Advertisement

Roles of SUMO in Replication Initiation, Progression, and Termination

  • Lei Wei
  • Xiaolan ZhaoEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)

Abstract

Accurate genome duplication during cell division is essential for life. This process is accomplished by the close collaboration between replication factors and many additional proteins that provide assistant roles. Replication factors establish the replication machineries capable of copying billions of nucleotides, while regulatory proteins help to achieve accuracy and efficiency of replication. Among regulatory proteins, protein modification enzymes can bestow fast and reversible changes to many targets, leading to coordinated effects on replication. Recent studies have begun to elucidate how one type of protein modification, sumoylation, can modify replication proteins and regulate genome duplication through multiple mechanisms. This chapter summarizes these new findings, and how they can integrate with the known regulatory circuitries of replication. As this area of research is still at its infancy, many outstanding questions remain to be explored, and we discuss these issues in light of the new advances.

Keywords

DNA replication initiation Replication progression Posttranslational modifications Sumoylation Ubiquitination Phosphorylation 

References

  1. Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124PubMedCrossRefGoogle Scholar
  2. Almedawar S, Colomina N, Bermudez-Lopez M, Pocino-Merino I, Torres-Rosell J (2012) A SUMO-dependent step during establishment of sister chromatid cohesion. Curr Biol 22:1576–1581PubMedCrossRefGoogle Scholar
  3. Almouzni G, Cedar H (2016) Maintenance of epigenetic information. Cold Spring Harb Perspect Biol 2:8Google Scholar
  4. Arias EE, Walter JC (2007) Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 21:497–518PubMedCrossRefGoogle Scholar
  5. Armstrong AA, Mohideen F, Lima CD (2012) Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483:59–63PubMedPubMedCentralCrossRefGoogle Scholar
  6. Azvolinsky A, Dunaway S, Torres JZ, Bessler JB, Zakian VA (2006) The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev 20:3104–3116PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374PubMedCrossRefGoogle Scholar
  8. Bell SP, Labib K (2016) Chromosome duplication in Saccharomyces cerevisiae. Genetics 203:1027–1067PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bergink S, Ammon T, Kern M, Schermelleh L, Leonhardt H, Jentsch S (2013) Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction. Nat Cell Biol 15:526–532PubMedCrossRefGoogle Scholar
  10. Bermudez-Lopez M, Villoria MT, Esteras M, Jarmuz A, Torres-Rosell J, Clemente-Blanco A, Aragon L (2016) Sgs1’s roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev 30:1339–1356PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blow JJ, Dutta A (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6:476–486PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blow JJ, Tanaka TU (2005) The chromosome cycle: coordinating replication and segregation. Second in the cycles review series. EMBO Rep 6:1028–1034PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bonne-Andrea C, Kahli M, Mechali F, Lemaitre J-M, Bossis G, Coux O (2013) SUMO2/3 modification of cyclin E contributes to the control of replication origin firing. Nat Commun 4:1850PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bonner JN, Choi K, Xue X, Torres NP, Szakal B, Wei L, Wan B, Arter M, Matos J, Sung P et al (2016) Smc5/6 mediated sumoylation of the Sgs1-Top3-Rmi1 complex promotes removal of recombination intermediates. Cell Rep 16:368–378PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bowers JL, Randell JCW, Chen S, Bell SP (2004) ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell 16:967–978PubMedCrossRefGoogle Scholar
  16. Bylebyl GR, Belichenko I, Johnson ES (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278:44113–44120PubMedCrossRefGoogle Scholar
  17. Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K (2005) Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev 19:1905–1919PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cappadocia L, Pichler A, Lima CD (2015) Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat Struct Mol Biol 22:968–975PubMedPubMedCentralCrossRefGoogle Scholar
  19. Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413PubMedCrossRefGoogle Scholar
  20. Cho W-H, Lee Y-J, Kong S-I, Hurwitz J, Lee J-K (2006) CDC7 kinase phosphorylates serine residues adjacent to acidic amino acids in the minichromosome maintenance 2 protein. Proc Natl Acad Sci U S A 103:11521–11526PubMedPubMedCentralCrossRefGoogle Scholar
  21. Christensen J, Agger K, Cloos PA, Pasini D, Rose S, Sennels L, Rappsilber J, Hansen KH, Salcini AE, Helin K (2007) RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 128:1063–1076PubMedCrossRefGoogle Scholar
  22. Chung I, Zhao X (2015) DNA break-induced sumoylation is enabled by collaboration between a SUMO ligase and the ssDNA-binding complex RPA. Genes Dev 29:1593–1598PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cornacchia D, Dileep V, Quivy JP, Foti R, Tili F, Santarella-Mellwig R, Antony C, Almouzni G, Gilbert DM, Buonomo SBC (2012) Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J 31:3678–3690PubMedPubMedCentralCrossRefGoogle Scholar
  24. Coster G, Frigola J, Beuron F, Morris EP, Diffley JF (2014) Origin licensing requires ATP binding and hydrolysis by the MCM replicative helicase. Mol Cell 55:666–677PubMedPubMedCentralCrossRefGoogle Scholar
  25. Craig JM, Earle E, Canham P, Wong LH, Anderson M, Choo KH (2003) Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns. Hum Mol Genet 12:3109–3121PubMedCrossRefGoogle Scholar
  26. Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X (2012) Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell 45:422–432PubMedPubMedCentralCrossRefGoogle Scholar
  27. D’Ambrosio LM, Lavoie BD (2014) Pds5 prevents the PolySUMO-dependent separation of sister chromatids. Curr Biol 24:361–371PubMedCrossRefGoogle Scholar
  28. Davé A, Cooley C, Garg M, Bianchi A (2014) Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep 7:53–61PubMedPubMedCentralCrossRefGoogle Scholar
  29. de Albuquerque CP, Liang J, Gaut NJ, Zhou H (2016) Molecular circuitry of the SUMO (Small Ubiquitin-like Modifier) pathway in controlling Sumoylation homeostasis and suppressing genome rearrangements. J Biol Chem 291:8825–8835PubMedPubMedCentralCrossRefGoogle Scholar
  30. De Piccoli G, Torres-Rosell J, Aragón L (2009) The unnamed complex: what do we know about Smc5-Smc6? Chromosom Res 17:251–263CrossRefGoogle Scholar
  31. Deegan TD, Yeeles JT, Diffley JF (2016) Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation. EMBO J 35:961–973PubMedPubMedCentralCrossRefGoogle Scholar
  32. Defeo-Jones D, Huang PS, Jones RE, Haskell KM, Vuocolo GA, Hanobik MG, Huber HE, Oliff A (1991) Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product. Nature 352:251–254PubMedCrossRefGoogle Scholar
  33. Denison C, Rudner AD, Gerber SA, Bakalarski CE, Moazed D, Gygi SP (2005) A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteomics 4:246–254PubMedCrossRefGoogle Scholar
  34. Dewar JM, Budzowska M, Walter JC (2015) The mechanism of DNA replication termination in vertebrates. Nature 525:345–350PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dewar JM, Low E, Mann M, Räschle M, Walter JC (2017) CRL2Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev 31(3):275–290PubMedPubMedCentralCrossRefGoogle Scholar
  36. Diffley JFX (2004) Regulation of early events in chromosome replication. Curr Biol 14:R778–R786PubMedCrossRefGoogle Scholar
  37. Diffley JF, Cocker JH, Dowell SJ, Rowley A (1994) Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78:303–316PubMedCrossRefGoogle Scholar
  38. Donovan S, Harwood J, Drury LS, Diffley JF (1997) Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci U S A 94:5611–5616PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dou H, Huang C, Singh M, Carpenter PB, Yeh ET (2010) Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. Mol Cell 39:333–345Google Scholar
  40. Eifler K, Vertegaal AC (2015) SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem Sci 40:779–793PubMedPubMedCentralCrossRefGoogle Scholar
  41. Eisenhardt N, Chaugule VK, Koidl S, Droescher M, Dogan E, Rettich J, Sutinen P, Imanishi SY, Hofmann K, Palvimo JJ et al (2015) A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly. Nat Struct Mol Biol 22:959–967PubMedCrossRefGoogle Scholar
  42. Elrouby N, Coupland G (2010) Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes. Proc Natl Acad Sci U S A 107:17415–17420PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fachinetti D, Bermejo R, Cocito A, Minardi S, Katou Y, Kanoh Y, Shirahige K, Azvolinsky A, Zakian VA, Foiani M (2010) Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol Cell 39:595–605PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fernández-Cid A, Riera A, Tognetti S, Herrera MC, Samel S, Evrin C, Winkler C, Gardenal E, Uhle S, Speck C (2013) An ORC/Cdc6/MCM2-7 complex is formed in a multistep reaction to serve as a platform for MCM double-hexamer assembly. Mol Cell 50:577–588PubMedCrossRefGoogle Scholar
  45. Fragkos M, Ganier O, Coulombe P, Mechali M (2015) DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 16:360–374PubMedCrossRefGoogle Scholar
  46. Frigola J, Remus D, Mehanna A, Diffley JFX (2013) ATPase-dependent quality control of DNA replication origin licensing. Nature 495:339–343PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8:358–366PubMedCrossRefGoogle Scholar
  48. Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J 28:2992–3004PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gan W, Guan Z, Liu J, Gui T, Shen K, Manley JL, Li X (2011) R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25:2041–2056PubMedPubMedCentralCrossRefGoogle Scholar
  50. Garcia-Rodriguez N, Wong RP, Ulrich HD (2016) Functions of ubiquitin and SUMO in DNA replication and replication stress. Front Genet 7:87PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gibbs-Seymour I, Oka Y, Rajendra E, Weinert BT, Passmore LA, Patel KJ, Olsen JV, Choudhary C, Bekker-Jensen S, Mailand N (2015) Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage. Mol Cell 57:150–164PubMedPubMedCentralCrossRefGoogle Scholar
  53. Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signals 2:ra24Google Scholar
  54. Guo Z, Kanjanapangka J, Liu N, Liu S, Liu C, Wu Z, Wang Y, Loh T, Kowolik C, Jamsen J et al (2012) Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol Cell 47:444–456PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gutiérrez MP, MacAlpine DM (2016) The initiation of DNA replication in eukaryotes. In: Kaplan DL (ed) Chapter 5: chromatin determinants of origin selection and activation. Springer International Publishing, ISBN 978-3-319-24696-3Google Scholar
  56. Hang LE, Lopez CR, Liu X, Williams JM, Chung I, Wei L, Bertuch AA, Zhao X (2014) Regulation of Ku-DNA association by Yku70 C-terminal tail and SUMO modification. J Biol Chem 289:10308–10317PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hang LE, Peng J, Tan W, Szakal B, Menolfi D, Sheng Z, Lobachev K, Branzei D, Feng W, Zhao X (2015) Rtt107 is a multi-functional scaffold supporting replication progression with partner SUMO and ubiquitin ligases. Mol Cell 60:268–279PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hannoun Z, Greenhough S, Jaffray E, Hay RT, Hay DC (2010) Post-translational modification by SUMO. Toxicology 278:288–293PubMedCrossRefGoogle Scholar
  59. Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H (2012) Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev 26:137–150PubMedPubMedCentralCrossRefGoogle Scholar
  60. He X, Riceberg J, Pulukuri SM, Grossman S, Shinde V, Shah P, Brownell JE, Dick L, Newcomb J, Bence N (2015) Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation. PLoS One 10:e0123882PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hendriks IA, D’Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC (2014) Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 21:927–936PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hickey CM, Wilson NR, Hochstrasser M (2012) Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol 13:755–766PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hiraga S-I, Alvino GM, Chang F, Lian H-Y, Sridhar A, Kubota T, BREWER BJ, Weinreich M, Raghuraman MK, Donaldson AD (2014) Rif1 controls DNA replication by directing protein phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev 28:372–383PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hoggard T, Fox C (2016) The initiation of DNA replication in eukaryotes. In: Kaplan DL (ed) Chapter 9: the origin recognition complex in the initiation of DNA replication. Springer International Publishing, ISBN 978-3-319-24696-3Google Scholar
  65. Huang C, Cheng J, Bawa-Khalfe T, Yao X, Chin YE, Yeh ET (2016) SUMOylated ORC2 recruits a histone demethylase to regulate centromeric histone modification and genomic stability. Cell Rep 15:147–157Google Scholar
  66. Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258PubMedCrossRefGoogle Scholar
  67. Ivessa AS, Zhou JQ, Zakian VA (2000) The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100:479–489PubMedCrossRefGoogle Scholar
  68. Jeppsson K, Kanno T, Shirahige K, Sjogren C (2014) The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat Rev Mol Cell Biol 15:601–614PubMedCrossRefGoogle Scholar
  69. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382PubMedCrossRefGoogle Scholar
  70. Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735–744PubMedCrossRefGoogle Scholar
  71. Kang YH, Galal WC, Farina A, Tappin I, Hurwitz J (2012) Properties of the human Cdc45/Mcm2-7/GINS helicase complex and its action with DNA polymerase epsilon in rolling circle DNA synthesis. Proc Natl Acad Sci U S A 109:6042–6047PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kelly TJ, Brown GW (2000) Regulation of chromosome replication. Annu Rev Biochem 69:829–880PubMedCrossRefGoogle Scholar
  73. Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, Tempst P, Gilliland DG, Zhang Y, Kaelin WG Jr (2007) The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128:889–900PubMedCrossRefGoogle Scholar
  74. Kroetz MB, Su D, Hochstrasser M (2009) Essential role of nuclear localization for yeast Ulp2 SUMO protease function. Mol Biol Cell 20:2196–2206PubMedPubMedCentralCrossRefGoogle Scholar
  75. Labib K, Hodgson B (2007) Replication fork barriers: pausing for a break or stalling for time? EMBO Rep 8:346–353PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lamoliatte F, Caron D, Durette C, Mahrouche L, Maroui MA, Caron-Lizotte O, Bonneil E, Chelbi-Alix MK, Thibault P (2014) Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling. Nat Commun 5:5409PubMedCrossRefGoogle Scholar
  77. Lecona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I, Murga M, Munoz J, Mendez J, Fernandez-Capetillo O (2016) USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol 23:270–277PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lee M-T, Bachant J (2009) SUMO modification of DNA topoisomerase II: trying to get a CENse of it all. DNA Repair 8:557–568PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lee J-K, Seo Y-S, Hurwitz J (2003) The Cdc23 (Mcm10) protein is required for the phosphorylation of minichromosome maintenance complex by the Dfp1-Hsk1 kinase. Proc Natl Acad Sci U S A 100:2334–2339PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lee KY, Bang SW, Yoon SW, Lee SH, Yoon JB, Hwang DS (2012) Phosphorylation of ORC2 protein dissociates origin recognition complex from chromatin and replication origins. J Biol Chem 287:11891–11898PubMedPubMedCentralCrossRefGoogle Scholar
  81. Li Y, Araki H (2013) Loading and activation of DNA replicative helicases: the key step of initiation of DNA replication. Genes Cells 18:266–277PubMedPubMedCentralCrossRefGoogle Scholar
  82. Li SJ, Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398:246–251PubMedCrossRefGoogle Scholar
  83. Li SJ, Hochstrasser M (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 20:2367–2377PubMedPubMedCentralCrossRefGoogle Scholar
  84. Li M, Pokharel S, Wang JT, Xu X, Liu Y (2015) RECQ5-dependent SUMOylation of DNA topoisomerase I prevents transcription-associated genome instability. Nat Commun 6:6720PubMedCrossRefGoogle Scholar
  85. Liang YC, Lee CC, Yao YL, Lai CC, Schmitz ML, Yang WM (2016) SUMO5, a novel poly-SUMO isoform, regulates PML nuclear bodies. Sci Rep 6:26509PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lopez-Contreras AJ, Ruppen I, Nieto-Soler M, Murga M, Rodriguez-Acebes S, Remeseiro S, Rodrigo-Perez S, Rojas AM, Méndez J, Muñoz J et al (2013) A proteomic characterization of factors enriched at nascent DNA molecules. Cell Rep 3:1105–1116PubMedPubMedCentralCrossRefGoogle Scholar
  87. Ma L, Aslanian A, Sun H, Jin M, Shi Y, Yates JR 3rd, Hunter T (2014) Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system. Mol Cell Proteomics 13:1659–1675PubMedPubMedCentralCrossRefGoogle Scholar
  88. Mailand N, Gibbs-Seymour I, Bekker-Jensen S (2013) Regulation of PCNA-protein interactions for genome stability. Nat Rev Mol Cell Biol 14:269–282PubMedCrossRefGoogle Scholar
  89. Makhnevych T, Sydorskyy Y, Xin X, Srikumar T, Vizeacoumar FJ, Jeram SM, Li Z, Bahr S, Andrews BJ, Boone C et al (2009) Global map of SUMO function revealed by protein-protein interaction and genetic networks. Mol Cell 33:124–135PubMedCrossRefGoogle Scholar
  90. Mantiero D, Mackenzie A, Donaldson A, Zegerman P (2011) Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 30:4805–4814PubMedPubMedCentralCrossRefGoogle Scholar
  91. Maric M, Maculins T, De Piccoli G, Labib K (2014) Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346:1253596PubMedPubMedCentralCrossRefGoogle Scholar
  92. Masai H, Taniyama C, Ogino K, Matsui E, Kakusho N, Matsumoto S, Kim J-M, Ishii A, Tanaka T, Kobayashi T et al (2006) Phosphorylation of MCM4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J Biol Chem 281:39249–39261PubMedCrossRefGoogle Scholar
  93. Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M (2010) Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 79:89–130PubMedCrossRefGoogle Scholar
  94. Mattarocci S, Shyian M, Lemmens L, Damay P, Altintas DM, Shi T, Bartholomew CR, Thomä NH, Hardy CFJ, Shore D (2014) Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep 7:62–69PubMedCrossRefGoogle Scholar
  95. Montagnoli A, Valsasina B, Brotherton D, Troiani S, Rainoldi S, Tenca P, Molinari A, Santocanale C (2006) Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases. J Biol Chem 281:10281–10290PubMedCrossRefGoogle Scholar
  96. Moreno SP, Gambus A (2015) Regulation of unperturbed DNA replication by ubiquitylation. Gene 6:451–468CrossRefGoogle Scholar
  97. Morohashi H, Maculins T, Labib K (2009) The amino-terminal TPR domain of Dia2 tethers SCF(Dia2) to the replisome progression complex. Curr Biol 19:1943–1949PubMedCrossRefGoogle Scholar
  98. Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103:10236–10241PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32:286–295PubMedCrossRefGoogle Scholar
  100. Muramatsu S, Hirai K, Tak Y-S, Kamimura Y, Araki H (2010) CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol epsilon, and GINS in budding yeast. Genes Dev 24:602–612PubMedPubMedCentralCrossRefGoogle Scholar
  101. Murray JM, Carr AM (2008) Smc5/6: a link between DNA repair and unidirectional replication? Nat Rev Mol Cell Biol 9:177–182PubMedCrossRefGoogle Scholar
  102. Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC (2006) Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 21:581–587PubMedCrossRefGoogle Scholar
  103. Panse VG, Kuster B, Gerstberger T, Hurt E (2003) Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat Cell Biol 5:21–27PubMedCrossRefGoogle Scholar
  104. Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19:123–133PubMedCrossRefGoogle Scholar
  105. Potts PR, Porteus MH, Yu H (2006) Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J 25:3377–3388PubMedPubMedCentralCrossRefGoogle Scholar
  106. Prasanth SG, Prasanth KV, Siddiqui K, Spector DL, Stillman B (2004) Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO J 23:2651–2663PubMedPubMedCentralCrossRefGoogle Scholar
  107. Priego Moreno S, Bailey R, Campion N, Herron S, Gambus A (2014) Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science 346:477–481CrossRefGoogle Scholar
  108. Psakhye I, Jentsch S (2012) Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151:807–820PubMedCrossRefGoogle Scholar
  109. Ragland RL, Patel S, Rivard RS, Smith K, Peters AA, Bielinsky AK, Brown EJ (2013) RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells. Genes Dev 27:2259–2273PubMedPubMedCentralCrossRefGoogle Scholar
  110. Randell JCW, Bowers JL, Rodríguez HK, Bell SP (2006) Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell 21:29–39PubMedCrossRefGoogle Scholar
  111. Remus D, Diffley JFX (2009) Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol 21:771–777PubMedCrossRefGoogle Scholar
  112. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JFX (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139:719–730PubMedPubMedCentralCrossRefGoogle Scholar
  113. Santocanale C, Diffley JF (1996) ORC- and Cdc6-dependent complexes at active and inactive chromosomal replication origins in Saccharomyces cerevisiae. EMBO J 15:6671–6679PubMedPubMedCentralGoogle Scholar
  114. Sarangi P, Zhao X (2015) SUMO-mediated regulation of DNA damage repair and responses. Trends Biochem Sci 40:233–242PubMedPubMedCentralCrossRefGoogle Scholar
  115. Sarangi P, Bartosova Z, Altmannova V, Holland C, Chavdarova M, Lee SE, Krejci L, Zhao X (2014) Sumoylation of the Rad1 nuclease promotes DNA repair and regulates its DNA association. Nucleic Acids Res 42:6393–6404PubMedPubMedCentralCrossRefGoogle Scholar
  116. Sarangi P, Steinacher R, Altmannova V, Fu Q, Paull TT, Krejci L, Whitby MC, Zhao X (2015) Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein. PLoS Genet 11:e1004899PubMedPubMedCentralCrossRefGoogle Scholar
  117. Schimmel J, Eifler K, Sigurethsson JO, Cuijpers SA, Hendriks IA, Verlaan-de Vries M, Kelstrup CD, Francavilla C, Medema RH, Olsen JV et al (2014) Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. Mol Cell 53:1053–1066PubMedCrossRefGoogle Scholar
  118. Schwartz DC, Felberbaum R, Hochstrasser M (2007) The Ulp2 SUMO protease is required for cell division following termination of the DNA damage checkpoint. Mol Cell Biol 27:6948–6961PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sclafani RA, Holzen TM (2007) Cell cycle regulation of DNA replication. Annu Rev Genet 41:237–280PubMedPubMedCentralCrossRefGoogle Scholar
  120. Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP (2006) The mechanisms of PML-nuclear body formation. Mol Cell 24:331–339PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sherwood R, Takahashi TS, Jallepalli PV (2010) Sister acts: coordinating DNA replication and cohesion establishment. Genes Dev 24:2723–2731PubMedPubMedCentralCrossRefGoogle Scholar
  122. Sheu Y-J, Stillman B (2006) Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell 24:101–113PubMedPubMedCentralCrossRefGoogle Scholar
  123. Sheu Y-J, Stillman B (2010) The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 463:113–117PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sivakumar S, Gorbsky GJ (2015) Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol 16:82–94PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sonneville R, Moreno SP, Knebel A, Johnson C, Hastie CJ, Gartner A, Gambus A, Labib K (2017) CUL-2LRR-1 and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis. Nat Cell Biol. https://doi.org/10.1038/ncb3500
  126. Speck C, Chen Z, Li H, Stillman B (2005) ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol 12:965–971PubMedPubMedCentralCrossRefGoogle Scholar
  127. Srikumar T, Lewicki M, Baught B (2013) A global S. cerevisiae small ubiquitin-related modifier (SUMO) system interactome. Mol Syst Biol 9:668–676PubMedPubMedCentralCrossRefGoogle Scholar
  128. Stead K, Aguilar C, Hartman T, Drexel M, Meluh P, Guacci V (2003) Pds5p regulates the maintenance of sister chromatid cohesion and is sumoylated to promote the dissolution of cohesion. J Cell Biol 163:729–741PubMedPubMedCentralCrossRefGoogle Scholar
  129. Sun J, Evrin C, Samel SA, Fernandez-Cid A, Riera A, Kawakami H, Stillman B, Speck C, Li H (2013) Cryo-EM structure of a helicase loading intermediate containing ORC-Cdc6-Cdt1-MCM2-7 bound to DNA. Nat Struct Mol Biol 20:944–951PubMedPubMedCentralCrossRefGoogle Scholar
  130. Takahashi Y, Toh-e A, Kikuchi Y (2001) A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 275:223–231PubMedCrossRefGoogle Scholar
  131. Tammsalu T, Matic I, Jaffray EG, Ibrahim AFM, Tatham MH, Hay RT (2014) Proteome-wide identification of SUMO2 modification sites. Sci Signal 7:rs2PubMedPubMedCentralCrossRefGoogle Scholar
  132. Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H (2007) CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445:328–332PubMedCrossRefGoogle Scholar
  133. Tsuji T, Ficarro SB, Jiang W (2006) Essential role of phosphorylation of MCM2 by Cdc7/Dbf4 in the initiation of DNA replication in mammalian cells. Mol Biol Cell 17:4459–4472PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ulrich HD, Takahashi T (2013) Readers of PCNA modifications. Chromosoma 122:259–274PubMedPubMedCentralCrossRefGoogle Scholar
  135. Vodermaier HC (2004) APC/C and SCF: controlling each other and the cell cycle. Curr Biol 14:R787–R796PubMedCrossRefGoogle Scholar
  136. Vos SM, Tretter EM, Schmidt BH, Berger JM (2011) All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 12:827–841PubMedPubMedCentralCrossRefGoogle Scholar
  137. Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721–751PubMedCrossRefGoogle Scholar
  138. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440PubMedCrossRefGoogle Scholar
  139. Waters LS, Minesinger BK, Wiltrout ME, D’Souza S, Woodruff RV, Walker GC (2009) Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73:134–154PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wei L, Zhao X (2016a) A new MCM modification cycle regulates DNA replication initiation. Nat Struct Mol Biol 23:209–216PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wei L, Zhao X (2016b) The initiation of DNA replication in eukaryotes. In: Kaplan DL (ed) Chapter 18: role of posttranslational modifications in replication initiation. Springer International Publishing, ISBN 978-3-319-24696-3Google Scholar
  142. Wotton D, Shore D (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11:748–760PubMedCrossRefGoogle Scholar
  143. Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H (2012) Rif1 regulates the replication timing domains on the human genome. EMBO J 31:3667–3677PubMedPubMedCentralCrossRefGoogle Scholar
  144. Yu B, Swatkoski S, Holly A, Lee LC, Giroux V, Lee CS, Hsu D, Smith JL, Yuen G, Yue J et al (2015) Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9. Proc Natl Acad Sci U S A 112:E1724–E1733PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zegerman P, Diffley JFX (2007) Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445:281–285PubMedCrossRefGoogle Scholar
  146. Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci U S A 102:4777–4782PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Molecular Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Louis V. Gerstner Jr. Graduate School of Biomedical SciencesMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations