PG, Narayanan U, Dutta A (2010) NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res 70(24):10310–10320. https://doi.org/10.1158/0008-5472.CAN-10-2062 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lin JR, Zeman MK, Chen JY, Yee MC, Cimprich KA (2011) SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol Cell 42(2):237–249. https://doi.org/10.1016/j.molcel.2011.02.026 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lipkowitz S, Weissman AM (2011) RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 11(9):629–643. https://doi.org/10.1038/nrc3120 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Liu G, Warbrick E (2006) The p66 and p12 subunits of DNA polymerase delta are modified by ubiquitin and ubiquitin-like proteins. Biochem Biophys Res Commun 349(1):360–366. https://doi.org/10.1016/j.bbrc.2006.08.049 PubMedCrossRefGoogle Scholar
  107. Liu E, Li X, Yan F, Zhao Q, Wu X (2004) Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem 279(17):17283–17288. https://doi.org/10.1074/jbc.C300549200 PubMedCrossRefGoogle Scholar
  108. Lovejoy CA, Lock K, Yenamandra A, Cortez D (2006) DDB1 maintains genome integrity through regulation of Cdt1. Mol Cell Biol 26(21):7977–7990PubMedPubMedCentralCrossRefGoogle Scholar
  109. Lydeard JR, Schulman BA, Harper JW (2013) Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep 14(12):1050–1061. https://doi.org/10.1038/embor.2013.173 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Machida YJ, Dutta A (2007) The APC/C inhibitor, Emi1, is essential for prevention of rereplication. Genes Dev 21(2):184–194. https://doi.org/10.1101/gad.1495007 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Machida YJ, Hamlin JL, Dutta A (2005) Right place, right time, and only once: replication initiation in metazoans. Cell 123(1):13–24. https://doi.org/10.1016/j.cell.2005.09.019 PubMedCrossRefGoogle Scholar
  112. Mailand N, Diffley JF (2005) CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122(6):915–926. https://doi.org/10.1016/j.cell.2005.08.013 PubMedCrossRefGoogle Scholar
  113. Maric M, Maculins T, De Piccoli G, Labib K (2014) Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346(6208):1253596. https://doi.org/10.1126/science.1253596 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A, O'Neil J, Gutierrez A, Ivanova E, Perna I, Lin E, Mani V, Jiang S, McNamara K, Zaghlul S, Edkins S, Stevens C, Brennan C, Martin ES, Wiedemeyer R, Kabbarah O, Nogueira C, Histen G, Aster J, Mansour M, Duke V, Foroni L, Fielding AK, Goldstone AH, Rowe JM, Wang YA, Look AT, Stratton MR, Chin L, Futreal PA, DePinho RA (2007) Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447(7147):966–971. https://doi.org/10.1038/nature05886 PubMedPubMedCentralCrossRefGoogle Scholar
  115. McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93(6):1043–1053PubMedCrossRefGoogle Scholar
  116. McIntyre J, Woodgate R (2015) Regulation of translesion DNA synthesis: posttranslational modification of lysine residues in key proteins. DNA Repair (Amst) 29:166–179. https://doi.org/10.1016/j.dnarep.2015.02.011 CrossRefGoogle Scholar
  117. Mendez J, Zou-Yang XH, Kim SY, Hidaka M, Tansey WP, Stillman B (2002) Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol Cell 9(3):481–491PubMedCrossRefGoogle Scholar
  118. Merlet J, Burger J, Gomes JE, Pintard L (2009) Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cell Mol Life Sci 66(11–12):1924–1938. https://doi.org/10.1007/s00018-009-8712-7 PubMedCrossRefGoogle Scholar
  119. Michishita M, Morimoto A, Ishii T, Komori H, Shiomi Y, Higuchi Y, Nishitani H (2011) Positively charged residues located downstream of PIP box, together with TD amino acids within PIP box, are important for CRL4(Cdt2) -mediated proteolysis. Genes Cells 16(1):12–22. https://doi.org/10.1111/j.1365-2443.2010.01464.x PubMedCrossRefGoogle Scholar
  120. Milhollen MA, Traore T, Adams-Duffy J, Thomas MP, Berger AJ, Dang L, Dick LR, Garnsey JJ, Koenig E, Langston SP, Manfredi M, Narayanan U, Rolfe M, Staudt LM, Soucy TA, Yu J, Zhang J, Bolen JB, Smith PG (2010) MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-{kappa}B-dependent lymphoma. Blood 116(9):1515–1523. https://doi.org/10.1182/blood-2010-03-272567 PubMedCrossRefGoogle Scholar
  121. Milhollen MA, Narayanan U, Soucy TA, Veiby PO, Smith PG, Amidon B (2011) Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in human tumor cells consistent with deregulating CDT1 turnover. Cancer Res 71(8):3042–3051. https://doi.org/10.1158/0008-5472.CAN-10-2122 PubMedCrossRefGoogle Scholar
  122. Mocciaro A, Berdougo E, Zeng K, Black E, Vagnarelli P, Earnshaw W, Gillespie D, Jallepalli P, Schiebel E (2010) Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair. J Cell Biol 189(4):631–639. https://doi.org/10.1083/jcb.200910057 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Moldovan GL, D'Andrea AD (2011) DNA damage discrimination at stalled replication forks by the Rad5 homologs HLTF and SHPRH. Mol Cell 42(2):141–143. https://doi.org/10.1016/j.molcel.2011.03.018 PubMedCrossRefGoogle Scholar
  124. Moreno SP, Bailey R, Campion N, Herron S, Gambus A (2014) Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science 346(6208):477–481. https://doi.org/10.1126/science.1253585 PubMedCrossRefGoogle Scholar
  125. Morohashi H, Maculins T, Labib K (2009) The amino-terminal TPR domain of Dia2 tethers SCF(Dia2) to the replisome progression complex. Curr Biol 19(22):1943–1949. https://doi.org/10.1016/j.cub.2009.09.062 PubMedCrossRefGoogle Scholar
  126. Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH, Myung K (2008) Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A 105(34):12411–12416. https://doi.org/10.1073/pnas.0805685105 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Nakayama KI, Nakayama K (2005) Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol 16(3):323–333. https://doi.org/10.1016/j.semcdb.2005.02.010 PubMedCrossRefGoogle Scholar
  128. Nakayama KI, Nakayama K (2006) Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6(5):369–381. https://doi.org/10.1038/nrc1881 PubMedCrossRefGoogle Scholar
  129. Narbonne-Reveau K, Senger S, Pal M, Herr A, Richardson HE, Asano M, Deak P, Lilly MA (2008) APC/CFzr/Cdh1 promotes cell cycle progression during the drosophila endocycle. Development 135(8):1451–1461. https://doi.org/10.1242/dev.016295 PubMedCrossRefGoogle Scholar
  130. Nawrocki ST, Griffin P, Kelly KR, Carew JS (2012) MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy. Expert Opin Investig Drugs 21(10):1563–1573. https://doi.org/10.1517/13543784.2012.707192 PubMedCrossRefGoogle Scholar
  131. Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y, Chuikov S, Valenzuela P, Tempst P, Steward R, Lis JT, Allis CD, Reinberg D (2002) PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9(6):1201–1213PubMedCrossRefGoogle Scholar
  132. Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C, Tsurimoto T, Nakayama KI, Nakayama K, Fujita M, Lygerou Z, Nishimoto T (2006) Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 25(5):1126–1136. https://doi.org/10.1038/sj.emboj.7601002 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Nishitani H, Shiomi Y, Iida H, Michishita M, Takami T, Tsurimoto T (2008) CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. J Biol Chem 283(43):29045–29052. https://doi.org/10.1074/jbc.M806045200 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Oda H, Hubner MR, Beck DB, Vermeulen M, Hurwitz J, Spector DL, Reinberg D (2010) Regulation of the histone H4 monomethylase PR-Set7 by CRL4(Cdt2)-mediated PCNA-dependent degradation during DNA damage. Mol Cell 40(3):364–376. https://doi.org/10.1016/j.molcel.2010.10.011 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Park JM, Yang SW, Yu KR, Ka SH, Lee SW, Seol JH, Jeon YJ, Chung CH (2014) Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis. Mol Cell 54(4):626–638. https://doi.org/10.1016/j.molcel.2014.03.031 PubMedCrossRefGoogle Scholar
  136. Petersen BO, Lukas J, Sorensen CS, Bartek J, Helin K (1999) Phosphorylation of mammalian CDC6 by cyclin a/CDK2 regulates its subcellular localization. EMBO J 18(2):396–410. https://doi.org/10.1093/emboj/18.2.396 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Petersen BO, Wagener C, Marinoni F, Kramer ER, Melixetian M, Lazzerini Denchi E, Gieffers C, Matteucci C, Peters JM, Helin K (2000) Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1. Genes Dev 14(18):2330–2343PubMedPubMedCentralCrossRefGoogle Scholar
  138. Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6(1):9–20. https://doi.org/10.1038/nrm1547 PubMedCrossRefGoogle Scholar
  139. Pfleger CM, Kirschner MW (2000) The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 14(6):655–665PubMedPubMedCentralGoogle Scholar
  140. Pfleger CM, Lee E, Kirschner MW (2001) Substrate recognition by the Cdc20 and Cdh1 components of the anaphase-promoting complex. Genes Dev 15(18):2396–2407. https://doi.org/10.1101/gad.918201 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Pines J (2006) Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol 16(1):55–63. https://doi.org/10.1016/j.tcb.2005.11.006 PubMedCrossRefGoogle Scholar
  142. Plachta M, Halas A, McIntyre J, Sledziewska-Gojska E (2015) The steady-state level and stability of TLS polymerase eta are cell cycle dependent in the yeast S. cerevisiae. DNA Repair (Amst) 29:147–153. https://doi.org/10.1016/j.dnarep.2015.02.015 CrossRefGoogle Scholar
  143. Plosky BS, Vidal AE, Fernandez de Henestrosa AR, McLenigan MP, McDonald JP, Mead S, Woodgate R (2006) Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin. EMBO J 25(12):2847–2855. https://doi.org/10.1038/sj.emboj.7601178 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Qian J, Pentz K, Zhu Q, Wang Q, He J, Srivastava AK, Wani AA (2015) USP7 modulates UV-induced PCNA monoubiquitination by regulating DNA polymerase eta stability. Oncogene 34(36):4791–4796. https://doi.org/10.1038/onc.2014.394 PubMedCrossRefGoogle Scholar
  145. Qing P, Han L, Bin L, Yan L, Ping WX (2011) USP7 regulates the stability and function of HLTF through deubiquitination. J Cell Biochem 112(12):3856–3862. https://doi.org/10.1002/jcb.23317 PubMedCrossRefGoogle Scholar
  146. Rahal R, Amon A (2008) Mitotic CDKs control the metaphase-anaphase transition and trigger spindle elongation. Genes Dev 22(11):1534–1548. https://doi.org/10.1101/gad.1638308 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Reimann JD, Freed E, Hsu JY, Kramer ER, Peters JM, Jackson PK (2001) Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105(5):645–655PubMedCrossRefGoogle Scholar
  148. Renaudin X, Koch Lerner L, Menck CF, Rosselli F (2016) The ubiquitin family meets the Fanconi anemia proteins. Mutat Res Rev Mutat Res 769:36–46. https://doi.org/10.1016/j.mrrev.2016.06.004 PubMedCrossRefGoogle Scholar
  149. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397. https://doi.org/10.1146/annurev.biochem.78.082307.091526 PubMedCrossRefGoogle Scholar
  150. Ricke RM, Bielinsky AK (2004) Mcm10 regulates the stability and chromatin association of DNA polymerase-alpha. Mol Cell 16(2):173–185. https://doi.org/10.1016/j.molcel.2004.09.017 PubMedCrossRefGoogle Scholar
  151. Rizzardi LF, Coleman KE, Varma D, Matson JP, Oh S, Cook JG (2015) CDK1-dependent inhibition of the E3 ubiquitin ligase CRL4CDT2 ensures robust transition from S phase to mitosis. J Biol Chem 290(1):556–567. https://doi.org/10.1074/jbc.M114.614701 PubMedCrossRefGoogle Scholar
  152. Robbins JA, Cross FR (2010) Regulated degradation of the APC coactivator Cdc20. Cell Div 5:23. https://doi.org/10.1186/1747-1028-5-23 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Romani B, Shaykh Baygloo N, Aghasadeghi MR, Allahbakhshi E (2015) HIV-1 Vpr protein enhances proteasomal degradation of MCM10 DNA replication factor through the Cul4-DDB1[VprBP] E3 ubiquitin ligase to induce G2/M cell cycle arrest. J Biol Chem 290(28):17380–17389. https://doi.org/10.1074/jbc.M115.641522 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Roseaulin LC, Noguchi C, Martinez E, Ziegler MA, Toda T, Noguchi E (2013) Coordinated degradation of replisome components ensures genome stability upon replication stress in the absence of the replication fork protection complex. PLoS Genet 9(1):e1003213. https://doi.org/10.1371/journal.pgen.1003213 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Saha P, Chen J, Thome KC, Lawlis SJ, Hou ZH, Hendricks M, Parvin JD, Dutta A (1998) Human CDC6/Cdc18 associates with Orc1 and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol Cell Biol 18(5):2758–2767PubMedPubMedCentralCrossRefGoogle Scholar
  156. Sansam CL, Shepard JL, Lai K, Ianari A, Danielian PS, Amsterdam A, Hopkins N, Lees JA (2006) DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint. Genes Dev 20(22):3117–3129PubMedPubMedCentralCrossRefGoogle Scholar
  157. Sarikas A, Hartmann T, Pan ZQ (2011) The cullin protein family. Genome Biol 12(4):220. https://doi.org/10.1186/gb-2011-12-4-220 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callen E, Celeste A, Pagani M, Opravil S, De La Rosa-Velazquez IA, Espejo A, Bedford MT, Nussenzweig A, Busslinger M, Jenuwein T (2008) A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev 22(15):2048–2061. https://doi.org/10.1101/gad.476008 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49:73–96. https://doi.org/10.1146/annurev.pharmtox.051208.165340 PubMedCrossRefGoogle Scholar
  160. Senga T, Sivaprasad U, Zhu W, Park JH, Arias EE, Walter JC, Dutta A (2006) PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. J Biol Chem 281(10):6246–6252. https://doi.org/10.1074/jbc.M512705200 PubMedCrossRefGoogle Scholar
  161. Shibutani ST, de la Cruz AF, Tran V, Turbyfill WJ 3rd, Reis T, Edgar BA, Duronio RJ (2008) Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev Cell 15(6):890–900. https://doi.org/10.1016/j.devcel.2008.10.003 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Shirayama M, Toth A, Galova M, Nasmyth K (1999) APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402(6758):203–207. https://doi.org/10.1038/46080 PubMedCrossRefGoogle Scholar
  163. Simon NE, Schwacha A (2014) The Mcm2-7 replicative helicase: a promising chemotherapeutic target. Biomed Res Int 2014:549719. https://doi.org/10.1155/2014/549719 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Simpson LJ, Ross AL, Szuts D, Alviani CA, Oestergaard VH, Patel KJ, Sale JE (2006) RAD18-independent ubiquitination of proliferating-cell nuclear antigen in the avian cell line DT40. EMBO Rep 7(9):927–932. https://doi.org/10.1038/sj.embor.7400777 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Sivaprasad U, Machida YJ, Dutta A (2007) APC/C--the master controller of origin licensing? Cell Div 2:8. https://doi.org/10.1186/1747-1028-2-8 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Skaar JR, Pagan JK, Pagano M (2013) Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol 14(6):369–381. https://doi.org/10.1038/nrm3582 PubMedCrossRefGoogle Scholar
  167. Skaar JR, Pagan JK, Pagano M (2014) SCF ubiquitin ligase-targeted therapies. Nat Rev Drug Discov 13(12):889–903. https://doi.org/10.1038/nrd4432 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Skoneczna A, McIntyre J, Skoneczny M, Policinska Z, Sledziewska-Gojska E (2007) Polymerase eta is a short-lived, proteasomally degraded protein that is temporarily stabilized following UV irradiation in Saccharomyces cerevisiae. J Mol Biol 366(4):1074–1086. https://doi.org/10.1016/j.jmb.2006.11.093 PubMedCrossRefGoogle Scholar
  169. Sommers JA, Suhasini AN, Brosh RM Jr (2015) Protein degradation pathways regulate the functions of helicases in the DNA damage response and maintenance of genomic stability. Biomol Ther 5(2):590–616. https://doi.org/10.3390/biom5020590 Google Scholar
  170. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, Cullis CA, Doucette A, Garnsey JJ, Gaulin JL, Gershman RE, Lublinsky AR, McDonald A, Mizutani H, Narayanan U, Olhava EJ, Peluso S, Rezaei M, Sintchak MD, Talreja T, Thomas MP, Traore T, Vyskocil S, Weatherhead GS, Yu J, Zhang J, Dick LR, Claiborne CF, Rolfe M, Bolen JB, Langston SP (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458(7239):732–736. https://doi.org/10.1038/nature07884 PubMedCrossRefGoogle Scholar
  171. Sullivan M, Morgan DO (2007) Finishing mitosis, one step at a time. Nat Rev Mol Cell Biol 8(11):894–903. https://doi.org/10.1038/nrm2276 PubMedCrossRefGoogle Scholar
  172. Tada S, Li A, Maiorano D, Mechali M, Blow JJ (2001) Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol 3(2):107–113. https://doi.org/10.1038/35055000 PubMedPubMedCentralCrossRefGoogle Scholar
  173. Takeda DY, Parvin JD, Dutta A (2005) Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J Biol Chem 280(24):23416–23423. https://doi.org/10.1074/jbc.M501208200 PubMedCrossRefGoogle Scholar
  174. Talbert PB, Henikoff S (2017) Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Biol 18(2):115–126. https://doi.org/10.1038/nrm.2016.148 PubMedCrossRefGoogle Scholar
  175. Tanaka S, Diffley JF (2002) Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol 4(3):198–207. https://doi.org/10.1038/ncb757 PubMedCrossRefGoogle Scholar
  176. Tanaka T, Knapp D, Nasmyth K (1997) Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90(4):649–660PubMedCrossRefGoogle Scholar
  177. Tanaka T, Nakatani T, Kamitani T (2013) Negative regulation of NEDD8 conjugation pathway by novel molecules and agents for anticancer therapy. Curr Pharm Des 19(22):4131–4139PubMedCrossRefGoogle Scholar
  178. Tardat M, Brustel J, Kirsh O, Lefevbre C, Callanan M, Sardet C, Julien E (2010) The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol 12(11):1086–1093. doi:ncb2113 [pii]1038/ncb2113PubMedCrossRefGoogle Scholar
  179. Tatsumi Y, Ohta S, Kimura H, Tsurimoto T, Obuse C (2003) The ORC1 cycle in human cells: I. cell cycle-regulated oscillation of human ORC1. J Biol Chem 278(42):41528–41534. https://doi.org/10.1074/jbc.M307534200 PubMedCrossRefGoogle Scholar
  180. Tatsumi Y, Sugimoto N, Yugawa T, Narisawa-Saito M, Kiyono T, Fujita M (2006) Deregulation of Cdt1 induces chromosomal damage without rereplication and leads to chromosomal instability. J Cell Sci 119(Pt 15):3128–3140PubMedCrossRefGoogle Scholar
  181. Teixeira LK, Reed SI (2013) Ubiquitin ligases and cell cycle control. Annu Rev Biochem 82:387–414. https://doi.org/10.1146/annurev-biochem-060410-105307 PubMedCrossRefGoogle Scholar
  182. Terai K, Abbas T, Jazaeri AA, Dutta A (2010) CRL4(Cdt2) E3 ubiquitin ligase monoubiquitinates PCNA to promote translesion DNA synthesis. Mol Cell 37(1):143–149. https://doi.org/10.1016/j.molcel.2009.12.018 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Terai K, Shibata E, Abbas T, Dutta A (2013) Degradation of p12 subunit by CRL4Cdt2 E3 ligase inhibits fork progression after DNA damage. J Biol Chem 288(42):30509–30514. https://doi.org/10.1074/jbc.C113.505586 PubMedPubMedCentralCrossRefGoogle Scholar
  184. Thu YM, Bielinsky AK (2013) Enigmatic roles of Mcm10 in DNA replication. Trends Biochem Sci 38(4):184–194. https://doi.org/10.1016/j.tibs.2012.12.003 PubMedPubMedCentralCrossRefGoogle Scholar
  185. Ulrich HD, Takahashi T (2013) Readers of PCNA modifications. Chromosoma 122(4):259–274. https://doi.org/10.1007/s00412-013-0410-4 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Unk I, Hajdu I, Fatyol K, Hurwitz J, Yoon JH, Prakash L, Prakash S, Haracska L (2008) Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc Natl Acad Sci U S A 105(10):3768–3773. https://doi.org/10.1073/pnas.0800563105 PubMedPubMedCentralCrossRefGoogle Scholar
