Advertisement

The Temporal Regulation of S Phase Proteins During G1

  • Gavin D. Grant
  • Jeanette G. CookEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)

Abstract

Successful DNA replication requires intimate coordination with cell-cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell-cycle entry and cell-cycle progression.

Keywords

Cell cycle Origin licensing RB E2F Cyclin CDK APC/C Quiescence DREAM complex 

Notes

Acknowledgements

We thank members of the Cook lab for feedback and discussion about the manuscript and DBG for critical reading of the manuscript. This work was supported by funding to G.D.G. from the ITCMS training grant (T32CA009156) and to J.G.C. from the National Institutes of Health NIGMS (R01GM102413) and the W.M. Keck Foundation.

Conflicts of Interest

The authors have no conflicts of interest.

References

  1. Ait-Si-Ali S, Polesskaya A, Filleur S, Ferreira R, Duquet A, Robin P, Vervish A, Trouche D, Cabon F, Harel-Bellan A (2000) CBP/p300 histone acetyl-transferase activity is important for the G1/S transition. Oncogene 19(20):2430–2437. https://doi.org/10.1038/sj.onc.1203562 PubMedCrossRefGoogle Scholar
  2. Alt JR, Cleveland JL, Hannink M, Diehl JA (2000) Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev 14(24):3102–3114PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arentson E, Faloon P, Seo J, Moon E, Studts JM, Fremont DH, Choi K (2002) Oncogenic potential of the DNA replication licensing protein CDT1. Oncogene 21(8):1150–1158. https://doi.org/10.1038/sj.onc.1205175 PubMedCrossRefGoogle Scholar
  4. Avni D, Yang H, Martelli F, Hofmann F, ElShamy WM, Ganesan S, Scully R, Livingston DM (2003) Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Mol Cell 12(3):735–746PubMedCrossRefGoogle Scholar
  5. Ayuda-Duran P, Devesa F, Gomes F, Sequeira-Mendes J, Avila-Zarza C, Gomez M, Calzada A (2014) The CDK regulators Cdh1 and Sic1 promote efficient usage of DNA replication origins to prevent chromosomal instability at a chromosome arm. Nucleic Acids Res 42(11):7057–7068. https://doi.org/10.1093/nar/gku313 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bao GC, Wang JG, Jong A (2006) Increased p21 expression and complex formation with cyclin E/CDK2 in retinoid-induced pre-B lymphoma cell apoptosis. FEBS Lett 580(15):3687–3693. https://doi.org/10.1016/j.febslet.2006.05.052 PubMedCrossRefGoogle Scholar
  7. Barbash O, Egan E, Pontano LL, Kosak J, Diehl JA (2009) Lysine 269 is essential for cyclin D1 ubiquitylation by the SCF(Fbx4/alphaB-crystallin) ligase and subsequent proteasome-dependent degradation. Oncogene 28(49):4317–4325. https://doi.org/10.1038/onc.2009.287 PubMedCrossRefGoogle Scholar
  8. Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163(4148):676PubMedCrossRefGoogle Scholar
  9. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M (2004) Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428(6979):190–193. https://doi.org/10.1038/nature02330 PubMedCrossRefGoogle Scholar
  10. Bassermann F, Eichner R, Pagano M (2014) The ubiquitin proteasome system – implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta 1843(1):150–162. https://doi.org/10.1016/j.bbamcr.2013.02.028 PubMedCrossRefGoogle Scholar
  11. Bell SD (2012) Archaeal orc1/cdc6 proteins. Subcell Biochem 62:59–69. https://doi.org/10.1007/978-94-007-4572-8_4 PubMedCrossRefGoogle Scholar
  12. Bell SD, Botchan MR (2013) The minichromosome maintenance replicative helicase. Cold Spring Harb Perspect Biol 5(11):a012807. https://doi.org/10.1101/cshperspect.a012807 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bell SP, Kaguni JM (2013) Helicase loading at chromosomal origins of replication. Cold Spring Harb Perspect Biol 5(6). https://doi.org/10.1101/cshperspect.a010124
  14. Benedict WF, Murphree AL, Banerjee A, Spina CA, Sparkes MC, Sparkes RS (1983) Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science 219(4587):973–975PubMedCrossRefGoogle Scholar
  15. Blagosklonny MV, Pardee AB (2002) The restriction point of the cell cycle. Cell Cycle 1(2):103–110PubMedCrossRefGoogle Scholar
  16. Bochman ML, Schwacha A (2008) The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31(2):287–293. https://doi.org/10.1016/j.molcel.2008.05.020 PubMedCrossRefGoogle Scholar
  17. Bowers JL, Randell JC, Chen S, Bell SP (2004) ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell 16(6):967–978. https://doi.org/10.1016/j.molcel.2004.11.038 PubMedCrossRefGoogle Scholar
  18. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391(6667):597–601. https://doi.org/10.1038/35404 PubMedCrossRefGoogle Scholar
  19. Brown VD, Phillips RA, Gallie BL (1999) Cumulative effect of phosphorylation of pRB on regulation of E2F activity. Mol Cell Biol 19(5):3246–3256PubMedPubMedCentralCrossRefGoogle Scholar
  20. Burke JR, Deshong AJ, Pelton JG, Rubin SM (2010) Phosphorylation-induced conformational changes in the retinoblastoma protein inhibit E2F transactivation domain binding. J Biol Chem 285(21):16286–16293. https://doi.org/10.1074/jbc.M110.108167 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Burke JR, Hura GL, Rubin SM (2012) Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control. Genes Dev 26(11):1156–1166. https://doi.org/10.1101/gad.189837.112 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Burke JR, Liban TJ, Restrepo T, Lee HW, Rubin SM (2014) Multiple mechanisms for E2F binding inhibition by phosphorylation of the retinoblastoma protein C-terminal domain. J Mol Biol 426(1):245–255. https://doi.org/10.1016/j.jmb.2013.09.031 PubMedCrossRefGoogle Scholar
  23. Burkhart DL, Wirt SE, Zmoos AF, Kareta MS, Sage J (2010) Tandem E2F binding sites in the promoter of the p107 cell cycle regulator control p107 expression and its cellular functions. PLoS Genet 6(6):e1001003. https://doi.org/10.1371/journal.pgen.1001003 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cappell SD, Chung M, Jaimovich A, Spencer SL, Meyer T (2016) Irreversible APC(Cdh1) inactivation underlies the point of no return for cell-cycle entry. Cell 166(1):167–180. https://doi.org/10.1016/j.cell.2016.05.077 PubMedCrossRefGoogle Scholar
