Advertisement

Interaction of Rif1 Protein with G-Quadruplex in Control of Chromosome Transactions

  • Kenji Moriyama
  • Mong Sing Lai
  • Hisao MasaiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)

Abstract

Recent studies on G-quadruplex (G4) revealed crucial and conserved functions of G4 in various biological systems. We recently showed that Rif1, a conserved nuclear factor, binds to G4 present in the intergenic regions and plays a major role in spatiotemporal regulation of DNA replication. Rif1 may tether chromatin fibers through binding to G4, generating specific chromatin domains that dictate the replication timing. G4 and its various binding partners are now implicated in many other chromosome regulations, including transcription, replication initiation, recombination, gene rearrangement, and transposition.

Keywords

Replication timing G-quadruplex Rif1 Telomere DSB repair Nonhomologous end joining Homologous recombination 

Notes

Acknowledgments

We thank Naoko Yoshizawa-Sugata for critical reading of the manuscript. We also thank the past and present members of our laboratory for their contribution to our Rif1 studies. This work was supported by JSPS KAKENHI (Grant-in-Aid for Scientific Research (A)) [Grant Numbers 23247031 and 26251004], Grant-in-Aid for Scientific Research on Priority Areas [“non-coding RNA”; Grant Numbers 24114520], and the Uehara Memorial Foundation Research Support to H.M.

References

  1. Adams IR, McLaren A (2004) Identification and characterisation of mRif1: a mouse telomere-associated protein highly expressed in germ cells and embryo-derived pluripotent stem cells. Dev Dyn 229:733–744PubMedCrossRefGoogle Scholar
  2. Alver RC, Chadha GS, Gillespie PJ, Blow JJ (2017) Reversal of DDK-mediated MCM phosphorylation by Rif1-PP1 regulates replication initiation and replisome stability independently of ATR/Chk1. Cell Rep 18:2508–2520PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anbalagan S, Bonetti D, Lucchini G, Longhese MP (2011) Rif1 supports the function of the CST complex in yeast telomere capping. PLoS Genet 7:e1002024PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andrade MA, Petosa C, O'Donoghue SI, Müller CW, Bork P (2001) Comparison of ARM and HEAT protein repeats. J Mol Biol 309:1–18PubMedCrossRefGoogle Scholar
  5. Bah A, Forman-Kay JD (2016) Modulation of intrinsically disordered protein function by post-translational modifications. J Biol Chem 291:6696–6705PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baretić D, Berndt A, Ohashi Y, Johnson CM, Williams RL (2016) Tor forms a dimer through an N-terminal helical solenoid with a complex topology. Nat Commun 7:11016PubMedPubMedCentralCrossRefGoogle Scholar
  7. Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H, Dantec C, Marin JM, Lemaitre JM (2012) Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 19:837–844PubMedCrossRefGoogle Scholar
  8. Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13:770–780PubMedPubMedCentralCrossRefGoogle Scholar
  9. Boersma V, Moatti N, Segura-Bayona S, Peuscher MH, van der Torre J, Wevers BA, Orthwein A, Durocher D, Jacobs JJ (2015) MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature 521:537–540PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bonetti D, Clerici M, Anbalagan S, Martina M, Lucchini G, Longhese MP (2010) Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres. PLoS Genet 6:e1000966PubMedPubMedCentralCrossRefGoogle Scholar
  11. Buonomo SB, Wu Y, Ferguson D, de Lange T (2009) Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J Cell Biol 187:385–398PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cahoon LA, Seifert HS (2009) An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science 325:764–767PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cahoon LA, Seifert HS (2013) Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae. PLoS Pathog 9:e1003074PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cahoon LA, Manthei KA, Rotman E, Keck JL, Seifert HS (2013) Neisseria gonorrhoeae RecQ helicase HRDC domains are essential for efficient binding and unwinding of the pilE guanine quartet structure required for pilin antigenic variation. J Bacteriol 195:2255–2261PubMedPubMedCentralCrossRefGoogle Scholar
  15. Carle CM, Zaher HS, Chalker DL (2016) A parallel G quadruplex-binding protein regulates the boundaries of DNA elimination events of Tetrahymena thermophila. PLoS Genet 12:e1005842PubMedPubMedCentralCrossRefGoogle Scholar
  16. Castaño I, Pan SJ, Zupancic M, Hennequin C, Dujon B, Cormack BP (2005) Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 55:1246–1258PubMedCrossRefGoogle Scholar
  17. Cayrou C, Coulombe P, Vigneron A, Stanojcic S, Ganier O, Peiffer I, Rivals E, Puy A, Laurent-Chabalier S, Desprat R, Méchali M (2011) Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res 21:1438–1449PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cayrou C, Coulombe P, Puy A, Rialle S, Kaplan N, Segal E, Méchali M (2012) New insights into replication origin characteristics in metazoans. Cell Cycle 11:658–667PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chalker DL, Yao MC (2011) DNA elimination in ciliates: transposon domestication and genome surveillance. Annu Rev Genet 45:227–246PubMedCrossRefGoogle Scholar
  20. Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S (2015) High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol 33:877–881PubMedCrossRefGoogle Scholar
  21. Chapman JR, Barral P, Vannier JB, Borel V, Steger M, Tomas-Loba A, Sartori AA, Adams IR, Batista FD, Boulton SJ (2013) RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell 49:858–871PubMedPubMedCentralCrossRefGoogle Scholar
  22. Choy MS, Page R, Peti W (2012) Regulation of protein phosphatase 1 by intrinsically disordered proteins. Biochem Soc Trans 40:969–974PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cornacchia D, Dileep V, Quivy JP, Foti R, Tili F, Santarella-Mellwig R, Antony C, Almouzni G, Gilbert DM, Buonomo SB (2012) Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J 31:3678–3690PubMedPubMedCentralCrossRefGoogle Scholar
  24. Croteau DL, Popuri V, Opresko PL, Bohr VA (2014) Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 83:519–552PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dan J, Liu Y, Liu N, Chiourea M, Okuka M, Wu T, Ye X, Mou C, Wang L, Wang L, Yin Y, Yuan J, Zuo B, Wang F, Li Z, Pan X, Yin Z, Chen L, Keefe DL, Gagos S, Xiao A, Liu L (2014) Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. Dev Cell 29:7–19PubMedPubMedCentralCrossRefGoogle Scholar
  26. Davé A, Cooley C, Garg M, Bianchi A (2014) Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep 7:53–61PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dellino GI, Cittaro D, Piccioni R, Luzi L, Banfi S, Segalla S, Cesaroni M, Mendoza-Maldonado R, Giacca M, Pelicci PG (2013) Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing. Genome Res 23:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  28. Di Virgilio M, Callen E, Yamane A, Zhang W, Jankovic M, Gitlin AD, Feldhahn N, Resch W, Oliveira TY, Chait BT, Nussenzweig A, Casellas R, Robbiani DF, Nussenzweig MC (2013) Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339:711–715PubMedCrossRefGoogle Scholar
  29. Dimitrova DS, Gilbert DM (1999) The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 4:983–993PubMedCrossRefGoogle Scholar
  30. Doluca O, Withers JM, Filichev VV (2013) Molecular engineering of guanine-rich sequences: Z-DNA, DNA triplexes, and G-quadruplexes. Chem Rev 113(5):3044–3083PubMedCrossRefGoogle Scholar
  31. Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkáč J, Cook MA, Rosebrock AP, Munro M, Canny MD, Xu D, Durocher D (2013) A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell 49:872–883PubMedCrossRefGoogle Scholar
  32. Foti R, Gnan S, Cornacchia D, Dileep V, Bulut-Karslioglu A, Diehl S, Buness A, Klein FA, Huber W, Johnstone E, Loos R, Bertone P, Gilbert DM, Manke T, Jenuwein T, Buonomo SC (2016) Nuclear architecture organized by Rif1 underpins the replication-timing program. Mol Cell 61:260–273PubMedPubMedCentralCrossRefGoogle Scholar
  33. Foulk MS, Urban JM, Casella C, Gerbi SA (2015) Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins. Genome Res 25:725–735PubMedPubMedCentralCrossRefGoogle Scholar
  34. Greenwood J, Cooper JP (2012) Non-coding telomeric and subtelomeric transcripts are differentially regulated by telomeric and heterochromatin assembly factors in fission yeast. Nucleic Acids Res 40:2956–2963Google Scholar
  35. Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762Google Scholar
  36. Hänsel-Hertsch R, Antonio MD, Balasubramanian S (2017) DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol 18:279–284PubMedCrossRefGoogle Scholar
  37. Hardy CFJ, Sussel L, Shore D (1992) A RAP1-interacting protein involved in silencing and telomere length regulation. Genes Dev 6:801–814PubMedCrossRefGoogle Scholar
  38. Harris LM, Merrick CJ (2015) G-quadruplexes in pathogens: a common route to virulence control? PLoS Pathog 11:e1004562PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hatanaka Y, Inoue K, Oikawa M, Kamimura S, Ogonuki N, Kodama EN, Ohkawa Y, Tsukada Y, Ogura A (2015) Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons. Proc Natl Acad Sci U S A 112:14641–14646PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H (2012) Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev 26:137–150PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hegyi H (2015) Enhancer-promoter interaction facilitated by transiently forming G-quadruplexes. Sci Rep 5:9165–9170PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hiraga S, Alvino GM, Chang F, Lian HY, Sridhar A, Kubota T, Brewer BJ, Weinreich M, Raghuraman MK, Donaldson AD (2014) Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev 28:372–383PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hiraga SI, Ly T, Garzón J, Hořejší Z, Ohkubo YN, Endo A, Obuse C, Boulton SJ, Lamond AI, Donaldson AD (2017) Human RIF1 and protein phosphatase 1 stimulate DNA replication origin licensing but suppress origin activation. EMBO Rep 18:403–419PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hoffmann RF, Moshkin YM, Mouton S, Grzeschik NA, Kalicharan RD, Kuipers J, Wolters AH, Nishida K, Romashchenko AV, Postberg J, Lipps H, Berezikov E, Sibon OC, Giepmans BN, Lansdorp PM (2016) Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Res 44:152–163PubMedCrossRefGoogle Scholar
  45. Huppert JL, Balasubramanian S (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33:2908–2916PubMedPubMedCentralCrossRefGoogle Scholar
  46. Iida K, Nakamura T, Yoshida W, Tera M, Nakabayashi K, Hata K, Ikebukuro K, Nagasawa K (2013) Fluorescent-ligand-mediated screening of G-quadruplex structures using a DNA microarray. Angew Chem Int Ed Eng 52:12052–12055CrossRefGoogle Scholar
  47. Kanoh J, Ishikawa F (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11:1624–1630PubMedCrossRefGoogle Scholar
  48. Kanoh Y, Matsumoto S, Fukatsu R, Kakusho N, Kono N, Renard-Guillet C, Masuda K, Iida K, Nagasawa K, Shirahige K, Masai H (2015) Rif1 binds to G quadruplexes and suppresses replication over long distances. Nat Struct Mol Biol 22:889–897PubMedCrossRefGoogle Scholar
  49. Kejnovsky E, Tokan V, Lexa M (2015) Transposable elements and G-quadruplexes. Chromosome Res 23:615–623PubMedCrossRefGoogle Scholar
  50. Kueng S, Oppikofer M, Gasser SM (2013) SIR proteins and the assembly of silent chromatin in budding yeast. Annu Rev Genet 47:275–306Google Scholar
  51. Kumar S, Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG (2012) Role for Rif1 in the checkpoint response to damaged DNA in Xenopus egg extracts. Cell Cycle 11:1183–1194PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kunnev D, Freeland A, Qin M, Leach RW, Wang J, Shenoy RM, Pruitt SC (2015) Effect of minichromosome maintenance protein 2 deficiency on the locations of DNA replication origins. Genome Res 25:558–569PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lam EY, Beraldi D, Tannahill D, Balasubramanian S (2013) G-quadruplex structures are stable and detectable in human genomic DNA. Nat Commun 4:1796PubMedPubMedCentralCrossRefGoogle Scholar
  54. Langley AR, Gräf S, Smith JC, Krude T (2016) Genome-wide identification and characterisation of human DNA replication origins by initiation site sequencing (ini-seq). Nucleic Acids Res 44:10230–10247PubMedPubMedCentralGoogle Scholar
  55. Larson ED, Duquette ML, Cummings WJ, Streiff RJ, Maizels N (2005) MutSα binds to and promotes synapsis of transcriptionally activated immunoglobulin switch regions. Curr Biol 15:470–474PubMedCrossRefGoogle Scholar
  56. Lexa M, Steflova P, Martinek T, Vorlickova M, Vyskot B, Kejnovsky E (2014) Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics 15:1032PubMedPubMedCentralCrossRefGoogle Scholar
  57. Li P, Ma X, Adams IR, Yuan P (2015) A tight control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic stem cell stability. Cell Death Dis 6:e1588PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lian HY, Robertson ED, Hiraga S, Alvino GM, Collingwood D, McCune HJ, Sridhar A, Brewer BJ, Raghuraman MK, Donaldson AD (2011) The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol Biol Cell 22:1753–1765PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lieberman PM, Hu J, Renne R (2007) Maintenance and replication during latency. In: Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge, Chapter 24Google Scholar
  60. Madireddy A, Purushothaman P, Loosbroock CP, Robertson ES, Schildkraut CL, Verma SC (2016) G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV. Nucleic Acids Res 44:3675–3694PubMedPubMedCentralCrossRefGoogle Scholar
  61. Maizels N (2015) G4-associated human diseases. EMBO Rep 16:910–922PubMedPubMedCentralCrossRefGoogle Scholar
  62. Maizels N, Gray LT (2013) The G4 genome. PLoS Genet 9:e1003468PubMedPubMedCentralCrossRefGoogle Scholar
  63. Marcand S, Wotton D, Gilson E, Shore D (1997) Rap1p and telomere length regulation in yeast. CIBA Found Symp 211:93–103Google Scholar
  64. Martina M, Bonetti D, Villa M, Lucchini G, Longhese MP (2014) Saccharomyces cerevisiae Rif1 cooperates with MRX-Sae2 in promoting DNA-end resection. EMBO Rep 15:695–704PubMedPubMedCentralGoogle Scholar
  65. Masai H, Kanoh Y, Moriyama K, Yamazaki S, Yoshizawa N, Matsumoto S (2017) Telomere-binding factors in the regulation of DNA replication. Genes Genet SystGoogle Scholar
  66. Mattarocci S, Shyian M, Lemmens L, Damay P, Altintas DM, Shi T, Bartholomew CR, Thomä NH, Hardy CF, Shore D (2014) Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep 7:62–69PubMedCrossRefGoogle Scholar
  67. Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J (2014) Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 122:1–57PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mesner LD, Valsakumar V, Cieslik M, Pickin R, Hamlin JL, Bekiranov S (2013) Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins. Genome Res 23:1774–1788PubMedPubMedCentralCrossRefGoogle Scholar
  69. Métifiot M, Amrane S, Litvak S, Andreola ML (2014) G-quadruplexes in viruses: function and potential therapeutic applications. Nucleic Acids Res 42:12352–12366PubMedPubMedCentralCrossRefGoogle Scholar
  70. Miller KM, Ferreira MG, Cooper JP (2005) Taz1, Rap1 and Rif1 act both interdependently and independently to maintain telomeres. EMBO J 24:3128–3135PubMedPubMedCentralCrossRefGoogle Scholar
  71. Miotto B, Ji Z, Struhl K (2016) Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers. Proc Natl Acad Sci U S A 113:E4810–E4819PubMedPubMedCentralCrossRefGoogle Scholar
  72. Moretti P, Freeman K, Coodly L, Shore D (1994) Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev 8:2257–2269PubMedCrossRefGoogle Scholar
  73. Mukhopadhyay R, Lajugie J, Fourel N, Selzer A, Schizas M, Bartholdy B, Mar J, Lin CM, Martin MM, Ryan M, Aladjem MI, Bouhassira EE (2014) Allele-specific genome-wide profiling in human primary erythroblasts reveal replication program organization. PLoS Genet 10:e1004319PubMedPubMedCentralCrossRefGoogle Scholar
  74. Murat P, Balasubramanian S (2014) Existence and consequences of G-quadruplex structures in DNA. Curr Opin Genet Dev 25:22–29PubMedCrossRefGoogle Scholar
  75. Nikolova EN, Kim E, Wise AA, O’Brien PJ, Andricioaei I, Al-Hashimi HM (2011) Transient Hoogsteen base pairs in canonical duplex DNA. Nature 470:498–502PubMedPubMedCentralCrossRefGoogle Scholar
  76. Norseen J, Johnson FB, Lieberman PM (2009) Role for G-quadruplex RNA binding by Epstein-Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J Virol 83:10336–10346PubMedPubMedCentralCrossRefGoogle Scholar
  77. Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584PubMedCrossRefGoogle Scholar
  78. Park S, Patterson EE, Cobb J, Audhya A, Gartenberg MR, Fox CA (2011) Palmitoylation controls the dynamics of budding-yeast heterochromatin via the telomere-binding protein Rif1. Proc Natl Acad Sci U S A 108:14572–14577PubMedPubMedCentralCrossRefGoogle Scholar
  79. Peace JM, Ter-Zakarian A, Aparicio OM (2014) Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome. PLoS One 9:e98501PubMedPubMedCentralCrossRefGoogle Scholar
  80. Perrone R, Butovskaya E, Lago S, Garzino-Demo A, Pannecouque C, Palù G, Richter SN (2016) The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell. Int J Antimicrob Agents 47:311–316PubMedPubMedCentralCrossRefGoogle Scholar
  81. Petryk N, Kahli M, d’Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y, Silvain M, Thermes C, Chen CL, Hyrien O (2016) Replication landscape of the human genome. Nat Commun 7:10208PubMedPubMedCentralCrossRefGoogle Scholar
  82. Piazza I, Rutkowska A, Ori A, Walczak M, Metz J, Pelechano V, Beck M, Haering CH (2014) Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits. Nat Struct Mol Biol 21:560–568PubMedCrossRefGoogle Scholar
  83. Prioleau MN, MacAlpine DM (2016) DNA replication origins-where do we begin? Genes Dev 30:1683–1697PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43:8627–8637PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ribeyre C, Shore D (2012) Anticheckpoint pathways at telomeres in yeast. Nat Struct Mol Biol 19:307–313PubMedCrossRefGoogle Scholar
  86. Rosas-Hernández LL, Juárez-Reyes A, Arroyo-Helguera OE, De Las PA, Pan SJ, Cormack BP, Castaño I (2008) yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in Candida glabrata. Eukaryot Cell 7:2168–2178PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sabouri N, Capra JA, Zakian VA (2014) The essential Schizosaccharomyces pombe Pfh1 DNA helicase promotes fork movement past G-quadruplex motifs to prevent DNA damage. BMC Biol 12:101PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sadic D, Schmidt K, Groh S, Kondofersky I, Ellwart J, Fuchs C, Theis FJ, Schotta G (2015) Atrx promotes heterochromatin formation at retrotransposons. EMBO Rep 16:836–850PubMedPubMedCentralCrossRefGoogle Scholar
  89. Sahakyan AB, Murat P, Mayer C, Balasubramanian S (2017) G-quadruplex structures within the 3′ UTR of LINE-1 elements stimulate retrotransposition. Nat Struct Mol Biol 24:243–247PubMedCrossRefGoogle Scholar
  90. Sengar A, Hiddi B, Phan AT (2014) Formation of G-quadruplexes in poly-G sequences: structure of a propeller-type parallel-stranded G-quadruplex formed by a G15 stretch. Biochemistry 53:7718–7723PubMedCrossRefGoogle Scholar
  91. Shammas SL, Crabtree MD, Dahal L, Wicky BI, Clarke J (2016) Insights into coupled folding and binding mechanisms from kinetic studies. J Biol Chem 291:6689–6695PubMedPubMedCentralCrossRefGoogle Scholar
  92. Shi T, Bunker RD, Mattarocci S, Ribeyre C, Faty M, Gut H, Scrima A, Rass U, Rubin SM, Shore D, Thomä NH (2013) Rif1 and Rif2 shape telomere function and architecture through multivalent Rap1 interactions. Cell 153:1340–1353PubMedCrossRefGoogle Scholar
  93. Silverman J, Takai H, Buonomo SB, Eisenhaber F, de Lange T (2004) Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev 18:2108–2119PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sreesankar E, Senthilkumar R, Bharathi V, Mishra RK, Mishra K (2012) Functional diversification of yeast telomere associated protein, Rif1, in higher eukaryotes. BMC Genomics 13:255PubMedPubMedCentralCrossRefGoogle Scholar
  95. Sreesankar E, Bharathi V, Mishra RK, Mishra K (2015) Drosophila Rif1 is an essential gene and controls late developmental events by direct interaction with PP1-87B. Sci Rep 5:10679PubMedPubMedCentralCrossRefGoogle Scholar
  96. Sukackaite R, Jensen MR, Mas PJ, Blackledge M, Buonomo SB, Hart DJ (2014) Structural and biophysical characterization of murine rif1 C terminus reveals high specificity for DNA cruciform structures. J Biol Chem 289:13903–13911PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sukackaite R, Cornacchia D, Jensen MR, Mas PJ, Blackledge M, Enervald E, Duan G, Auchynnikava T, Köhn M, Hart DJ, Buonomo SBC (2017) Mouse Rif1 is a regulatory subunit of protein phosphatase 1 (PP1). Sci Rep 7:2119PubMedPubMedCentralCrossRefGoogle Scholar
  98. Takahara T, Hara K, Yonezawa K, Sorimachi H, Maeda T (2006) Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region. J Biol Chem 281:28605–28614PubMedCrossRefGoogle Scholar
  99. Tempera I, Lieberman PM (2010) Chromatin organization of gammaherpesvirus latent genomes. Biochim Biophys Acta 1799:236–245PubMedCrossRefGoogle Scholar
  100. Tosoni E, Frasson I, Scalabrin M, Perrone R, Butovskaya E, Nadai M, Palù G, Fabris D, Richter SN (2015) Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res 43:8884–8897PubMedPubMedCentralCrossRefGoogle Scholar
  101. Toteva T, Mason B, Kanoh Y, Brøgger P, Green D, Verhein-Hansen J, Masai H, Thon G (2017) Establishment of expression-state boundaries by Rif1 and Taz1 in fission yeast. Proc Natl Acad Sci 114(5):1093–1098Google Scholar
  102. Urban JM, Foulk MS, Casella C, Gerbi SA (2015) The hunt for origins of DNA replication in multicellular eukaryotes. F1000Prime Rep 7:30PubMedPubMedCentralCrossRefGoogle Scholar
  103. Valton AL, Hassan-Zadeh V, Lema I, Boggetto N, Alberti P, Saintomé C, Riou JF, Prioleau MN (2014) G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J 33:732–746PubMedPubMedCentralCrossRefGoogle Scholar
  104. Voon HP, Wong LH (2016) New players in heterochromatin silencing: histone variant H3.3 and the ATRX/DAXX chaperone. Nucleic Acids Res 44:1496–1501PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang H, Zhao A, Chen L, Zhong X, Liao J, Gao M, Cai M, Lee DH, Li J, Chowdhury D, Yang YG, Pfeifer GP, Yen Y, Xu X (2009) Human RIF1 encodes an anti-apoptotic factor required for DNA repair. Carcinogenesis 30:1314–1319PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wotton D, Shore D (1997) A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev 11:748–760PubMedCrossRefGoogle Scholar
  107. Xu L, Blackburn EH (2004) Human Rif1 protein binds aberrant telomeres and aligns along anaphase midzone microtubules. J Cell Biol 167:819–830PubMedPubMedCentralCrossRefGoogle Scholar
  108. Xu D, Muniandy P, Leo E, Yin J, Thangavel S, Shen X, Ii M, Agama K, Guo R, Fox D 3rd, Meetei AR, Wilson L, Nguyen H, Weng NP, Brill SJ, Li L, Vindigni A, Pommier Y, Seidman M, Wang W (2010) Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO J 29:3140–3155PubMedPubMedCentralCrossRefGoogle Scholar
  109. Xue Y, Rushton MD, Maringele L (2011) A novel checkpoint and RPA inhibitory pathway regulated by Rif1. PLoS Genet 7:e1002417PubMedPubMedCentralCrossRefGoogle Scholar
  110. Xue Y, Marvin ME, Ivanova IG, Lydall D, Louis EJ, Maringele L (2016) Rif1 and Exo1 regulate the genomic instability following telomere losses. Aging Cell 15:553–562PubMedPubMedCentralCrossRefGoogle Scholar
  111. Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H (2012) Rif1 regulates the replication timing domains on the human genome. EMBO J 31:3667–3677PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zaaijer S, Shaikh N, Nageshan RK, Cooper JP (2016) Rif1 regulates the fate of DNA entanglements during mitosis. Cell Rep 16:148–160PubMedPubMedCentralCrossRefGoogle Scholar
  113. Zhang ZZ, Pannunzio NR, Han L, Hsieh CL, Yu K, Lieber MR (2014) The strength of an Ig switch region is determined by its ability to drive R loop formation and its number of WGCW sites. Cell Rep 8:557–569PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zofall M, Smith DR, Mizuguchi T, Dhakshnamoorthy J, Grewal SIS (2016) Taz1-shelterin promotes facultative heterochromatin assembly at chromosome-internal sites containing late replication origins. Mol Cell 62(6):862–874Google Scholar
  115. Zhou J, Snyder AR, Lieberman PM (2009) Epstein-Barr virus episome stability is coupled to a delay in replication timing. J Virol 83:2154–2162PubMedCrossRefGoogle Scholar
  116. Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A, de Lange T (2013) 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science 339:700–704PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Genome MedicineTokyo Metropolitan Institute of Medical ScienceTokyoJapan

Personalised recommendations