  187. van Deursen F, Sengupta S, De Piccoli G, Sanchez-Diaz A, Labib K (2012) Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J 31(9):2195–2206. https://doi.org/10.1038/emboj.2012.69 PubMedPubMedCentralCrossRefGoogle Scholar
  188. van Leuken R, Clijsters L, Wolthuis R (2008) To cell cycle, swing the APC/C. Biochim Biophys Acta 1786(1):49–59. https://doi.org/10.1016/j.bbcan.2008.05.002 PubMedGoogle Scholar
  189. Vaziri C, Saxena S, Jeon Y, Lee C, Murata K, Machida Y, Wagle N, Hwang DS, Dutta A (2003) A p53-dependent checkpoint pathway prevents rereplication. Mol Cell 11(4):997–1008PubMedCrossRefGoogle Scholar
  190. Visintin R, Prinz S, Amon A (1997) CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278(5337):460–463PubMedCrossRefGoogle Scholar
  191. Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10(10):M111 013284. https://doi.org/10.1074/mcp.M111.013284 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Wallace HA, Merkle JA, Yu MC, Berg TG, Lee E, Bosco G, Lee LA (2014) TRIP/NOPO E3 ubiquitin ligase promotes ubiquitylation of DNA polymerase eta. Development 141(6):1332–1341. https://doi.org/10.1242/dev.101196 PubMedPubMedCentralCrossRefGoogle Scholar
  193. Walter D, Hoffmann S, Komseli ES, Rappsilber J, Gorgoulis V, Sorensen CS (2016) SCF(cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun 7:10530. https://doi.org/10.1038/ncomms10530 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Wang Z, Liu P, Inuzuka H, Wei W (2014) Roles of F-box proteins in cancer. Nat Rev Cancer 14(4):233–247. https://doi.org/10.1038/nrc3700 PubMedPubMedCentralCrossRefGoogle Scholar
  195. Watanabe N, Arai H, Nishihara Y, Taniguchi M, Watanabe N, Hunter T, Osada H (2004) M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci U S A 101(13):4419–4424. https://doi.org/10.1073/pnas.0307700101 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Waters LS, Walker GC (2006) The critical mutagenic translesion DNA polymerase Rev1 is highly expressed during G(2)/M phase rather than S phase. Proc Natl Acad Sci U S A 103(24):8971–8976. https://doi.org/10.1073/pnas.0510167103 PubMedPubMedCentralCrossRefGoogle Scholar
  197. Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG Jr (2004) Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428(6979):194–198. https://doi.org/10.1038/nature02381 PubMedCrossRefGoogle Scholar
  198. Wei D, Li H, Yu J, Sebolt JT, Zhao L, Lawrence TS, Smith PG, Morgan MA, Sun Y (2012) Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor. Cancer Res 72(1):282–293. https://doi.org/10.1158/0008-5472.CAN-11-2866 PubMedCrossRefGoogle Scholar
  199. Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8(2):83–93. https://doi.org/10.1038/nrc2290 PubMedCrossRefGoogle Scholar
  200. Wilkinson KD (1997) Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J 11(14):1245–1256PubMedCrossRefGoogle Scholar
  201. Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290(5500):2309–2312. https://doi.org/10.1126/science.290.5500.2309 PubMedCrossRefGoogle Scholar
  202. Wong JV, Dong P, Nevins JR, Mathey-Prevot B, You L (2011) Network calisthenics: control of E2F dynamics in cell cycle entry. Cell Cycle 10(18):3086–3094. https://doi.org/10.4161/cc.10.18.17350 PubMedPubMedCentralCrossRefGoogle Scholar
  203. Wu S, Wang W, Kong X, Congdon LM, Yokomori K, Kirschner MW, Rice JC (2010) Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression. Genes Dev 24(22):2531–2542. https://doi.org/10.1101/gad.1984210 PubMedPubMedCentralCrossRefGoogle Scholar
  204. Xiao B, Jing C, Kelly G, Walker PA, Muskett FW, Frenkiel TA, Martin SR, Sarma K, Reinberg D, Gamblin SJ, Wilson JR (2005) Specificity and mechanism of the histone methyltransferase Pr-Set7. Genes Dev 19(12):1444–1454. https://doi.org/10.1101/gad.1315905 PubMedPubMedCentralCrossRefGoogle Scholar
  205. Yang WL, Zhang X, Lin HK (2010) Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene 29(32):4493–4503. https://doi.org/10.1038/onc.2010.190 PubMedPubMedCentralCrossRefGoogle Scholar
  206. Yang K, Weinacht CP, Zhuang Z (2013) Regulatory role of ubiquitin in eukaryotic DNA translesion synthesis. Biochemistry 52(19):3217–3228. https://doi.org/10.1021/bi400194r PubMedCrossRefGoogle Scholar
  207. Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13(16):2039–2058PubMedCrossRefGoogle Scholar
  208. Zaidi IW, Rabut G, Poveda A, Scheel H, Malmstrom J, Ulrich H, Hofmann K, Pasero P, Peter M, Luke B (2008) Rtt101 and Mms1 in budding yeast form a CUL4(DDB1)-like ubiquitin ligase that promotes replication through damaged DNA. EMBO Rep 9(10):1034–1040. https://doi.org/10.1038/embor.2008.155 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Zeman MK, Lin JR, Freire R, Cimprich KA (2014) DNA damage-specific deubiquitination regulates Rad18 functions to suppress mutagenesis. J Cell Biol 206(2):183–197. https://doi.org/10.1083/jcb.201311063 PubMedPubMedCentralCrossRefGoogle Scholar
  210. Zhang S, Chea J, Meng X, Zhou Y, Lee EY, Lee MY (2008) PCNA is ubiquitinated by RNF8. Cell Cycle 7(21):3399–3404. https://doi.org/10.4161/cc.7.21.6949 PubMedCrossRefGoogle Scholar
  211. Zhao Y, Sun Y (2013) Cullin-RING Ligases as attractive anti-cancer targets. Curr Pharm Des 19(18):3215–3225PubMedPubMedCentralCrossRefGoogle Scholar
  212. Zhao Y, Morgan MA, Sun Y (2014) Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid Redox Signal 21(17):2383–2400. https://doi.org/10.1089/ars.2013.5795 PubMedPubMedCentralCrossRefGoogle Scholar
  213. Zhong W, Feng H, Santiago FE, Kipreos ET (2003) CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 423(6942):885–889Google Scholar
  214. Zhu W, Depamphilis ML (2009) Selective killing of cancer cells by suppression of geminin activity. Cancer Res 69(11):4870–4877. https://doi.org/10.1158/0008-5472.CAN-08-4559 PubMedPubMedCentralCrossRefGoogle Scholar
  215. Zhu W, Dutta A (2006) An ATR- and BRCA1-mediated Fanconi anemia pathway is required for activating the G2/M checkpoint and DNA damage repair upon rereplication. Mol Cell Biol 26(12):4601–4611. https://doi.org/10.1128/MCB.02141-05 PubMedPubMedCentralCrossRefGoogle Scholar
  216. Zhu W, Chen Y, Dutta A (2004) Rereplication by depletion of geminin is seen regardless of p53 status and activates a G2/M checkpoint. Mol Cell Biol 24(16):7140–7150PubMedPubMedCentralCrossRefGoogle Scholar
  217. Zhu W, Abbas T, Dutta A (2005) DNA replication and genomic instability. Adv Exp Med Biol 570:249–279. https://doi.org/10.1007/1-4020-3764-3_9 PubMedCrossRefGoogle Scholar
  218. Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A (2007) Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev 21(18):2288–2299. https://doi.org/10.1101/gad.1585607 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Zhu W, Lee CY, Johnson RL, Wichterman J, Huang R, DePamphilis ML (2011) An image-based, high-throughput screening assay for molecules that induce excess DNA replication in human cancer cells. Mol Cancer Res 9(3):294–310. https://doi.org/10.1158/1541-7786.MCR-10-0570 PubMedPubMedCentralCrossRefGoogle Scholar
  220. Zilio N, Eifler-Olivi K, Ulrich HD (2017) Functions of SUMO in the maintenance of genome stability. Adv Exp Med Biol 963:51–87. https://doi.org/10.1007/978-3-319-50044-7_4 PubMedCrossRefGoogle Scholar
  221. Zlatanou A, Sabbioneda S, Miller ES, Greenwalt A, Aggathanggelou A, Maurice MM, Lehmann AR, Stankovic T, Reverdy C, Colland F, Vaziri C, Stewart GS (2016) USP7 is essential for maintaining Rad18 stability and DNA damage tolerance. Oncogene 35(8):965–976. https://doi.org/10.1038/onc.2015.149 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations