Advertisement

The Multiple Roles of Ubiquitylation in Regulating Challenged DNA Replication

  • Sara Villa-Hernández
  • Avelino Bueno
  • Rodrigo BermejoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)

Abstract

DNA replication is essential for the propagation of life and the development of complex organisms. However, replication is a risky process as it can lead to mutations and chromosomal alterations. Conditions challenging DNA synthesis by replicative polymerases or DNA helix unwinding, generally termed as replication stress, can halt replication fork progression. Stalled replication forks are unstable, and mechanisms exist to protect their integrity, which promote an efficient restart of DNA synthesis and counteract fork collapse characterized by the accumulation of DNA lesions and mutagenic events. DNA replication is a highly regulated process, and several mechanisms control replication timing and integrity both during unperturbed cell cycles and in response to replication stress. Work over the last two decades has revealed that key steps of DNA replication are controlled by conjugation of the small peptide ubiquitin. While ubiquitylation was traditionally linked to protein degradation, the complexity and flexibility of the ubiquitin system in regulating protein function have recently emerged. Here we review the multiple roles exerted by ubiquitin-conjugating enzymes and ubiquitin-specific proteases, as well as readers of ubiquitin chains, in the control of eukaryotic DNA replication and replication-coupled DNA damage tolerance and repair.

Keywords

DNA replication Replication forks Replication stress DNA damage response DNA repair DNA damage tolerance Ubiquitin Ubiquitin ligases DUBs Cdc48/p97 

Notes

Acknowledgments

We apologize for relevant findings and studies that might have not been discussed due to space limitations. This work was supported by the Ministry of Economy and Competitiveness (BFU2014-52529-R to R.B. and BFU2015-69709-P to A.B.). S.V-H received support from the Spanish Formación de Personal Investigador (FPI) program.

References

  1. Alcasabas AA, Osborn AJ, Bachant J et al (2001) Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3:958–965. https://doi.org/10.1038/ncb1101-958 PubMedCrossRefGoogle Scholar
  2. Álvarez V, Viñas L, Gallego-Sánchez A et al (2016) Orderly progression through S-phase requires dynamic ubiquitylation and deubiquitylation of PCNA. Sci Rep 6:25513. https://doi.org/10.1038/srep25513 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andersen PL, Xu F, Xiao W (2008) Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 18:162–173. https://doi.org/10.1038/cr.2007.114 PubMedCrossRefGoogle Scholar
  4. Arakawa H, Moldovan GL, Saribasak H et al (2006) A role for PCNA ubiquitination in immunoglobulin hypermutation. PLoS Biol 4:1947–1956. https://doi.org/10.1371/journal.pbio.0040366 CrossRefGoogle Scholar
  5. Bassermann F, Frescas D, Guardavaccaro D et al (2008) The Cdc14B-Cdh1-Plk1 Axis controls the G2 DNA-damage-response checkpoint. Cell 134:256–267. https://doi.org/10.1016/j.cell.2008.05.043 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bell SP, Labib K (2016) Chromosome duplication in Saccharomyces Cerevisiae. Genetics 203:1027–1067. https://doi.org/10.1534/genetics.115.186452 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134. https://doi.org/10.1038/357128a0 PubMedCrossRefGoogle Scholar
  8. Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467. https://doi.org/10.1038/nature07963 PubMedCrossRefGoogle Scholar
  9. Bienko M, Green CM, Sabbioneda S et al (2010) Regulation of translesion synthesis DNA polymerase η by Monoubiquitination. Mol Cell 37:396–407. https://doi.org/10.1016/j.molcel.2009.12.039 PubMedCrossRefGoogle Scholar
  10. Böhm S, Bernstein KA (2014) The role of post-translational modifications in fine-tuning BLM helicase function during DNA repair. DNA Repair (Amst) 22:123–132. https://doi.org/10.1016/j.dnarep.2014.07.007 CrossRefGoogle Scholar
  11. Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–219. https://doi.org/10.1038/nrm2852 PubMedCrossRefGoogle Scholar
  12. Bravo M, Nicolini F, Starowicz K et al (2015) Polycomb RING1A- and RING1B-dependent histone H2A monoubiquitylation at pericentromeric regions promotes S-phase progression. J Cell Sci 128:3660–3671. https://doi.org/10.1242/jcs.173021 PubMedCrossRefGoogle Scholar
  13. Bugreev DV, Yu X, Egelman EH, Mazin AV (2007) Novel pro- and anti-recombination activities of the bloom’s syndrome helicase. Genes Dev 21:3085–3094. https://doi.org/10.1101/gad.1609007.cluding
  14. Buser R, Kellner V, Melnik A et al (2016) The replisome-coupled E3 ubiquitin ligase Rtt101Mms22 counteracts Mrc1 function to tolerate genotoxic stress. PLoS Genet 12:e1005843. https://doi.org/10.1371/journal.pgen.1005843 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Carr AM, Lambert S (2013) Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination. J Mol Biol 425:4733–4744. https://doi.org/10.1016/j.jmb.2013.04.023 PubMedCrossRefGoogle Scholar
  16. Chang DJ, Cimprich KA (2009) DNA damage tolerance: when it’s OK to make mistakes. Nat Chem Biol 5:82–90. https://doi.org/10.1038/nchembio.139 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chu WK, Payne MJ, Beli P et al (2015) FBH1 influences DNA replication fork stability and homologous recombination through ubiquitylation of RAD51. Nat Commun 6:1–9. https://doi.org/10.1038/ncomms6931 CrossRefGoogle Scholar
  18. Curtin NJ (2012) DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 12:801–817. https://doi.org/10.1038/nrc3399 PubMedCrossRefGoogle Scholar
  19. Daigaku Y, Davies AA, Ulrich HD (2010) Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465:951–955. https://doi.org/10.1038/nature09097 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Daraba A, Gali VK, Halmai M et al (2014) Def1 promotes the degradation of Pol3 for polymerase exchange to occur during DNA-damage--induced mutagenesis in Saccharomyces Cerevisiae. PLoS Biol 12:e1001771. https://doi.org/10.1371/journal.pbio.1001771 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Despras E, Sittewelle M, Pouvelle C et al (2016) Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated DNA. Nat Commun 7:13326. https://doi.org/10.1038/ncomms13326 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dewar JM, Low E, Mann M et al (2017) CRL2 Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev:275–290. https://doi.org/10.1101/gad.291799.116
  23. Di Croce L, Helin K (2013) Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 20:1147–1155. https://doi.org/10.1038/nsmb.2669 PubMedCrossRefGoogle Scholar
  24. Diffley JFX, Cocker JH, Dowell SJ, Rowley A (1994) Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78:303–316. https://doi.org/10.1016/0092-8674(94)90299-2 PubMedCrossRefGoogle Scholar
  25. Donzelli M, Squatrito M, Ganoth D et al (2002) Dual mode of degradation of Cdc25 a phosphatase. EMBO J 21:4875–4884. https://doi.org/10.1093/emboj/cdf491 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dungrawala H, Rose KLL, Bhat KPP et al (2015) The replication checkpoint prevents two types of fork collapse without regulating replisome stability. Mol Cell 59:1–13. https://doi.org/10.1016/j.molcel.2015.07.030 CrossRefGoogle Scholar
  27. Edmunds CE, Simpson LJ, Sale JE (2008) PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling Translesion synthesis in the avian cell line DT40. Mol Cell 30:519–529. https://doi.org/10.1016/j.molcel.2008.03.024 PubMedCrossRefGoogle Scholar
  28. Elia AEH, Wang DC, Willis NA et al (2015) RFWD3-dependent ubiquitination of RPA regulates repair at stalled replication forks. Mol Cell 60:280–293. https://doi.org/10.1016/j.molcel.2015.09.011 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fong CM, Arumugam A, Koepp DM (2013) The Saccharomyces Cerevisiae F-box protein Dia2 is a mediator of S-phase checkpoint recovery from DNA damage. Genetics 193:483–499. https://doi.org/10.1534/genetics.112.146373 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Frampton J, Irmisch A, Green CM et al (2006) Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol Biol Cell 17:2976–2985. https://doi.org/10.1091/mbc.E05 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Francis LI, Randell JCW, Takara TJ et al (2009) Incorporation into the prereplicative complex activates the Mcm2 – 7 helicase for Cdc7 – Dbf4 phosphorylation. Genes Dev 23:643–654. https://doi.org/10.1101/gad.1759609.replication PubMedPubMedCentralCrossRefGoogle Scholar
  32. Franz A, Orth M, Pirson PA et al (2011) CDC-48/p97 coordinates CDT-1 degradation with GINS chromatin dissociation to ensure faithful DNA replication. Mol Cell 44:85–96. https://doi.org/10.1016/j.molcel.2011.08.028 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Friedberg EC (2003) DNA damage and repairGoogle Scholar
  34. Friedberg EC, Lehmann AR, Fuchs RPP (2005) Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol Cell 18:499–505. https://doi.org/10.1016/j.molcel.2005.03.032 PubMedCrossRefGoogle Scholar
  35. Fullbright G, Rycenga HB, Gruber JD, Long DT (2016) p97 promotes a conserved mechanism of helicase unloading during DNA crosslink repair. Mol Cell Biol. https://doi.org/10.1128/MCB.00434-16
  36. Gaillard H, García-Muse T, Aguilera A (2015) Replication stress and cancer. Nat Rev Cancer 15:276–289. https://doi.org/10.1038/nrc3916 PubMedCrossRefGoogle Scholar
  37. Gallego-Sánchez A, Andrés S, Conde F et al (2012) Reversal of PCNA ubiquitylation by Ubp10 in Saccharomyces cerevisiae. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002826
  38. Gallego-Sánchez A, Andrés S, Ufano S, Bueno A (2013) Analysis of the tolerance to DNA alkylating damage in MEC1 and RAD53 checkpoint mutants of Saccharomyces cerevisiae. PLoS One 8:e81108. https://doi.org/10.1371/journal.pone.0081108 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Geng L, Huntoon CJ, Karnitz LM (2010) RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network. J Cell Biol 191:249–257. https://doi.org/10.1083/jcb.201005101 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ghospurkar PL, Wilson TM, Severson AL et al (2015) The DNA damage response and checkpoint adaptation in Saccharomyces cerevisiae: distinct roles for the replication protein A2 (Rfa2) N-terminus. Genetics 199:711–727. https://doi.org/10.1534/genetics.114.173211 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gibbs-Seymour I, Oka Y, Rajendra E et al (2015) Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage. Mol Cell 57:150–164. https://doi.org/10.1016/j.molcel.2014.12.001 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hendel A, Krijger PHL, Diamant N et al (2011) PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells. PLoS Genet 7:e1002262. https://doi.org/10.1371/journal.pgen.1002262 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hernández-Pérez S, Cabrera E, Amoedo H et al (2016) USP37 deubiquitinates Cdt1 and contributes to regulate DNA replication. Mol Oncol 0:1–11. https://doi.org/10.1016/j.molonc.2016.05.008 Google Scholar
  44. Hoege C, Pfander B, Moldovan G-L et al (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141. https://doi.org/10.1038/nature00991 PubMedCrossRefGoogle Scholar
  45. Huang TT, Nijman SMB, Mirchandani KD et al (2006) Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8:339–347. https://doi.org/10.1038/ncb1378 PubMedGoogle Scholar
  46. Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258. https://doi.org/10.1016/j.molcel.2009.12.030 PubMedCrossRefGoogle Scholar
  47. Iwahori S, Kohmon D, Kobayashi J et al (2014) ATM regulates Cdt1 stability during the unperturbed S phase to prevent re-replication. Cell Cycle 13(3):471–481PubMedCrossRefGoogle Scholar
  48. Jossen R, Bermejo R (2013) The DNA damage checkpoint response to replication stress: a game of forks. Front Genet 4:26. https://doi.org/10.3389/fgene.2013.00026 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14:491–500. https://doi.org/10.1016/S1097-2765(04)00259-X PubMedCrossRefGoogle Scholar
  50. Karras GI, Jentsch S (2010) The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141:255–267. https://doi.org/10.1016/j.cell.2010.02.028 PubMedCrossRefGoogle Scholar
  51. Kee Y, Lyon N, Huibregtse JM (2005) The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J 24:2414–2424. https://doi.org/10.1038/sj.emboj.7600710 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kile AC, Koepp DM (2010) Activation of the S-phase checkpoint inhibits degradation of the F-box protein Dia2. Mol Cell Biol 30:160–171. https://doi.org/10.1128/MCB.00612-09 PubMedCrossRefGoogle Scholar
  53. Kim JM, Parmar K, Huang M et al (2009) Inactivation of murine Usp1 results in genomic instability and a Fanconi anemia phenotype. Dev Cell 16:314–320. https://doi.org/10.1016/j.devcel.2009.01.001 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Klein Douwel D, Boonen RACM, Long DT et al (2014) XPF-ERCC1 acts in unhooking DNA Interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol Cell 54:460–471. https://doi.org/10.1016/j.molcel.2014.03.015 PubMedCrossRefGoogle Scholar
  55. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229. https://doi.org/10.1146/annurev-biochem-060310-170328 PubMedCrossRefGoogle Scholar
  56. Kulathu Y, Komander D (2012) Atypical ubiquitylation – the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 13:508–523. https://doi.org/10.1038/nrm3394 PubMedCrossRefGoogle Scholar
  57. Lachaud C, Moreno A, Marchesi F et al (2016) Ubiquitinated Fancd2 recruits Fan1 to stalled replication forks to prevent genome instability. Science 351:846–849. https://doi.org/10.1126/science.aad5634 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lawrence C (1994) The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? BioEssays 16:253–258. https://doi.org/10.1002/bies.950160408 PubMedCrossRefGoogle Scholar
  59. Leach CA, Michael WM (2005) Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. J Cell Biol 171:947–954. https://doi.org/10.1083/jcb.200508100 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lecona E, Rodriguez-Acebes S, Specks J et al (2016) USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol. https://doi.org/10.1038/nsmb.3185
  61. Li X, Zhao Q, Liao R et al (2003) The SCFSkp2 ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 278:30854–30858. https://doi.org/10.1074/jbc.C300251200 PubMedCrossRefGoogle Scholar
  62. Lin C-Y, Wu M-Y, Gay S et al (2014) H2B mono-ubiquitylation facilitates fork stalling and recovery during replication stress by coordinating Rad53 activation and chromatin assembly. PLoS Genet 10:e1004667. https://doi.org/10.1371/journal.pgen.1004667 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lin JR, Zeman MK, Chen JY et al (2011) SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol Cell 42:237–249. https://doi.org/10.1016/j.molcel.2011.02.026 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Liu T, Ghosal G, Yuan J et al (2010) FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329:693–696. https://doi.org/10.1126/science.1192656 PubMedCrossRefGoogle Scholar
  65. Long DT, Joukov V, Budzowska M, Walter JC (2014) BRCA1 promotes unloading of the CMG helicase from a stalled DNA replication fork. Mol Cell:1–12. https://doi.org/10.1016/j.molcel.2014.08.012
  66. Longerich S, San Filippo J, Liu D, Sung P (2009) FANCI binds branched DNA and is monoubiquitinated by UBE2T-FANCL. J Biol Chem 284:23182–23186. https://doi.org/10.1074/jbc.C109.038075 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Maculins T, Nkosi PJ, Nishikawa H, Labib K (2015) Tethering of SCFDia2 to the replisome promotes efficient Ubiquitylation and disassembly of the CMG helicase. Curr Biol:1–6. https://doi.org/10.1016/j.cub.2015.07.012
  68. Madireddy A, Kosiyatrakul ST, Boisvert RA et al (2016) FANCD2 facilitates replication through common fragile sites. Mol Cell 64:388–404. https://doi.org/10.1016/j.molcel.2016.09.017 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mailand N, Bekker-Jensen S, Bartek J, Lukas J (2006) Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 23:307–318. https://doi.org/10.1016/j.molcel.2006.06.016 PubMedCrossRefGoogle Scholar
  70. Mailand N, Gibbs-seymour I, Bekker-Jensen S (2013) Regulation of PCNA-protein interactions for genome stability. Nat Rev Mol Cell Biol 14:269–282. https://doi.org/10.1038/nrm3562 PubMedCrossRefGoogle Scholar
  71. Maréchal A, Li J-M, Ji XY et al (2013) PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol Cell 53:1–12. https://doi.org/10.1016/j.molcel.2013.11.002 Google Scholar
  72. Maric M, Maculins T, De Piccoli G, Labib K (2014) Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346:1253596–1253596. https://doi.org/10.1126/science.1253596 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Martín Y, Cabrera E, Amoedo H, Freire R (2014) USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination. 28:1–6. doi: https://doi.org/10.1038/onc.2014.38
  74. McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93:1043–1053. https://doi.org/10.1016/S0092-8674(00)81209-X PubMedCrossRefGoogle Scholar
  75. Meas R, Mao P (2015) Histone ubiquitylation and its roles in transcription and DNA damage response. DNA Repair (Amst) 36:36–42. https://doi.org/10.1016/j.dnarep.2015.09.016 CrossRefGoogle Scholar
  76. Mimura S, Komata M, Kishi T et al (2009) SCF(Dia2) regulates DNA replication forks during S-phase in budding yeast. EMBO J 28:3693–3705. https://doi.org/10.1038/emboj.2009.320 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Moldovan G-L, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679. https://doi.org/10.1016/j.cell.2007.05.003 PubMedCrossRefGoogle Scholar
  78. Mosbech A, Gibbs-Seymour I, Kagias K et al (2012) DVC1 (C1orf124) is a DNA damage–targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks. Nat Struct Mol Biol 19:1084–1092. https://doi.org/10.1038/nsmb.2395 PubMedCrossRefGoogle Scholar
  79. Muramatsu S, Hirai K, Tak YS et al (2010) CDK-dependent complex formation between replication proteins Dpb11, Sld2, pol ??, and GINS in budding yeast. Genes Dev 24:602–612. https://doi.org/10.1101/gad.1883410 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Newton K, Matsumoto ML, Wertz IE et al (2008) Ubiquitin chain editing revealed by Polyubiquitin linkage-specific antibodies. Cell 134:668–678. https://doi.org/10.1016/j.cell.2008.07.039 PubMedCrossRefGoogle Scholar
  81. Nijman SMB, Huang TT, Dirac AMG et al (2005a) The deubiquitinating enzyme USP1 regulates the fanconi anemia pathway. Mol Cell 17:331–339. https://doi.org/10.1016/j.molcel.2005.01.008 PubMedCrossRefGoogle Scholar
  82. Nijman SMB, MPA L-V, Velds A et al (2005b) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786. https://doi.org/10.1016/j.cell.2005.11.007 PubMedCrossRefGoogle Scholar
  83. Nishitani H, Sugimoto N, Roukos V et al (2006) Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 25:1126–1136. https://doi.org/10.1038/sj.emboj.7601002 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Oestergaard VH, Langevin F, Kuiken HJ et al (2007) Deubiquitination of FANCD2 is required for DNA crosslink repair. Mol Cell 28:798–809. https://doi.org/10.1016/j.molcel.2007.09.020 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Park JM, Yang SW, Yu KR et al (2014) Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis. Mol Cell 54:626–638. https://doi.org/10.1016/j.molcel.2014.03.031 PubMedCrossRefGoogle Scholar
  86. Pellicioli A, Foiani M (2005) Signal transduction: how Rad53 kinase is activated. Curr Biol 15:769–771. https://doi.org/10.1016/j.cub.2005.08.057 CrossRefGoogle Scholar
  87. Pinder JB, Attwood KM, Dellaire G (2013) Reading, writing, and repair: the role of ubiquitin and the ubiquitin-like proteins in DNA damage signaling and repair. Front Genet 4:1–14. https://doi.org/10.3389/fgene.2013.00045 CrossRefGoogle Scholar
  88. Piunti A, Rossi A, Cerutti A et al (2014) Polycomb proteins control proliferation and transformation independently of cell cycle checkpoints by regulating DNA replication. Nat Commun 5:3649. https://doi.org/10.1038/ncomms4649 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Priego Moreno S, Bailey R, Campion N et al (2014) Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science 346:477–481. https://doi.org/10.1126/science.1253585 CrossRefGoogle Scholar
  90. Pursell ZF, Isoz I, Lundström E-B et al (2007) Yeast DNA polymerase e participates in leading-strand DNA replication. Science 317:127–130PubMedPubMedCentralCrossRefGoogle Scholar
  91. Quan Y, Xia Y, Liu L et al (2015) Cell-cycle-regulated interaction between Mcm10 and double Hexameric Mcm2-7 is required for helicase splitting and activation during S phase. Cell Rep 13:2576–2586. https://doi.org/10.1016/j.celrep.2015.11.018 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Randell JCW, Fan A, Chan C et al (2010) Mec1 is one of multiple kinases that prime the Mcm2-7 helicase for phosphorylation by Cdc7. Mol Cell 40:353–363. https://doi.org/10.1016/j.molcel.2010.10.017 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Risitano AM, Marotta S, Calzone R et al (2016) Twenty years of the Italian Fanconi anemia registry: where we stand and what remains to be learned. Haematologica 101:319–327. https://doi.org/10.3324/haematol.2015.133520 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Roseaulin LC, Noguchi C, Martinez E et al (2013) Coordinated degradation of replisome components ensures genome stability upon replication stress in the absence of the replication fork protection complex. PLoS Genet 9:21–28. https://doi.org/10.1371/journal.pgen.1003213 CrossRefGoogle Scholar
  95. Sahtoe DD, Sixma TK (2015) Layers of DUB regulation. Trends Biochem Sci:1–12. https://doi.org/10.1016/j.tibs.2015.05.002
  96. Sakaguchi H, Takami T, Yasutani Y et al (2012) Checkpoint kinase ATR phosphorylates Cdt2, a substrate receptor of CRL4 ubiquitin ligase, and promotes the degradation of Cdt1 following UV irradiation. PLoS One. https://doi.org/10.1371/journal.pone.0046480
  97. Sánchez M, Calzada A, Bueno A (1999) The Cdc6 protein is ubiquitinated in vivo for proteolysis in Saccharomyces cerevisiae. J Biol Chem 274:9092–9097. https://doi.org/10.1074/jbc.274.13.9092 PubMedCrossRefGoogle Scholar
  98. Shibata Y, Oyama M, Kozuka-Hata H et al (2012) p47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO. Nat Commun 3:1061. https://doi.org/10.1038/ncomms2068 PubMedCrossRefGoogle Scholar
  99. Siddiqui K, On KF, Diffley JFX (2013) Regulating DNA replication in eukarya. Cold Spring Harb Perspect Biol 5:1–17. https://doi.org/10.1101/cshperspect.a012922 CrossRefGoogle Scholar
  100. Simandlova J, Zagelbaum J, Payne MJ et al (2013) FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells. J Biol Chem 288:34168–34180. https://doi.org/10.1074/jbcM113.484493 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sowa ME, Bennett EJ, Gygi SP, Harper JW (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138:389–403. https://doi.org/10.1016/j.cell.2009.04.042 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188–191. https://doi.org/10.1038/nature01965 PubMedCrossRefGoogle Scholar
  103. Stingele J, Bellelli R, Alte F et al (2016) Mechanism and regulation of DNA-protein crosslink repair by the DNA-dependent metalloprotease SPRTN. Mol Cell 64:688–703. https://doi.org/10.1016/j.molcel.2016.09.031 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Stingele J, Jentsch S (2015) DNA–protein crosslink repair. Nat Rev Mol Cell Biol 16:455–460. https://doi.org/10.1038/nrm4015 PubMedCrossRefGoogle Scholar
  105. Sugimoto N, Tatsumi Y, Tsurumi T et al (2004) Cdt1 phosphorylation by cyclin A-dependent kinases negatively regulates its function without affecting geminin binding. J Biol Chem 279:19691–19697. https://doi.org/10.1074/jbc.M313175200 PubMedCrossRefGoogle Scholar
  106. Tanaka K, Russell P (2001) Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nat Cell Biol 3:966–972. https://doi.org/10.1038/ncb1101-966 PubMedCrossRefGoogle Scholar
  107. Terai K, Abbas T, Jazaeri AA, Dutta A (2010) CRL4Cdt2 E3 ubiquitin ligase Monoubiquitinates PCNA to promote Translesion DNA synthesis. Mol Cell 37:143–149. https://doi.org/10.1016/j.molcel.2009.12.018 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tikoo S, Madhavan V, Hussain M et al (2013) Ubiquitin-dependent recruitment of the bloom syndrome helicase upon replication stress is required to suppress homologous recombination. EMBO J 32:1778–1792. https://doi.org/10.1038/emboj.2013.117 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Trujillo KM, Osley MA (2012) A role for H2B Ubiquitylation in DNA replication. Mol Cell 48:734–746. https://doi.org/10.1016/j.molcel.2012.09.019 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ulrich HD (2009) Regulating post-translational modifications of the eukaryotic replication clamp PCNA. DNA Repair (Amst) 8:461–469. https://doi.org/10.1016/j.dnarep.2009.01.006 CrossRefGoogle Scholar
  111. Ulrich HD, Walden H (2010) Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol 11:479–489. https://doi.org/10.1038/nrm2921 PubMedCrossRefGoogle Scholar
  112. Vanoli F, Fumasoni M, Szakal B et al (2010) Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch. PLoS Genet. https://doi.org/10.1371/journal.pgen.1001205
  113. Vassin VM, Anantha RW, Sokolova E et al (2009) Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress. J Cell Sci 122:4070–4080. https://doi.org/10.1242/jcs.053702 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Vaz B, Popovic M, Newman JA et al (2016) Metalloprotease SPRTN/DVC1 orchestrates replication-coupled DNA-protein crosslink repair. Mol Cell 0:137–151. https://doi.org/10.1016/j.molcel.2016.09.032 Google Scholar
  115. Walter D, Hoffmann S, Komseli E-S et al (2016) SCFCyclin F-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun 7:10530. https://doi.org/10.1038/ncomms10530 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Watanabe K, Tateishi S, Kawasuji M et al (2004) Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 23:3886–3896. https://doi.org/10.1038/sj.emboj.7600383 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Williams SA, Longerich S, Sung P et al (2011) The E3 ubiquitin ligase RAD18 regulates ubiquitylation and chromatin loading of FANCD2 and FANCI. Blood 117:5078–5087. https://doi.org/10.1182/blood-2010-10-311761 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wohlschlegel JA, Dwyer BT, Dhar SK et al (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290:2309–2312. https://doi.org/10.1126/science.290.5500.2309 PubMedCrossRefGoogle Scholar
  119. Yamada M, Watanabe K, Mistrik M et al (2013) ATR-Chk1-APC/CCdh1-dependent stabilization of Cdc7-ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress. Genes Dev 27:2459–2472. https://doi.org/10.1101/gad.224568.113 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Publ Gr 18:579–586. https://doi.org/10.1038/ncb3358 Google Scholar
  121. Yim H, Park JW, Woo SU et al (2013) Phosphorylation of Cdc6 at serine 74, but not at serine 106, drives translocation of Cdc6 to the cytoplasm. J Cell Physiol 228:1221–1228. https://doi.org/10.1002/jcp.24275 PubMedCrossRefGoogle Scholar
  122. Yoshikiyo K, Kratz K, Hirota K et al (2010) KIAA1018/FAN1 nuclease protects cells against genomic instability induced by interstrand cross-linking agents. Proc Natl Acad Sci U S A 107:21553–21557. https://doi.org/10.1073/pnas.1011081107 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhang S, Chea J, Meng X et al (2008) PCNA is ubiquitinated by RNF8. Cell Cycle 7:3399–3404. https://doi.org/10.4161/cc.7.21.6949 PubMedCrossRefGoogle Scholar
  124. Zhang H, Lawrence CW (2005) The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc Natl Acad Sci U S A 102:15954–15959. https://doi.org/10.1073/pnas.0504586102 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhu M, Zhao H, Liao J, Xu X (2014) HERC2/USP20 coordinates CHK1 activation by modulating CLASPIN stability. Nucleic Acids Res:1–8. https://doi.org/10.1093/nar/gku978
  126. Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548. https://doi.org/10.1126/science.1083430 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Sara Villa-Hernández
    • 1
  • Avelino Bueno
    • 2
    • 3
  • Rodrigo Bermejo
    • 1
    Email author
  1. 1.Centro de Investigaciones Biológicas (CSIC)MadridSpain
  2. 2.Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC)SalamancaSpain
  3. 3.Departamento de Microbiología y Genética, Universidad de SalamancaSalamancaSpain

Personalised recommendations