  25. Chandrasekaran S, Tan TX, Hall JR, Cook JG (2011) Stress-stimulated mitogen-activated protein kinases control the stability and activity of the Cdt1 DNA replication licensing factor. Mol Cell Biol 31(22):4405–4416. https://doi.org/10.1128/MCB.06163-11 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen J, Jackson PK, Kirschner MW, Dutta A (1995) Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA. Nature 374(6520):386–388. https://doi.org/10.1038/374386a0 PubMedCrossRefGoogle Scholar
  27. Chen S, de Vries MA, Bell SP (2007) Orc6 is required for dynamic recruitment of Cdt1 during repeated Mcm2-7 loading. Genes Dev 21(22):2897–2907. https://doi.org/10.1101/gad.1596807 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen JY, Lin JR, Tsai FC, Meyer T (2013) Dosage of Dyrk1a shifts cells within a p21-cyclin D1 signaling map to control the decision to enter the cell cycle. Mol Cell 52(1):87–100. https://doi.org/10.1016/j.molcel.2013.09.009 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ (1999) The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18(6):1571–1583. https://doi.org/10.1093/emboj/18.6.1571 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Choi YJ, Anders L (2014) Signaling through cyclin D-dependent kinases. Oncogene 33(15):1890–1903. https://doi.org/10.1038/onc.2013.137 PubMedCrossRefGoogle Scholar
  31. Choudhury R, Bonacci T, Arceci A, Lahiri D, Mills CA, Kernan JL, Branigan TB, DeCaprio JA, Burke DJ, Emanuele MJ (2016) APC/C and SCF(cyclin F) constitute a reciprocal feedback circuit controlling S-phase entry. Cell Rep 16(12):3359–3372. https://doi.org/10.1016/j.celrep.2016.08.058 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cicchillitti L, Fasanaro P, Biglioli P, Capogrossi MC, Martelli F (2003) Oxidative stress induces protein phosphatase 2A-dependent dephosphorylation of the pocket proteins pRb, p107, and p130. J Biol Chem 278(21):19509–19517. https://doi.org/10.1074/jbc.M300511200 PubMedCrossRefGoogle Scholar
  33. Clarey MG, Erzberger JP, Grob P, Leschziner AE, Berger JM, Nogales E, Botchan M (2006) Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex. Nat Struct Mol Biol 13(8):684–690. https://doi.org/10.1038/nsmb1121 PubMedCrossRefGoogle Scholar
  34. Classon M, Harlow E (2002) The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2(12):910–917. https://doi.org/10.1038/nrc950 PubMedCrossRefGoogle Scholar
  35. Clurman BE, Sheaff RJ, Thress K, Groudine M, Roberts JM (1996) Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev 10(16):1979–1990PubMedCrossRefGoogle Scholar
  36. Cobrinik D, Whyte P, Peeper DS, Jacks T, Weinberg RA (1993) Cell cycle-specific association of E2F with the p130 E1A-binding protein. Genes Dev 7(12A):2392–2404PubMedCrossRefGoogle Scholar
  37. Cobrinik D, Lee MH, Hannon G, Mulligan G, Bronson RT, Dyson N, Harlow E, Beach D, Weinberg RA, Jacks T (1996) Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev 10(13):1633–1644PubMedCrossRefGoogle Scholar
  38. Cocker JH, Piatti S, Santocanale C, Nasmyth K, Diffley JF (1996) An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379(6561):180–182. https://doi.org/10.1038/379180a0 PubMedCrossRefGoogle Scholar
  39. Coleman KE, Grant GD, Haggerty RA, Brantley K, Shibata E, Workman BD, Dutta A, Varma D, Purvis JE, Cook JG (2015) Sequential replication-coupled destruction at G1/S ensures genome stability. Genes Dev 29(16):1734–1746. https://doi.org/10.1101/gad.263731.115 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4(3):e83. https://doi.org/10.1371/journal.pbio.0040083 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Connell-Crowley L, Harper JW, Goodrich DW (1997) Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol Biol Cell 8(2):287–301PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cook JG, Chasse DA, Nevins JR (2004) The regulated association of Cdt1 with minichromosome maintenance proteins and Cdc6 in mammalian cells. J Biol Chem 279(10):9625–9633. https://doi.org/10.1074/jbc.M311933200 PubMedCrossRefGoogle Scholar
  43. Coulombe P, Gregoire D, Tsanov N, Mechali M (2013) A spontaneous Cdt1 mutation in 129 mouse strains reveals a regulatory domain restraining replication licensing. Nat Commun 4:2065. https://doi.org/10.1038/ncomms3065 PubMedCrossRefGoogle Scholar
  44. Coverley D, Laman H, Laskey RA (2002) Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nat Cell Biol 4(7):523–528. https://doi.org/10.1038/ncb813 PubMedCrossRefGoogle Scholar
  45. Davidson IF, Li A, Blow JJ (2006) Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision. Mol Cell 24(3):433–443. https://doi.org/10.1016/j.molcel.2006.09.010 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Degen JL, Neubauer MG, Degen SJ, Seyfried CE, Morris DR (1983) Regulation of protein synthesis in mitogen-activated bovine lymphocytes. Analysis of actin-specific and total mRNA accumulation and utilization. J Biol Chem 258(20):12153–12162PubMedGoogle Scholar
  47. DeGregori J, Kowalik T, Nevins JR (1995) Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol 15(8):4215–4224PubMedPubMedCentralCrossRefGoogle Scholar
  48. DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR (1997) Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci U S A 94(14):7245–7250PubMedPubMedCentralCrossRefGoogle Scholar
  49. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105(31):10762–10767. https://doi.org/10.1073/pnas.0805139105 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Devoto SH, Mudryj M, Pines J, Hunter T, Nevins JR (1992) A cyclin A-protein kinase complex possesses sequence-specific DNA binding activity: p33cdk2 is a component of the E2F-cyclin A complex. Cell 68(1):167–176PubMedCrossRefGoogle Scholar
  51. Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12(22):3499–3511PubMedPubMedCentralCrossRefGoogle Scholar
  52. Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, Ye Z, Kim A, Rajagopal N, Xie W, Diao Y, Liang J, Zhao H, Lobanenkov VV, Ecker JR, Thomson JA, Ren B (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518(7539):331–336. https://doi.org/10.1038/nature14222 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Duncker BP, Chesnokov IN, McConkey BJ (2009) The origin recognition complex protein family. Genome Biol 10(3):214. https://doi.org/10.1186/gb-2009-10-3-214 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Duzdevich D, Warner MD, Ticau S, Ivica NA, Bell SP, Greene EC (2015) The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. Mol Cell 58(3):483–494. https://doi.org/10.1016/j.molcel.2015.03.017 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ekholm-Reed S, Mendez J, Tedesco D, Zetterberg A, Stillman B, Reed SI (2004) Deregulation of cyclin E in human cells interferes with prereplication complex assembly. J Cell Biol 165(6):789–800. https://doi.org/10.1083/jcb.200404092 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Erlandsson F, Linnman C, Ekholm S, Bengtsson E, Zetterberg A (2000) A detailed analysis of cyclin A accumulation at the G(1)/S border in normal and transformed cells. Exp Cell Res 259(1):86–95. https://doi.org/10.1006/excr.2000.4889 PubMedCrossRefGoogle Scholar
  57. Eser U, Falleur-Fettig M, Johnson A, Skotheim JM (2011) Commitment to a cellular transition precedes genome-wide transcriptional change. Mol Cell 43(4):515–527. https://doi.org/10.1016/j.molcel.2011.06.024 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 106(48):20240–20245. https://doi.org/10.1073/pnas.0911500106 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ferreira R, Magnaghi-Jaulin L, Robin P, Harel-Bellan A, Trouche D (1998) The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase. Proc Natl Acad Sci U S A 95(18):10493–10498PubMedPubMedCentralCrossRefGoogle Scholar
  60. Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin WG Jr, Livingston DM, Orkin SH, Greenberg ME (1996) E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85(4):549–561PubMedCrossRefGoogle Scholar
  61. Fornoni A, Pileggi A, Molano RD, Sanabria NY, Tejada T, Gonzalez-Quintana J, Ichii H, Inverardi L, Ricordi C, Pastori RL (2008) Inhibition of c-jun N terminal kinase (JNK) improves functional beta cell mass in human islets and leads to AKT and glycogen synthase kinase-3 (GSK-3) phosphorylation. Diabetologia 51(2):298–308. https://doi.org/10.1007/s00125-007-0889-4 PubMedCrossRefGoogle Scholar
  62. Fotedar R, Fitzgerald P, Rousselle T, Cannella D, Doree M, Messier H, Fotedar A (1996) p21 contains independent binding sites for cyclin and cdk2: both sites are required to inhibit cdk2 kinase activity. Oncogene 12(10):2155–2164PubMedGoogle Scholar
  63. Frigola J, Remus D, Mehanna A, Diffley JF (2013) ATPase-dependent quality control of DNA replication origin licensing. Nature 495(7441):339–343. https://doi.org/10.1038/nature11920 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Frolov MV, Dyson NJ (2004) Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J Cell Sci 117(Pt 11):2173–2181. https://doi.org/10.1242/jcs.01227 PubMedCrossRefGoogle Scholar
  65. Fukushima H, Ogura K, Wan L, Lu Y, Li V, Gao D, Liu P, Lau AW, Wu T, Kirschner MW, Inuzuka H, Wei W (2013) SCF-mediated Cdh1 degradation defines a negative feedback system that coordinates cell-cycle progression. Cell Rep 4(4):803–816. https://doi.org/10.1016/j.celrep.2013.07.031 PubMedCrossRefGoogle Scholar
  66. Gambus A, Khoudoli GA, Jones RC, Blow JJ (2011) MCM2-7 form double hexamers at licensed origins in Xenopus egg extract. J Biol Chem 286(13):11855–11864. https://doi.org/10.1074/jbc.M110.199521 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Ge XQ, Blow JJ (2010) Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J Cell Biol 191(7):1285–1297. https://doi.org/10.1083/jcb.201007074 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ge XQ, Jackson DA, Blow JJ (2007) Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 21(24):3331–3341. https://doi.org/10.1101/gad.457807 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD, Roberts JM, Kaldis P, Clurman BE, Sicinski P (2007) Kinase-independent function of cyclin E. Mol Cell 25(1):127–139. https://doi.org/10.1016/j.molcel.2006.11.029 PubMedCrossRefGoogle Scholar
  70. Gillespie PJ, Li A, Blow JJ (2001) Reconstitution of licensed replication origins on Xenopus sperm nuclei using purified proteins. BMC Biochem 2:15PubMedPubMedCentralCrossRefGoogle Scholar
  71. Grant GD, Brooks L 3rd, Zhang X, Mahoney JM, Martyanov V, Wood TA, Sherlock G, Cheng C, Whitfield ML (2013) Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell 24(23):3634–3650. https://doi.org/10.1091/mbc.E13-05-0264 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Green BM, Li JJ (2005) Loss of rereplication control in Saccharomyces cerevisiae results in extensive DNA damage. Mol Biol Cell 16(1):421–432. https://doi.org/10.1091/mbc.E04-09-0833 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Gros J, Kumar C, Lynch G, Yadav T, Whitehouse I, Remus D (2015) Post-licensing specification of eukaryotic replication origins by facilitated Mcm2-7 sliding along DNA. Mol Cell 60(5):797–807. https://doi.org/10.1016/j.molcel.2015.10.022 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Guiley KZ, Liban TJ, Felthousen JG, Ramanan P, Litovchick L, Rubin SM (2015) Structural mechanisms of DREAM complex assembly and regulation. Genes Dev 29(9):961–974. https://doi.org/10.1101/gad.257568.114 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hannan KM, Hannan RD, Smith SD, Jefferson LS, Lun M, Rothblum LI (2000) Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1. Oncogene 19(43):4988–4999. https://doi.org/10.1038/sj.onc.1203875 PubMedCrossRefGoogle Scholar
  76. Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC (1999) Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98(6):859–869PubMedCrossRefGoogle Scholar
  77. Helin K (1998) Regulation of cell proliferation by the E2F transcription factors. Curr Opin Genet Dev 8(1):28–35PubMedCrossRefGoogle Scholar
  78. Hemerly AS, Prasanth SG, Siddiqui K, Stillman B (2009) Orc1 controls centriole and centrosome copy number in human cells. Science 323(5915):789–793. https://doi.org/10.1126/science.1166745 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, Fussner E, Bazett-Jones DP, Plath K, Dalton S, Rathjen PD, Gilbert DM (2010) Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res 20(2):155–169. https://doi.org/10.1101/gr.099796.109 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hofmann JF, Beach D (1994) cdt1 is an essential target of the Cdc10/Sct1 transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J 13(2):425–434PubMedPubMedCentralGoogle Scholar
  81. Hossain M, Stillman B (2012) Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication. Genes Dev 26(16):1797–1810. https://doi.org/10.1101/gad.197178.112 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Hurford RK Jr, Cobrinik D, Lee MH, Dyson N (1997) pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev 11(11):1447–1463PubMedCrossRefGoogle Scholar
  83. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143(7):1174–1189. https://doi.org/10.1016/j.cell.2010.12.001 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ibarra A, Schwob E, Mendez J (2008) Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc Natl Acad Sci U S A 105(26):8956–8961. https://doi.org/10.1073/pnas.0803978105 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Jee J, Mizuno T, Kamada K, Tochio H, Chiba Y, Yanagi K, Yasuda G, Hiroaki H, Hanaoka F, Shirakawa M (2010) Structure and mutagenesis studies of the C-terminal region of licensing factor Cdt1 enable the identification of key residues for binding to replicative helicase Mcm proteins. J Biol Chem 285(21):15931–15940. https://doi.org/10.1074/jbc.M109.075333 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Johnson DG, Ohtani K, Nevins JR (1994) Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev 8(13):1514–1525PubMedCrossRefGoogle Scholar
  87. Jorgensen S, Schotta G, Sorensen CS (2013) Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res 41(5):2797–2806. https://doi.org/10.1093/nar/gkt012 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kaida A, Sawai N, Sakaguchi K, Miura M (2011) Fluorescence kinetics in HeLa cells after treatment with cell cycle arrest inducers visualized with Fucci (fluorescent ubiquitination-based cell cycle indicator). Cell Biol Int 35(4):359–363. https://doi.org/10.1042/CBI20100643 PubMedCrossRefGoogle Scholar
  89. Katoh M, Katoh M (2006) Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biol Ther 5(9):1059–1064PubMedCrossRefGoogle Scholar
  90. Kawasaki Y, Kim HD, Kojima A, Seki T, Sugino A (2006) Reconstitution of Saccharomyces cerevisiae prereplicative complex assembly in vitro. Genes Cells 11(7):745–756. https://doi.org/10.1111/j.1365-2443.2006.00975.x PubMedCrossRefGoogle Scholar
  91. Kaye FJ, Harbour JW (2004) For whom the bell tolls: susceptibility to common adult cancers in retinoblastoma survivors. J Natl Cancer Inst 96(5):342–343PubMedCrossRefGoogle Scholar
  92. Ke PY, Kuo YY, Hu CM, Chang ZF (2005) Control of dTTP pool size by anaphase promoting complex/cyclosome is essential for the maintenance of genetic stability. Genes Dev 19(16):1920–1933. https://doi.org/10.1101/gad.1322905 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ke PY, Hu CM, Chang YC, Chang ZF (2007) Hiding human thymidine kinase 1 from APC/C-mediated destruction by thymidine binding. FASEB J 21(4):1276–1284. https://doi.org/10.1096/fj.06-7272com PubMedCrossRefGoogle Scholar
  94. Kelly TJ, Martin GS, Forsburg SL, Stephen RJ, Russo A, Nurse P (1993) The fission yeast cdc18+ gene product couples S phase to START and mitosis. Cell 74(2):371–382PubMedCrossRefGoogle Scholar
  95. Khayrutdinov BI, Bae WJ, Yun YM, Lee JH, Tsuyama T, Kim JJ, Hwang E, Ryu KS, Cheong HK, Cheong C, Ko JS, Enomoto T, Karplus PA, Guntert P, Tada S, Jeon YH, Cho Y (2009) Structure of the Cdt1 C-terminal domain: conservation of the winged helix fold in replication licensing factors. Protein Sci 18(11):2252–2264. https://doi.org/10.1002/pro.236 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68(4):820–823PubMedPubMedCentralCrossRefGoogle Scholar
  97. Koziczak M, Hynes NE (2004) Cooperation between fibroblast growth factor receptor-4 and ErbB2 in regulation of cyclin D1 translation. J Biol Chem 279(48):50004–50011. https://doi.org/10.1074/jbc.M404252200 PubMedCrossRefGoogle Scholar
  98. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11(7):847–862PubMedCrossRefGoogle Scholar
  99. Lee DG, Bell SP (2000) ATPase switches controlling DNA replication initiation. Curr Opin Cell Biol 12(3):280–285PubMedCrossRefGoogle Scholar
  100. Lees JA, Buchkovich KJ, Marshak DR, Anderson CW, Harlow E (1991) The retinoblastoma protein is phosphorylated on multiple sites by human cdc2. EMBO J 10(13):4279–4290PubMedPubMedCentralGoogle Scholar
  101. Lents NH, Gorges LL, Baldassare JJ (2006) Reverse mutational analysis reveals threonine-373 as a potentially sufficient phosphorylation site for inactivation of the retinoblastoma tumor suppressor protein (pRB). Cell Cycle 5(15):1699–1707. https://doi.org/10.4161/cc.5.15.3126 PubMedCrossRefGoogle Scholar
  102. Leone G, DeGregori J, Yan Z, Jakoi L, Ishida S, Williams RS, Nevins JR (1998) E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev 12(14):2120–2130PubMedPubMedCentralCrossRefGoogle Scholar
  103. Levine EM, Becker Y, Boone CW, Eagle H (1965) Contact inhibition, macromolecular synthesis, and polyribosomes in cultured human diploid fibroblasts. Proc Natl Acad Sci U S A 53:350–356PubMedPubMedCentralCrossRefGoogle Scholar
  104. Li N, Zhai Y, Zhang Y, Li W, Yang M, Lei J, Tye BK, Gao N (2015) Structure of the eukaryotic MCM complex at 3.8 A. Nature 524(7564):186–191. https://doi.org/10.1038/nature14685 PubMedCrossRefGoogle Scholar
  105. Liontos M, Koutsami M, Sideridou M, Evangelou K, Kletsas D, Levy B, Kotsinas A, Nahum O, Zoumpourlis V, Kouloukoussa M, Lygerou Z, Taraviras S, Kittas C, Bartkova J, Papavassiliou AG, Bartek J, Halazonetis TD, Gorgoulis VG (2007) Deregulated overexpression of hCdt1 and hCdc6 promotes malignant behavior. Cancer Res 67(22):10899–10909. https://doi.org/10.1158/0008-5472.CAN-07-2837 PubMedCrossRefGoogle Scholar
  106. Litovchick L, Chestukhin A, DeCaprio JA (2004) Glycogen synthase kinase 3 phosphorylates RBL2/p130 during quiescence. Mol Cell Biol 24(20):8970–8980. https://doi.org/10.1128/MCB.24.20.8970-8980.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Litovchick L, Sadasivam S, Florens L, Zhu X, Swanson SK, Velmurugan S, Chen R, Washburn MP, Liu XS, DeCaprio JA (2007) Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol Cell 26(4):539–551. https://doi.org/10.1016/j.molcel.2007.04.015 PubMedCrossRefGoogle Scholar
  108. Litovchick L, Florens LA, Swanson SK, Washburn MP, DeCaprio JA (2011) DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly. Genes Dev 25(8):801–813. https://doi.org/10.1101/gad.2034211 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Liu P, Slater DM, Lenburg M, Nevis K, Cook JG, Vaziri C (2009) Replication licensing promotes cyclin D1 expression and G1 progression in untransformed human cells. Cell Cycle 8(1):125–136. https://doi.org/10.4161/cc.8.1.7528 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Lu J, Li F, Murphy CS, Davidson MW, Gilbert DM (2010) G2 phase chromatin lacks determinants of replication timing. J Cell Biol 189(6):967–980. https://doi.org/10.1083/jcb.201002002 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lukas C, Sorensen CS, Kramer E, Santoni-Rugiu E, Lindeneg C, Peters JM, Bartek J, Lukas J (1999) Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401(6755):815–818. https://doi.org/10.1038/44611 PubMedCrossRefGoogle Scholar
  112. Lunn CL, Chrivia JC, Baldassare JJ (2010) Activation of Cdk2/cyclin E complexes is dependent on the origin of replication licensing factor Cdc6 in mammalian cells. Cell Cycle 9(22):4533–4541. https://doi.org/10.4161/cc.9.22.13789 PubMedCrossRefGoogle Scholar
  113. Luo Y, Hurwitz J, Massague J (1995) Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature 375(6527):159–161. https://doi.org/10.1038/375159a0 PubMedCrossRefGoogle Scholar
  114. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus Musculus L.) Nature 190:372–373PubMedCrossRefGoogle Scholar
  115. Magenta A, Fasanaro P, Romani S, Di Stefano V, Capogrossi MC, Martelli F (2008) Protein phosphatase 2A subunit PR70 interacts with pRb and mediates its dephosphorylation. Mol Cell Biol 28(2):873–882. https://doi.org/10.1128/MCB.00480-07 PubMedCrossRefGoogle Scholar
  116. Mailand N, Diffley JF (2005) CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122(6):915–926. https://doi.org/10.1016/j.cell.2005.08.013 PubMedCrossRefGoogle Scholar
  117. Manchado E, Eguren M, Malumbres M (2010) The anaphase-promoting complex/cyclosome (APC/C): cell-cycle-dependent and -independent functions. Biochem Soc Trans 38(Pt 1):65–71. https://doi.org/10.1042/BST0380065 PubMedCrossRefGoogle Scholar
  118. Marti A, Wirbelauer C, Scheffner M, Krek W (1999) Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1(1):14–19. https://doi.org/10.1038/8984 PubMedCrossRefGoogle Scholar
  119. Matson JP, Cook JG (2017) Cell cycle proliferation decisions: the impact of single cell analyses. FEBS J 284(3):362–375. https://doi.org/10.1111/febs.13898 PubMedCrossRefGoogle Scholar
  120. McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93(6):1043–1053PubMedCrossRefGoogle Scholar
  121. Mendez J, Stillman B (2000) Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 20(22):8602–8612PubMedPubMedCentralCrossRefGoogle Scholar
  122. Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10(1):105–116. https://doi.org/10.1016/j.devcel.2005.10.017 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Moberg K, Starz MA, Lees JA (1996) E2F-4 switches from p130 to p107 and pRB in response to cell cycle reentry. Mol Cell Biol 16(4):1436–1449PubMedPubMedCentralCrossRefGoogle Scholar
  124. Moreno A, Carrington JT, Albergante L, Al Mamun M, Haagensen EJ, Komseli ES, Gorgoulis VG, Newman TJ, Blow JJ (2016) Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1603252113
  125. Morishima A, Grumbach MM, Taylor JH (1962) Asynchronous duplication of human chromosomes and the origin of sex chromatin. Proc Natl Acad Sci U S A 48:756–763PubMedPubMedCentralCrossRefGoogle Scholar
  126. Muller GA, Quaas M, Schumann M, Krause E, Padi M, Fischer M, Litovchick L, DeCaprio JA, Engeland K (2012) The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes. Nucleic Acids Res 40(4):1561–1578. https://doi.org/10.1093/nar/gkr793 PubMedCrossRefGoogle Scholar
  127. Muller GA, Stangner K, Schmitt T, Wintsche A, Engeland K (2016) Timing of transcription during the cell cycle: protein complexes binding to E2F, E2F/CLE, CDE/CHR, or CHR promoter elements define early and late cell cycle gene expression. Oncotarget. 10.18632/oncotarget.10888
  128. Murphree AL, Benedict WF (1984) Retinoblastoma: clues to human oncogenesis. Science 223(4640):1028–1033PubMedCrossRefGoogle Scholar
  129. Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF (2014) Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. elife 3. doi:https://doi.org/10.7554/eLife.02872
  130. Nevis KR, Cordeiro-Stone M, Cook JG (2009) Origin licensing and p53 status regulate Cdk2 activity during G(1). Cell Cycle 8(12):1952–1963. https://doi.org/10.4161/cc.8.12.8811 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Nishitani H, Lygerou Z (2004) DNA replication licensing. Front Biosci 9:2115–2132PubMedCrossRefGoogle Scholar
  132. Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C, Tsurimoto T, Nakayama KI, Nakayama K, Fujita M, Lygerou Z, Nishimoto T (2006) Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 25(5):1126–1136. https://doi.org/10.1038/sj.emboj.7601002 PubMedPubMedCentralCrossRefGoogle Scholar
  133. O'Connor ML, Xiang D, Shigdar S, Macdonald J, Li Y, Wang T, Pu C, Wang Z, Qiao L, Duan W (2014) Cancer stem cells: a contentious hypothesis now moving forward. Cancer Lett 344(2):180–187. https://doi.org/10.1016/j.canlet.2013.11.012 PubMedCrossRefGoogle Scholar
  134. Ohtani K, DeGregori J, Leone G, Herendeen DR, Kelly TJ, Nevins JR (1996) Expression of the HsOrc1 gene, a human ORC1 homolog, is regulated by cell proliferation via the E2F transcription factor. Mol Cell Biol 16(12):6977–6984PubMedPubMedCentralCrossRefGoogle Scholar
  135. Ohtani K, Tsujimoto A, Ikeda M, Nakamura M (1998) Regulation of cell growth-dependent expression of mammalian CDC6 gene by the cell cycle transcription factor E2F. Oncogene 17(14):1777–1785. https://doi.org/10.1038/sj.onc.1202105 PubMedCrossRefGoogle Scholar
  136. Ohtani K, Iwanaga R, Nakamura M, Ikeda M, Yabuta N, Tsuruga H, Nojima H (1999) Cell growth-regulated expression of mammalian MCM5 and MCM6 genes mediated by the transcription factor E2F. Oncogene 18(14):2299–2309. https://doi.org/10.1038/sj.onc.1202544 PubMedCrossRefGoogle Scholar
  137. Pardee AB (1974) A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 71(4):1286–1290PubMedPubMedCentralCrossRefGoogle Scholar
  138. Paternot S, Bockstaele L, Bisteau X, Kooken H, Coulonval K, Roger PP (2010) Rb inactivation in cell cycle and cancer: the puzzle of highly regulated activating phosphorylation of CDK4 versus constitutively active CDK-activating kinase. Cell Cycle 9(4):689–699. https://doi.org/10.4161/cc.9.4.10611 PubMedCrossRefGoogle Scholar
  139. Pauklin S, Vallier L (2013) The cell-cycle state of stem cells determines cell fate propensity. Cell 155(1):135–147. https://doi.org/10.1016/j.cell.2013.08.031 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Petersen BO, Wagener C, Marinoni F, Kramer ER, Melixetian M, Lazzerini Denchi E, Gieffers C, Matteucci C, Peters JM, Helin K (2000) Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1. Genes Dev 14(18):2330–2343PubMedPubMedCentralCrossRefGoogle Scholar
  141. Piatti S, Lengauer C, Nasmyth K (1995) Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a ‘reductional’ anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J 14(15):3788–3799PubMedPubMedCentralGoogle Scholar
  142. Prasanth SG, Prasanth KV, Stillman B (2002) Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science 297(5583):1026–1031. https://doi.org/10.1126/science.1072802 PubMedCrossRefGoogle Scholar
  143. Prasanth SG, Prasanth KV, Siddiqui K, Spector DL, Stillman B (2004) Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO J 23(13):2651–2663. https://doi.org/10.1038/sj.emboj.7600255 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Prasanth SG, Shen Z, Prasanth KV, Stillman B (2010) Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc Natl Acad Sci U S A 107(34):15093–15098. https://doi.org/10.1073/pnas.1009945107 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Pruitt SC, Bailey KJ, Freeland A (2007) Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer. Stem Cells 25(12):3121–3132. https://doi.org/10.1634/stemcells.2007-0483 PubMedCrossRefGoogle Scholar
  146. Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G (2012) p53 dynamics control cell fate. Science 336(6087):1440–1444. https://doi.org/10.1126/science.1218351 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Randell JC, Bowers JL, Rodriguez HK, Bell SP (2006) Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell 21(1):29–39. https://doi.org/10.1016/j.molcel.2005.11.023 PubMedCrossRefGoogle Scholar
  148. Raschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, Griffith JD, Ellenberger TE, Scharer OD, Walter JC (2008) Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134(6):969–980. https://doi.org/10.1016/j.cell.2008.08.030 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Remus D, Diffley JF (2009) Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol 21(6):771–777. https://doi.org/10.1016/j.ceb.2009.08.002 PubMedCrossRefGoogle Scholar
  150. Resnitzky D, Reed SI (1995) Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol Cell Biol 15(7):3463–3469PubMedPubMedCentralCrossRefGoogle Scholar
  151. Rowles A, Tada S, Blow JJ (1999) Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins. J Cell Sci 112(Pt 12):2011–2018PubMedPubMedCentralGoogle Scholar
  152. Rumman M, Dhawan J, Kassem M (2015) Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells 33(10):2903–2912. https://doi.org/10.1002/stem.2056 PubMedCrossRefGoogle Scholar
  153. Sadasivam S, Duan S, DeCaprio JA (2012) The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes Dev 26(5):474–489. https://doi.org/10.1101/gad.181933.111 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Samel SA, Fernandez-Cid A, Sun J, Riera A, Tognetti S, Herrera MC, Li H, Speck C (2014) A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev 28(15):1653–1666. https://doi.org/10.1101/gad.242404.114 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Sandoval R, Pilkinton M, Colamonici OR (2009) Deletion of the p107/p130-binding domain of Mip130/LIN-9 bypasses the requirement for CDK4 activity for the dissociation of Mip130/LIN-9 from p107/p130-E2F4 complex. Exp Cell Res 315(17):2914–2920. https://doi.org/10.1016/j.yexcr.2009.07.014 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Schachter MM, Merrick KA, Larochelle S, Hirschi A, Zhang C, Shokat KM, Rubin SM, Fisher RP (2013) A Cdk7-Cdk4 T-loop phosphorylation cascade promotes G1 progression. Mol Cell 50(2):250–260. https://doi.org/10.1016/j.molcel.2013.04.003 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Schepers A, Diffley JF (2001) Mutational analysis of conserved sequence motifs in the budding yeast Cdc6 protein. J Mol Biol 308(4):597–608. https://doi.org/10.1006/jmbi.2001.4637 PubMedCrossRefGoogle Scholar
  158. Scott PH, Cairns CA, Sutcliffe JE, Alzuherri HM, McLees A, Winter AG, White RJ (2001) Regulation of RNA polymerase III transcription during cell cycle entry. J Biol Chem 276(2):1005–1014. https://doi.org/10.1074/jbc.M005417200 PubMedCrossRefGoogle Scholar
  159. Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE (1997) Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 11(11):1464–1478PubMedCrossRefGoogle Scholar
  160. Shima N, Alcaraz A, Liachko I, Buske TR, Andrews CA, Munroe RJ, Hartford SA, Tye BK, Schimenti JC (2007) A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat Genet 39(1):93–98. https://doi.org/10.1038/ng1936 PubMedCrossRefGoogle Scholar
  161. Shreeram S, Sparks A, Lane DP, Blow JJ (2002) Cell type-specific responses of human cells to inhibition of replication licensing. Oncogene 21(43):6624–6632. https://doi.org/10.1038/sj.onc.1205910 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Siddiqui K, On KF, Diffley JF (2013) Regulating DNA replication in eukarya. Cold Spring Harb Perspect Biol 5(9). https://doi.org/10.1101/cshperspect.a012930
  163. Slansky JE, Farnham PJ (1996) Introduction to the E2F family: protein structure and gene regulation. Curr Top Microbiol Immunol 208:1–30PubMedGoogle Scholar
  164. Soppa U, Schumacher J, Florencio Ortiz V, Pasqualon T, Tejedor FJ, Becker W (2014) The down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and cyclin D1 and induces cell cycle exit and neuronal differentiation. Cell Cycle 13(13):2084–2100. https://doi.org/10.4161/cc.29104 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Sorensen CS, Lukas C, Kramer ER, Peters JM, Bartek J, Lukas J (2000) Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis. Mol Cell Biol 20(20):7613–7623PubMedPubMedCentralCrossRefGoogle Scholar
  166. Speck C, Chen Z, Li H, Stillman B (2005) ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol 12(11):965–971. https://doi.org/10.1038/nsmb1002 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T (2013) The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell. https://doi.org/10.1016/j.cell.2013.08.062
  168. Sugiyama M, Sakaue-Sawano A, Iimura T, Fukami K, Kitaguchi T, Kawakami K, Okamoto H, Higashijima S, Miyawaki A (2009) Illuminating cell-cycle progression in the developing zebrafish embryo. Proc Natl Acad Sci U S A 106(49):20812–20817. https://doi.org/10.1073/pnas.0906464106 PubMedPubMedCentralCrossRefGoogle Scholar
  169. Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H (2014) Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev 28(20):2291–2303. https://doi.org/10.1101/gad.242313.114 PubMedPubMedCentralCrossRefGoogle Scholar
  170. Suryadinata R, Sadowski M, Steel R, Sarcevic B (2011) Cyclin-dependent kinase-mediated phosphorylation of RBP1 and pRb promotes their dissociation to mediate release of the SAP30.mSin3.HDAC transcriptional repressor complex. J Biol Chem 286(7):5108–5118. https://doi.org/10.1074/jbc.M110.198473 PubMedCrossRefGoogle Scholar
  171. Tachibana KE, Nigg EA (2006) Geminin regulates multiple steps of the chromosome inheritance cycle. Cell Cycle 5(2):151–154. https://doi.org/10.4161/cc.5.2.2363 PubMedCrossRefGoogle Scholar
  172. Takaki T, Fukasawa K, Suzuki-Takahashi I, Hirai H (2004) Cdk-mediated phosphorylation of pRB regulates HDAC binding in vitro. Biochem Biophys Res Commun 316(1):252–255. https://doi.org/10.1016/j.bbrc.2004.02.044 PubMedCrossRefGoogle Scholar
  173. Takeda DY, Parvin JD, Dutta A (2005) Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J Biol Chem 280(24):23416–23423. https://doi.org/10.1074/jbc.M501208200 PubMedCrossRefGoogle Scholar
  174. Tardat M, Brustel J, Kirsh O, Lefevbre C, Callanan M, Sardet C, Julien E (2010) The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol 12(11):1086–1093. https://doi.org/10.1038/ncb2113 PubMedCrossRefGoogle Scholar
  175. Teer JK, Machida YJ, Labit H, Novac O, Hyrien O, Marheineke K, Zannis-Hadjopoulos M, Dutta A (2006) Proliferating human cells hypomorphic for origin recognition complex 2 and pre-replicative complex formation have a defect in p53 activation and Cdk2 kinase activation. J Biol Chem 281(10):6253–6260. https://doi.org/10.1074/jbc.M507150200 PubMedCrossRefGoogle Scholar
  176. Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP (2015) Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161(3):513–525. https://doi.org/10.1016/j.cell.2015.03.012 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Townley-Tilson WH, Pendergrass SA, Marzluff WF, Whitfield ML (2006) Genome-wide analysis of mRNAs bound to the histone stem-loop binding protein. RNA 12(10):1853–1867. https://doi.org/10.1261/rna.76006 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Tsakraklides V, Bell SP (2010) Dynamics of pre-replicative complex assembly. J Biol Chem 285(13):9437–9443. https://doi.org/10.1074/jbc.M109.072504 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Tsuruga H, Yabuta N, Hashizume K, Ikeda M, Endo Y, Nojima H (1997) Expression, nuclear localization and interactions of human MCM/P1 proteins. Biochem Biophys Res Commun 236(1):118–125. https://doi.org/10.1006/bbrc.1997.6865 PubMedCrossRefGoogle Scholar
  180. Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8(7):530–541. https://doi.org/10.1038/nrm2203 PubMedCrossRefGoogle Scholar
  181. van Leuken R, Clijsters L, Wolthuis R (2008) To cell cycle, swing the APC/C. Biochim Biophys Acta 1786(1):49–59. https://doi.org/10.1016/j.bbcan.2008.05.002 PubMedGoogle Scholar
  182. Varma D, Chandrasekaran S, Sundin LJ, Reidy KT, Wan X, Chasse DA, Nevis KR, DeLuca JG, Salmon ED, Cook JG (2012) Recruitment of the human Cdt1 replication licensing protein by the loop domain of Hec1 is required for stable kinetochore-microtubule attachment. Nat Cell Biol 14(6):593–603. https://doi.org/10.1038/ncb2489 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Vaziri C, Saxena S, Jeon Y, Lee C, Murata K, Machida Y, Wagle N, Hwang DS, Dutta A (2003) A p53-dependent checkpoint pathway prevents rereplication. Mol Cell 11(4):997–1008PubMedCrossRefGoogle Scholar
  184. Voorhoeve PM, Watson RJ, Farlie PG, Bernards R, Lam EW (1999) Rapid dephosphorylation of p107 following UV irradiation. Oncogene 18(3):679–688. https://doi.org/10.1038/sj.onc.1202289 PubMedCrossRefGoogle Scholar
  185. Wang ZF, Whitfield ML, Ingledue TC 3rd, Dominski Z, Marzluff WF (1996) The protein that binds the 3′ end of histone mRNA: a novel RNA-binding protein required for histone pre-mRNA processing. Genes Dev 10(23):3028–3040PubMedCrossRefGoogle Scholar
  186. Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG Jr (2004) Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428(6979):194–198. https://doi.org/10.1038/nature02381 PubMedCrossRefGoogle Scholar
  187. Wheeler LW, Lents NH, Baldassare JJ (2008) Cyclin A-CDK activity during G1 phase impairs MCM chromatin loading and inhibits DNA synthesis in mammalian cells. Cell Cycle 7(14):2179–2188. https://doi.org/10.4161/cc.7.14.6270 PubMedCrossRefGoogle Scholar
  188. White RJ, Trouche D, Martin K, Jackson SP, Kouzarides T (1996) Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 382(6586):88–90. https://doi.org/10.1038/382088a0 PubMedCrossRefGoogle Scholar
  189. Whitfield ML, Zheng LX, Baldwin A, Ohta T, Hurt MM, Marzluff WF (2000) Stem-loop binding protein, the protein that binds the 3′ end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms. Mol Cell Biol 20(12):4188–4198PubMedPubMedCentralCrossRefGoogle Scholar
  190. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, Hurt MM, Brown PO, Botstein D (2002) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13(6):1977–2000. https://doi.org/10.1091/mbc.02-02-0030 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Wikenheiser-Brokamp KA (2006) Retinoblastoma regulatory pathway in lung cancer. Curr Mol Med 6(7):783–793PubMedGoogle Scholar
  192. Williams JG, Penman S (1975) The messenger RNA sequences in growing and resting mouse fibroblasts. Cell 6(2):197–206PubMedCrossRefGoogle Scholar
  193. Wilson KA, Elefanty AG, Stanley EG, Gilbert DM (2016) Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification. Cell Cycle.:0. https://doi.org/10.1080/15384101.2016.1203492
  194. Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290(5500):2309–2312. https://doi.org/10.1126/science.290.5500.2309 PubMedCrossRefGoogle Scholar
  195. Woodward AM, Gohler T, Luciani MG, Oehlmann M, Ge X, Gartner A, Jackson DA, Blow JJ (2006) Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J Cell Biol 173(5):673–683. https://doi.org/10.1083/jcb.200602108 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT, Nuckolls F, Giangrande P, Wright FA, Field SJ, Greenberg ME, Orkin S, Nevins JR, Robinson ML, Leone G (2001) The E2F1-3 transcription factors are essential for cellular proliferation. Nature 414(6862):457–462. https://doi.org/10.1038/35106593 PubMedCrossRefGoogle Scholar
  197. Wu JQ, Guo JY, Tang W, Yang CS, Freel CD, Chen C, Nairn AC, Kornbluth S (2009) PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation. Nat Cell Biol 11(5):644–651. https://doi.org/10.1038/ncb1871 PubMedPubMedCentralCrossRefGoogle Scholar
  198. Xouri G, Dimaki M, Bastiaens PI, Lygerou Z (2007) Cdt1 interactions in the licensing process: a model for dynamic spatiotemporal control of licensing. Cell Cycle 6(13):1549–1552. https://doi.org/10.4161/cc.6.13.4455 PubMedCrossRefGoogle Scholar
  199. Yan H, Chen CY, Kobayashi R, Newport J (1998a) Replication focus-forming activity 1 and the Werner syndrome gene product. Nat Genet 19(4):375–378. https://doi.org/10.1038/1263 PubMedCrossRefGoogle Scholar
  200. Yan Z, DeGregori J, Shohet R, Leone G, Stillman B, Nevins JR, Williams RS (1998b) Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proc Natl Acad Sci U S A 95(7):3603–3608PubMedPubMedCentralCrossRefGoogle Scholar
  201. Yanagi K, Mizuno T, You Z, Hanaoka F (2002) Mouse geminin inhibits not only Cdt1-MCM6 interactions but also a novel intrinsic Cdt1 DNA binding activity. J Biol Chem 277(43):40871–40880. https://doi.org/10.1074/jbc.M206202200 PubMedCrossRefGoogle Scholar
  202. Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF (2015) Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519(7544):431–435. https://doi.org/10.1038/nature14285 PubMedPubMedCentralCrossRefGoogle Scholar
  203. Yim H, Park JW, Woo SU, Kim ST, Liu L, Lee CH, Lee SK (2013) Phosphorylation of Cdc6 at serine 74, but not at serine 106, drives translocation of Cdc6 to the cytoplasm. J Cell Physiol 228(6):1221–1228. https://doi.org/10.1002/jcp.24275 PubMedCrossRefGoogle Scholar
  204. Yoshida K, Inoue I (2004a) Expression of MCM10 and TopBP1 is regulated by cell proliferation and UV irradiation via the E2F transcription factor. Oncogene 23(37):6250–6260. https://doi.org/10.1038/sj.onc.1207829 PubMedCrossRefGoogle Scholar
  205. Yoshida K, Inoue I (2004b) Regulation of geminin and Cdt1 expression by E2F transcription factors. Oncogene 23(21):3802–3812. https://doi.org/10.1038/sj.onc.1207488 PubMedCrossRefGoogle Scholar
  206. Yung Y, Walker JL, Roberts JM, Assoian RK (2007) A Skp2 autoinduction loop and restriction point control. J Cell Biol 178(5):741–747. https://doi.org/10.1083/jcb.200703034 PubMedPubMedCentralCrossRefGoogle Scholar
  207. Zarkowska T, Mittnacht S (1997) Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J Biol Chem 272(19):12738–12746PubMedCrossRefGoogle Scholar
  208. Zarkowska T, U S, Harlow E, Mittnacht S (1997) Monoclonal antibodies specific for underphosphorylated retinoblastoma protein identify a cell cycle regulated phosphorylation site targeted by CDKs. Oncogene 14(2):249–254. https://doi.org/10.1038/sj.onc.1200824 PubMedCrossRefGoogle Scholar
  209. Zhang J, Yu L, Wu X, Zou L, Sou KK, Wei Z, Cheng X, Zhu G, Liang C (2010) The interacting domains of hCdt1 and hMcm6 involved in the chromatin loading of the MCM complex in human cells. Cell Cycle 9(24):4848–4857. https://doi.org/10.4161/cc.9.24.14136 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations