Skip to main content

Historical Perspective of Eukaryotic DNA Replication

  • Chapter
  • First Online:
DNA Replication

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1042))

Abstract

The replication of the genome of a eukaryotic cell is a complex process requiring the ordered assembly of multiprotein replisomes at many chromosomal sites. The process is strictly controlled during the cell cycle to ensure the complete and faithful transmission of genetic information to progeny cells. Our current understanding of the mechanisms of eukaryotic DNA replication has evolved over a period of more than 30 years through the efforts of many investigators. The aim of this perspective is to provide a brief history of the major advances during this period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abid Ali F, Renault L, Gannon J, Gahlon HL, Kotecha A, Zhou JC, Rueda D, Costa A (2016) Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nat Commun 7:10708

    Google Scholar 

  • Aparicio OM, Weinstein DM, Bell SP (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91(1):59–69

    Article  CAS  PubMed  Google Scholar 

  • Aparicio OM, Stout AM, Bell SP (1999) Differential assembly of cdc45p and DNA polymerases at early and late origins of DNA replication [in process citation]. Proc Natl Acad Sci U S A 96(16):9130–9135

    Google Scholar 

  • Araki H, Ropp PA, Johnson AL, Johnston LH, Morrison A, Sugino A (1992) DNA polymerase II, the probable homolog of mammalian DNA polymerase epsilon, replicates chromosomal DNA in the yeast Saccharomyces cerevisiae. EMBO J 11:733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araki H, Leem SH, Phongdara A, Sugino A (1995) Dpb11, which interacts with DNA polymerase II (epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc Natl Acad Sci U S A 92(25):11791–11795

    Google Scholar 

  • Arias EE, Walter JC (2005) Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev 19(1):114–126

    Google Scholar 

  • Arias EE, Walter JC (2006) PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat Cell Biol 8(1):84–90

    Google Scholar 

  • Arias EE, Walter JC (2007) Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 21(5):497–518

    Google Scholar 

  • Balakrishnan L, Bambara RA (2013) Okazaki fragment metabolism. Cold Spring Harb Perspect Biol 5(2), a010173

    Google Scholar 

  • Baxter J, Diffley JF (2008) Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast. Mol Cell 30(6):790–802

    Google Scholar 

  • Beall EL, Manak JR, Zhou S, Bell M, Lipsick JS, Botchan MR (2002) Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420(6917):833–837

    Google Scholar 

  • Bechhoefer J, Rhind N (2012) Replication timing and its emergence from stochastic processes. Trends Genet 28(8):374–381

    Google Scholar 

  • Bell SP (1995) Eukaryotic replicators and associated protein complexes. Curr Opin Genet Dev 5(2):162–167

    Article  CAS  PubMed  Google Scholar 

  • Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    Article  CAS  PubMed  Google Scholar 

  • Bell SP, Kaguni JM (2013) Helicase loading at chromosomal origins of replication. Cold Spring Harb Perspect Biol 5(6), a010124

    Google Scholar 

  • Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357(6374):128–134

    Article  CAS  PubMed  Google Scholar 

  • Bell SP, Kobayashi R, Stillman B (1993) Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262(5141):1844–1849

    Google Scholar 

  • Bell SP, Mitchell J, Leber J, Kobayashi R, Stillman B (1995) The multidomain structure of Orc1p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell 83(4):563–568

    Article  CAS  PubMed  Google Scholar 

  • Berbenetz NM, Nislow C, Brown GW (2010) Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 6(9), e1001092

    Google Scholar 

  • Bessman MJ, Kornberg A, Lehman IR, Simms ES (1956) Enzymic synthesis of deoxyribonucleic acid. Biochim Biophys Acta 21(1):197–198

    Article  CAS  PubMed  Google Scholar 

  • Blow JJ (1993) Preventing re-replication of DNA in a single cell cycle: evidence for a replication licensing factor. J Cell Biol 122(5):993–1002

    Article  CAS  PubMed  Google Scholar 

  • Blow JJ, Laskey RA (1988) A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature 332:546–548

    Article  CAS  PubMed  Google Scholar 

  • Bochman ML, Schwacha A (2008) The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31(2):287–293

    Google Scholar 

  • Borowiec JA, Hurwitz J (1988) Localized melting and structural changes in the SV40 origin of replication induced by T-antigen. EMBO J 7(10):3149–3158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman GD, Goedken ER, Kazmirski SL, O’Donnell M, Kuriyan J (2005) DNA polymerase clamp loaders and DNA recognition. FEBS Lett 579(4):863–867

    Google Scholar 

  • Breier AM, Chatterji S, Cozzarelli NR (2004) Prediction of Saccharomyces cerevisiae replication origins. Genome Biol 5(4):R22

    Article  PubMed  PubMed Central  Google Scholar 

  • Brewer BJ, Fangman WL (1987) The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51(3):463–471

    Article  CAS  PubMed  Google Scholar 

  • Broach JR, Li YY, Feldman J, Jayaram M, Abraham J, Nasmyth KA, Hicks JB (1983) Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harb Symp Quant Biol 47(Pt 2):1165–1173

    Article  PubMed  Google Scholar 

  • Broek D, Bartlett R, Crawford K, Nurse P (1991) Involvement of p34cdc2 in establishing the dependency of S phase on mitosis. Nature 349(6308):388–393

    Google Scholar 

  • Brush GS, Kelly TJ, Stillman B (1995) Identification of eukaryotic DNA replication proteins using simian virus 40 in vitro replication system. Methods Enzymol 262:522–548

    Article  CAS  PubMed  Google Scholar 

  • Budd ME, Sitney KC, Campbell JL (1989) Purification of DNA polymerase II, a distinct DNA polymerase, from Saccharomyces cerevisiae. J Biol Chem 264(11):6557–6565

    CAS  PubMed  Google Scholar 

  • Burgers PM, Gordenin D, Kunkel TA (2016) Who is leading the replication fork, Pol epsilon or Pol delta? Mol Cell 61(4):492–493

    Google Scholar 

  • Byrnes JJ, Downey KM, Black VL, So AG (1976) A new mammalian DNA polymerase with 3′ to 5′ exonuclease activity: DNA polymerase delta. Biochemistry 15(13):2817–2823

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Uhlmann F, Gibbs E, Flores-Rozas H, Lee CG, Phillips B, Finkelstein J, Yao N, O’Donnell M, Hurwitz J (1996) Reconstitution of human replication factor C from its five subunits in baculovirus-infected insect cells. Proc Natl Acad Sci U S A 93(23):12896–12901

    Google Scholar 

  • Cairns J (1963) The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol 6:208–213

    Article  CAS  PubMed  Google Scholar 

  • Campbell JL (1986) Eukaryotic DNA replication. Annu Rev Biochem 55:733–771

    Article  CAS  PubMed  Google Scholar 

  • Campbell JL, Newlon CS (1991) Chromosomal DNA replication. In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cellular biology of the yeast saccharomyces, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 41–146

    Google Scholar 

  • Cegielska A, Virshup DM (1993) Control of simian virus 40 DNA replication by the HeLa cell nuclear kinase casein kinase I. Mol Cell Biol 13(2):1202–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cegielska A, Moarefi I, Fanning E, Virshup DM (1994) T-antigen kinase inhibits simian virus 40 DNA replication by phosphorylation of intact T antigen on serines 120 and 123. J Virol 68(1):269–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Celniker SE, Sweder K, Srienc F, Bailey JE, Campbell JL (1984) Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol Cell Biol 4(11):2455–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challberg MD, Kelly TJ (1979) Adenovirus DNA replication in vitro. Proc Natl Acad Sci U S A 76(2):655–659

    Google Scholar 

  • Challberg MD, Kelly TJ (1982) Eukaryotic DNA replication: viral and plasmid model systems. Annu Rev Biochem 51:901–934

    Article  CAS  PubMed  Google Scholar 

  • Challberg MD, Kelly TJ (1989) Animal virus DNA replication. Annu Rev Biochem 58(671):671–717

    Article  CAS  PubMed  Google Scholar 

  • Challberg MD, Desiderio SV, Kelly TJ (1980) Adenovirus DNA replication in vitro: characterization of a protein covalently linked to nascent DNA strands. Proc Natl Acad Sci U S A 77(9):5105–5109

    Google Scholar 

  • Challberg MD, Ostrove JM, Kelly TJ Jr (1982) Initiation of adenovirus DNA replication: detection of covalent complexes between nucleotide and the 80-kilodalton terminal protein. J Virol 41(1):265–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Wold MS (2014) Replication protein a: single-stranded DNA’s first responder: dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair. BioEssays 36(12):1156–1161

    Google Scholar 

  • Chong JP, Mahbubani HM, Khoo CY, Blow JJ (1995) Purification of an MCM-containing complex as a component of the DNA replication licensing system [see comments]. Nature 375(6530):418–421

    Article  CAS  PubMed  Google Scholar 

  • Chong JP, Thommes P, Blow JJ (1996) The role of MCM/P1 proteins in the licensing of DNA replication. Trends Biochem Sci 21(3):102–106

    Article  CAS  PubMed  Google Scholar 

  • Chong JP, Hayashi MK, Simon MN, Xu RM, Stillman B (2000) A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci U S A 97(4):1530–1535

    Google Scholar 

  • Chuang R, Kelly TJ (1999) The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc Natl Acad Sci U S A 96:2656–2661

    Google Scholar 

  • Clarey MG, Erzberger JP, Grob P, Leschziner AE, Berger JM, Nogales E, Botchan M (2006) Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex. Nat Struct Mol Biol 13(8):684–690

    Google Scholar 

  • Clyne RK, Kelly TJ (1995) Genetic analysis of an ARS element from the fission yeast Schizosaccharomyces pombe. EMBO J 14(24):6348–6357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cocker JH, Piatti S, Santocanale C, Nasmyth K, Diffley JF (1996) An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379(6561):180–182

    Article  CAS  PubMed  Google Scholar 

  • Coleman TR, Carpenter PB, Dunphy WG (1996) The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell 87(1):53–63

    Article  CAS  PubMed  Google Scholar 

  • Collins KL, Kelly TJ (1991) Effects of T antigen and replication protein A on the initiation of DNA synthesis by DNA polymerase alpha-primase. Mol Cell Biol 11(4):2108–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins KL, Russo AA, Tseng BY, Kelly TJ (1993) The role of the 70 kDa subunit of human DNA polymerase alpha in DNA replication. EMBO J 12(12):4555–4566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook JG, Chasse DA, Nevins JR (2004) The regulated association of Cdt1 with minichromosome maintenance proteins and Cdc6 in mammalian cells. J Biol Chem 279(10):9625–9633

    Google Scholar 

  • Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM (2011) The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 18(4):471–477

    Google Scholar 

  • Costa A, Renault L, Swuec P, Petojevic T, Pesavento JJ, Ilves I, MacLellan-Gibson K, Fleck RA, Botchan MR, Berger JM (2014) DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. Elife 3, e03273

    Google Scholar 

  • D’Urso G, Marraccino RL, Marshak DR, Roberts JM (1990) Cell cycle control of DNA replication by a homologue from human cells of the p34cdc2 protein kinase. Science 250(4982):786–791

    Article  PubMed  Google Scholar 

  • Dahmann C, Diffley JF, Nasmyth KA (1995) S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr Biol 5(11):1257–1269

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Chuang RY, Kelly TJ (2005) DNA replication origins in the Schizosaccharomyces pombe genome. Proc Natl Acad Sci U S A 102(2):337–342

    Google Scholar 

  • Danna KJ, Nathans D (1972) Bidirectional replication of Simian Virus 40 DNA. Proc Natl Acad Sci U S A 69(11):3097–3100

    Google Scholar 

  • Dave A, Cooley C, Garg M, Bianchi A (2014) Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep 7(1):53–61

    Google Scholar 

  • Dean FB, Bullock P, Murakami Y, Wobbe CR, Weissbach L, Hurwitz J (1987) Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc Natl Acad Sci U S A 84:16–20

    Google Scholar 

  • Dean FB, Borowiec JA, Eki T, Hurwitz J (1992) The simian virus 40 T antigen double hexamer assembles around the DNA at the replication origin. J Biol Chem 267(20):14129–14137

    CAS  PubMed  Google Scholar 

  • Deegan TD, Yeeles JT, Diffley JF (2016) Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation. EMBO J 35(9):961–973

    Google Scholar 

  • Delucia A, Lewton B, Tjian R, Tegtmeyer P (1983) Topography of simian virus 40 A protein-DNA complexes: arrangement of pentanucleotide interaction sites at the origin of replication. J Virol 46:143–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dershowitz A, Snyder M, Sbia M, Skurnick JH, Ong LY, Newlon CS (2007) Linear derivatives of Saccharomyces cerevisiae chromosome III can be maintained in the absence of autonomously replicating sequence elements. Mol Cell Biol 27(13):4652–4663

    Google Scholar 

  • Desiderio SV, Kelly TJ (1981) Structure of the linkage between adenovirus DNA and the 55,000 molecular weight terminal protein. J Mol Biol 145(2):319–337

    Article  CAS  PubMed  Google Scholar 

  • van Deursen F, Sengupta S, De Piccoli G, Sanchez-Diaz A, Labib K (2012) Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J 31(9):2195–2206

    Google Scholar 

  • Devault A, Vallen EA, Yuan T, Green S, Bensimon A, Schwob E (2002) Identification of Tah11/Sid2 as the ortholog of the replication licensing factor Cdt1 in Saccharomyces cerevisiae. Curr Biol 12(8):689–694

    Article  CAS  PubMed  Google Scholar 

  • Devbhandari S, Jiang J, Kumar C, Whitehouse I, Remus D (2017) Chromatin constrains the initiation and elongation of DNA replication. Mol Cell 65(1):131–141

    Google Scholar 

  • Dewar JM, Budzowska M, Walter JC (2015) The mechanism of DNA replication termination in vertebrates. Nature 525(7569):345–350

    Google Scholar 

  • Diffley JF (1996) Once and only once upon a time: specifying and regulating origins of DNA replication in eukaryotic cells. Genes Dev 10(22):2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Diffley JF, Cocker JH (1992) Protein-DNA interactions at a yeast replication origin. Nature 357(6374):169–172

    Article  CAS  PubMed  Google Scholar 

  • Diffley JF, Cocker JH, Dowell SJ, Rowley A (1994) Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78(2):303–316

    Article  CAS  PubMed  Google Scholar 

  • DiNardo S, Voelkel K, Sternglanz R (1984) DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci U S A 81(9):2616–2620

    Google Scholar 

  • Donovan S, Harwood J, Drury LS, Diffley JF (1997) Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci U S A 94(11):5611–5616

    Google Scholar 

  • Dornreiter I, Erdile LF, Gilbert IU, von Winkler D, Kelly TJ, Fanning E (1992) Interaction of DNA polymerase alpha-primase with cellular replication protein A and SV40 T antigen. EMBO J 11(2):769–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drury LS, Perkins G, Diffley JF (1997) The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J 16(19):5966–5976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal protein/protein interaction domain of saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain [in process citation]. J Biol Chem 274(32):22283–22288

    Article  CAS  PubMed  Google Scholar 

  • Dubey DD, Zhu J, Carlson DL, Sharma K, Huberman JA (1994) Three ARS elements contribute to the ura4 replication origin region in the fission yeast, Schizosaccharomyces pombe. EMBO J 13(15):3638–3647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey DD, Kim SM, Todorov IT, Huberman JA (1996) Large, complex modular structure of a fission yeast DNA replication origin. Curr Biol 6(4):467–473

    Article  CAS  PubMed  Google Scholar 

  • Eaton ML, Prinz JA, MacAlpine HK, Tretyakov G, Kharchenko PV, MacAlpine DM (2011) Chromatin signatures of the Drosophila replication program. Genome Res 21(2):164–174

    Google Scholar 

  • Edgell DR, Doolittle FW (1997) Archaea and the origin(s) of DNA replication proteins. Cell 89:995–998

    Article  CAS  PubMed  Google Scholar 

  • Enemark EJ, Joshua-Tor L (2008) On helicases and other motor proteins. Curr Opin Struct Biol 18(2):243–257

    Google Scholar 

  • Enomoto T, Lichy JH, Ikeda JE, Hurwitz J (1981) Adenovirus DNA replication in vitro: purification of the terminal protein in a functional form. Proc Natl Acad Sci U S A 78(11):6779–6783

    Google Scholar 

  • Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 106(48):20240–20245

    Google Scholar 

  • Fachinetti D, Bermejo R, Cocito A, Minardi S, Katou Y, Kanoh Y, Shirahige K, Azvolinsky A, Zakian VA, Foiani M (2010) Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol Cell 39(4):595–605

    Google Scholar 

  • Fairman MP, Stillman B (1988) Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J 7(4):1211–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fangman WL, Brewer BJ (1991) Activation of replication origins within yeast chromosomes. Annu Rev Cell Biol 7(375):375–402

    Article  CAS  PubMed  Google Scholar 

  • Feng W, D’Urso G (2001) Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control. Mol Cell Biol 21(14):4495–4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman KL, Brewer BJ, Fangman WL (1997) Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 2(11):667–678

    Article  CAS  PubMed  Google Scholar 

  • Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146(6):931–941

    Google Scholar 

  • Gai D, Zhao R, Li D, Finkielstein CV, Chen XS (2004) Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119(1):47–60

    Google Scholar 

  • Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8(4):358–366

    Google Scholar 

  • Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J 28(19):2992–3004

    Google Scholar 

  • Georgescu R, Langston L, O’Donnell M (2015a) A proposal: evolution of PCNA’s role as a marker of newly replicated DNA. DNA Repair (Amst) 29:4–15

    Google Scholar 

  • Georgescu RE, Schauer GD, Yao NY, Langston LD, Yurieva O, Zhang D, Finkelstein J, O’Donnell ME (2015b) Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Elife 4, e04988

    Google Scholar 

  • Gopalakrishnan V, Simancek P, Houchens C, Snaith HA, Frattini MG, Sazer S, Kelly TJ (2001) Redundant control of rereplication in fission yeast. Proc Natl Acad Sci U S A 98(23):13114–13119

    Google Scholar 

  • Gros J, Devbhandari S, Remus D (2014) Origin plasticity during budding yeast DNA replication in vitro. EMBO J 33(6):621–636

    Google Scholar 

  • Gros J, Kumar C, Lynch G, Yadav T, Whitehouse I, Remus D (2015) Post-licensing specification of eukaryotic replication origins by facilitated Mcm2-7 sliding along DNA. Mol Cell 60(5):797–807

    Google Scholar 

  • Guarino E, Shepherd ME, Salguero I, Hua H, Deegan RS, Kearsey SE (2011) Cdt1 proteolysis is promoted by dual PIP degrons and is modulated by PCNA ubiquitylation. Nucleic Acids Res 39(14):5978–5990

    Google Scholar 

  • Hardy CF, Dryga O, Seematter S, Pahl PM, Sclafani RA (1997) mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc Natl Acad Sci U S A 94(7):3151–3155

    Google Scholar 

  • Hauk G, Berger JM (2016) The role of ATP-dependent machines in regulating genome topology. Curr Opin Struct Biol 36:85–96

    Google Scholar 

  • Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H (2012) Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev 26(2):137–150

    Google Scholar 

  • Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H (2009) The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol 11(3):357–362

    Google Scholar 

  • Hayles J, Fisher D, Woollard A, Nurse P (1994) Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2-mitotic B cyclin complex. Cell 78(5):813–822

    Article  CAS  PubMed  Google Scholar 

  • Heichinger C, Penkett CJ, Bahler J, Nurse P (2006) Genome-wide characterization of fission yeast DNA replication origins. EMBO J 25(21):5171–5179

    Google Scholar 

  • Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP (2011) Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146(1):80–91

    Google Scholar 

  • Hennessy KM, Clark CD, Botstein D (1990) Subcellular localization of yeast CDC46 varies with the cell cycle. Genes Dev 4(12B):2252–2263

    Article  CAS  PubMed  Google Scholar 

  • Herrmann R, Huf J, Bonhoeffer F (1972) Cross hybridization and rate of chain elongation of the two classes of DNA intermediates. Nat New Biol 240(103):235–237

    Article  CAS  PubMed  Google Scholar 

  • Hiraga S, Alvino GM, Chang F, Lian HY, Sridhar A, Kubota T, Brewer BJ, Weinreich M, Raghuraman MK, Donaldson AD (2014) Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev 28(4):372–383

    Google Scholar 

  • Hopwood B, Dalton S (1996) Cdc45p assembles into a complex with Cdc46p/Mcm5p, is required for minichromosome maintenance, and is essential for chromosomal DNA replication. Proc Natl Acad Sci U S A 93(22):12309–12314

    Google Scholar 

  • Hsiao CL, Carbon J (1979) High-frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene. Proc Natl Acad Sci U S A 76(8):3829–3833

    Google Scholar 

  • Hua XH, Newport J (1998) Identification of a preinitiation step in DNA replication that is independent of origin recognition complex and cdc6, but dependent on cdk2. J Cell Biol 140:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua XH, Yan H, Newport J (1997) A role for Cdk2 kinase in negatively regulating DNA replication during S phase of the cell cycle. J Cell Biol 137(1):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huberman JA, Riggs AD (1968) On the mechanism of DNA replication in mammalian chromosomes. J Mol Biol 32(2):327–341

    Article  CAS  PubMed  Google Scholar 

  • Huberman JA, Spotila LD, Nawotka KA, el Assouli S, Davis LR (1987) The in vivo replication origin of the yeast 2 microns plasmid. Cell 51(3):473–481

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz J, Dean FB, Kwong AD, Lee SH (1990) The in vitro replication of DNA containing the SV40 origin. J Biol Chem 265(30):18043–18046

    CAS  PubMed  Google Scholar 

  • Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37(2):247–258

    Google Scholar 

  • Ishimi Y (1997) A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex [published erratum appears in J Biol Chem 1998 Sep 4;273(36):23616]. J Biol Chem 272(39):24508–24513

    Article  CAS  PubMed  Google Scholar 

  • Ishimi Y, Sugasawa K, Hanaoka F, Eki T, Hurwitz J (1992) Topoisomerase II plays an essential role as a swivelase in the late stage of SV40 chromosome replication in vitro. J Biol Chem 267(1):462–466

    CAS  PubMed  Google Scholar 

  • Jacob F, Brenner S, Cuzin F (1964) On the regulation of DNA replication in bacteria. Cold Spring Harb Symp Quant Biol 28:329–348

    Article  Google Scholar 

  • Jallepalli PV, Kelly TJ (1996) Rum1 and Cdc18 link inhibition of cyclin-dependent kinase to the initiation of DNA replication in Schizosaccharomyces pombe. Genes Dev 10(5):541–552

    Article  CAS  PubMed  Google Scholar 

  • Jallepalli PV, Brown GW, Muzi-Falconi M, Tien D, Kelly TJ (1997) Regulation of the replication initiator protein p65cdc18 by CDK phosphorylation. Genes Dev 11(21):2767–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeruzalmi D, O’Donnell M, Kuriyan J (2002) Clamp loaders and sliding clamps. Curr Opin Struct Biol 12(2):217–224

    Article  CAS  PubMed  Google Scholar 

  • Johnson A, O’Donnell M (2005) Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74:283–315

    Google Scholar 

  • de Jong RN, van der Vliet PC, Brenkman AB (2003) Adenovirus DNA replication: protein priming, jumping back and the role of the DNA binding protein DBP. Curr Top Microbiol Immunol 272:187–211

    PubMed  Google Scholar 

  • Kaguni LS, Rossignol JM, Conaway RC, Lehman IR (1983) Isolation of an intact DNA polymerase-primase from embryos of Drosophila melanogaster. Proc Natl Acad Sci U S A 80(8):2221–2225

    Google Scholar 

  • Kamimura Y, Masumoto H, Sugino A, Araki H (1998) Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol Cell Biol 18(10):6102–6109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamimura Y, Tak YS, Sugino A, Araki H (2001) Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J 20(8):2097–2107

    Google Scholar 

  • Kanemaki M, Labib K (2006) Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks. EMBO J 25(8):1753–1763

    Google Scholar 

  • Kanke M, Kodama Y, Takahashi TS, Nakagawa T, Masukata H (2012) Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J 31(9):2182–2194

    Google Scholar 

  • Kaplan DL, Davey MJ, O’Donnell M (2003) Mcm4,6,7 uses a “pump in ring” mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J Biol Chem 278(49):49171–49182

    Google Scholar 

  • Kawasaki Y, Kim HD, Kojima A, Seki T, Sugino A (2006) Reconstitution of Saccharomyces cerevisiae prereplicative complex assembly in vitro. Genes Cells 11(7):745–756

    Google Scholar 

  • Kaykov A, Nurse P (2015) The spatial and temporal organization of origin firing during the S-phase of fission yeast. Genome Res 25(3):391–401

    Google Scholar 

  • Kelly TJ (1988) SV40 DNA replication. J Biol Chem 263:17889–17892

    CAS  PubMed  Google Scholar 

  • Kelman Z, Lee JK, Hurwitz J (1999) The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. Proc Natl Acad Sci U S A 96(26):14783–14788

    Google Scholar 

  • Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C (1999) DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3(5):679–685

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Huberman JA (2001) Regulation of replication timing in fission yeast. EMBO J 20(21):6115–6126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King AJ, van der Vliet PC (1994) A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism. EMBO J 13(23):5786–5792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong D, DePamphilis ML (2001) Site-specific DNA binding of the Schizosaccharomyces pombe origin recognition complex is determined by the Orc4 subunit. Mol Cell Biol 21(23):8095–8103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornberg A (1981) DNA replication, 1st edn. W.H. Freeman and Co, New York

    Google Scholar 

  • Kornberg A, Baker TA (1992) DNA replication, 2nd edn. Freeman and Co., New York

    Google Scholar 

  • Kurat CF, Yeeles JT, Patel H, Early A, Diffley JF (2017) Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol Cell 65(1):117–130

    Google Scholar 

  • Labib K, Diffley JF, Kearsey SE (1999) G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nat Cell Biol 1(7):415–422

    Article  CAS  PubMed  Google Scholar 

  • Labib K, Tercero JA, Diffley JF (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288(5471):1643–1647

    Article  CAS  PubMed  Google Scholar 

  • Labib K, Kearsey SE, Diffley JF (2001) MCM2-7 proteins are essential components of prereplicative complexes that accumulate cooperatively in the nucleus during G1-phase and are required to establish, but not maintain, the S-phase checkpoint. Mol Biol Cell 12(11):3658–3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang GI, Murray AW (2011) Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol 3:799–811

    Google Scholar 

  • Langston LD, Zhang D, Yurieva O, Georgescu RE, Finkelstein J, Yao NY, Indiani C, O’Donnell ME (2014) CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc Natl Acad Sci U S A 111(43):15390–15395

    Google Scholar 

  • Lee S-H, Eki T, Hurwitz J (1989) Synthesis of DNA containing the simian virus 40 origin of replication by the combined action of DNA polymerases alpha and delta. Proc Natl Acad Sci U S A 86(19):7361–7365

    Google Scholar 

  • Lee SH, Kwong AD, Pan ZQ, Hurwitz J (1991) Studies on the activator 1 protein complex, an accessory factor for proliferating cell nuclear antigen-dependent DNA polymerase delta. J Biol Chem 266(1):594–602

    CAS  PubMed  Google Scholar 

  • Lee C, Hong B, Choi JM, Kim Y, Watanabe S, Ishimi Y, Enomoto T, Tada S, Kim Y, Cho Y (2004) Structural basis for inhibition of the replication licensing factor Cdt1 by geminin. Nature 430(7002):913–917

    Google Scholar 

  • Lehman IR, Kaguni LS (1989) DNA polymerase alpha. J Biol Chem 264:4265–4268

    CAS  PubMed  Google Scholar 

  • Leipe DD, Aravind L, Koonin EV (1999) Did DNA replication evolve twice independently? Nucleic Acids Res 27(17):3389–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard AC, Mechali M (2013) DNA replication origins. Cold Spring Harb Perspect Biol 5(10):a010116

    Google Scholar 

  • Levine AJ, Kang HS, Billheimer FE (1970) DNA replication in SV40 infected cells. I. Analysis of replicating SV40 DNA. J Mol Biol 50(2):549–568

    Article  CAS  PubMed  Google Scholar 

  • Lewis JS, Jergic S, Dixon NE (2016) The E. coli DNA replication fork. Enzyme 39:31–88

    Google Scholar 

  • Li JJ, Kelly TJ (1984) Simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A 81:6973–6977

    Google Scholar 

  • Li D, Zhao R, Lilyestrom W, Gai D, Zhang R, DeCaprio JA, Fanning E, Jochimiak A, Szakonyi G, Chen XS (2003a) Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 423(6939):512–518

    Google Scholar 

  • Li X, Zhao Q, Liao R, Sun P, Wu X (2003b) The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 278(33):30854–30858

    Google Scholar 

  • Liu E, Li X, Yan F, Zhao Q, Wu X (2004) Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem 279(17):17283–17288

    Google Scholar 

  • Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP (2010) Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature 467(7314):479–483

    Google Scholar 

  • Lucas I, Germe T, Chevrier-Miller M, Hyrien O (2001) Topoisomerase II can unlink replicating DNA by precatenane removal. EMBO J 20(22):6509–6519

    Google Scholar 

  • Lutzmann M, Maiorano D, Mechali M (2006) A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. EMBO J 25(24):5764–5774

    Google Scholar 

  • Madine MA, Khoo CY, Mills AD, Laskey RA (1995) MCM3 complex required for cell cycle regulation of DNA replication in vertebrate cells [see comments]. Nature 375(6530):421–424

    Article  CAS  PubMed  Google Scholar 

  • Maine GT, Sinha P, Tye B-K (1984) Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 106:365–385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maiorano D, Moreau J, Mechali M (2000) XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis [see comments]. Nature 404(6778):622–625

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Koonin EV (2013) Archaeology of eukaryotic DNA replication. Cold Spring Harb Perspect Biol 5(11):a012963

    Google Scholar 

  • Marahrens Y, Stillman B (1992) A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255(5046):817–823

    Article  CAS  PubMed  Google Scholar 

  • Maric M, Maculins T, De Piccoli G, Labib K (2014) Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346(6208):1253596

    Google Scholar 

  • Masumoto H, Muramatsu S, Kamimura Y, Araki H (2002) S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415(6872):651–655

    Article  CAS  PubMed  Google Scholar 

  • Mattarocci S, Shyian M, Lemmens L, Damay P, Altintas DM, Shi T, Bartholomew CR, Thoma NH, Hardy CF, Shore D (2014) Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep 7(1):62–69

    Google Scholar 

  • McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93(6):1043–1053

    Article  CAS  PubMed  Google Scholar 

  • McVey D, Brizuela L, Mohr I, Marshak DR, Gluzman Y, Beach D (1989) Phosphorylation of large tumour antigen by cdc2 stimulates SV40 DNA replication. Nature 341:503–507

    Article  CAS  PubMed  Google Scholar 

  • McVey D, Ray S, Gluzman Y, Berger L, Wildeman AG, Marshak DR, Tegtmeyer P (1993) cdc2 phosphorylation of threonine 124 activates the origin-unwinding functions of simian virus 40 T antigen. J Virol 67(9):5206–5215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Melendy T, Stillman B (1993) An interaction between replication protein A and SV40 T antigen appears essential for primosome assembly during SV40 DNA replication. J Biol Chem 268(5):3389–3395

    CAS  PubMed  Google Scholar 

  • Meselson M, Stahl F (1958) The replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A 44(7):671–682

    Google Scholar 

  • Moarefi IF, Small D, Gilbert I, Hopfner M, Randall SK, Schneider C, Russo AA, Ramsperger U, Arthur AK, Stahl H, Kelly TJ, Fanning E (1993) Mutation of the cyclin-dependent kinase phosphorylation site in simian virus 40 (SV40) large T antigen specifically blocks SV40 origin DNA unwinding. J Virol 67(8):4992–5002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moir D, Stewart SE, Osmond BC, Botstein D (1982) Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics 100(4):547–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129(4):665–679

    Google Scholar 

  • Moreno S, Nurse P (1994) Regulation of progression through the G1 phase of the cell cycle by the rum1+ gene. Nature 367(6460):236–242

    Article  CAS  PubMed  Google Scholar 

  • Morrison A, Araki H, Clark AB, Hamatake RK, Sugino A (1990) A third essential DNA polymerase in S. cerevisiae. Cell 62(6):1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103(27):10236–10241

    Google Scholar 

  • Murakami Y, Wobbe CR, Weissbach L, Dean FB, Hurwitz J (1986) Role of DNA polymerase a and DNA primase in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A 83:2869–2873

    Google Scholar 

  • Murakami Y, Eki T, Hurwitz J (1992) Studies on the initiation of simian virus 40 replication in vitro: RNA primer synthesis and its elongation. Proc Natl Acad Sci U S A 89(3):952–956

    Google Scholar 

  • Muramatsu S, Hirai K, Tak YS, Kamimura Y, Araki H (2010) CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol (epsilon), and GINS in budding yeast. Genes Dev 24(6):602–612

    Google Scholar 

  • Nagata K, Guggenheimer RA, Enomoto T, Lichy JH, Hurwitz J (1982) Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci U S A 79(21):6438–6442

    Google Scholar 

  • Nagata K, Guggenheimer RA, Hurwitz J (1983) Adenovirus DNA replication in vitro: synthesis of full-length DNA with purified proteins. Proc Natl Acad Sci U S A 80(14):4266–4270

    Google Scholar 

  • Newlon CS (1988) Yeast chromosome replication and segregation. Microbiol Rev 52(4):568–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen VQ, Co C, Irie K, Li JJ (2000) Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2-7. Curr Biol 10(4):195–205

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VQ, Co C, Li JJ (2001) Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411(6841):1068–1073

    Article  CAS  PubMed  Google Scholar 

  • Nishitani H, Nurse P (1995) p65cdc18 plays a major role controlling the initiation of DNA replication in fission yeast. Cell 83(3):397–405

    Article  CAS  PubMed  Google Scholar 

  • Nishitani H, Lygerou Z, Nishimoto T, Nurse P (2000) The Cdt1 protein is required to license DNA for replication in fission yeast [see comments]. Nature 404(6778):625–628

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell M, Li H (2016) The eukaryotic replisome goes under the microscope. Curr Biol 26(6):R247–R256

    Google Scholar 

  • O’Neill EA, Fletcher C, Burrow CR, Heintz N, Roeder RG, Kelly TJ (1988) Transcription factor OTF-1 is functionally identical to the DNA replication factor NF-III. Science 241:1210–1213

    Article  PubMed  Google Scholar 

  • Okazaki R, Okazaki T, Sakabe K, Sugimoto K, Sugino A (1968) Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci U S A 59(2):598–605

    Google Scholar 

  • Olivera BM, Bonhoeffer F (1972) Discontinuous DNA replication in vitro. I. Two distinct size classes of intermediates. Nat New Biol 240(103):233–235

    Article  CAS  PubMed  Google Scholar 

  • On KF, Beuron F, Frith D, Snijders AP, Morris EP, Diffley JF (2014) Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J 33(6):605–620

    Google Scholar 

  • Pacek M, Walter JC (2004) A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J 23(18):3667–3676

    Google Scholar 

  • Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC (2006) Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 21(4):581–587

    Google Scholar 

  • Patel PK, Arcangioli B, Baker SP, Bensimon A, Rhind N (2006) DNA replication origins fire stochastically in fission yeast. Mol Biol Cell 17(1):308–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plevani P, Foiani M, Valsasnini P, Badaracco G, Cheriathundam E, Chang LM (1985) Polypeptide structure of DNA primase from a yeast DNA polymerase-primase complex. J Biol Chem 260(11):7102–7107

    CAS  PubMed  Google Scholar 

  • Pospiech H, Kursula I, Abdel-Aziz W, Malkas L, Uitto L, Kastelli M, Vihinen-Ranta M, Eskelinen S, Syvaoja JE (1999) A neutralizing antibody against human DNA polymerase epsilon inhibits cellular but not SV40 DNA replication. Nucleic Acids Res 27(19):3799–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prelich G, Tan CK, Kostura M, Mathews MB, So AG, Downey KM, Stillman B (1987) Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature 326(6112):517–520

    Article  CAS  PubMed  Google Scholar 

  • Pruijn GJ, van Driel W, van der Vliet PC (1986) Nuclear factor III, a novel sequence-specific DNA-binding protein from HeLa cells stimulating adenovirus DNA replication. Nature 322(6080):656–659

    Article  CAS  PubMed  Google Scholar 

  • Ralph E, Boye E, Kearsey SE (2006) DNA damage induces Cdt1 proteolysis in fission yeast through a pathway dependent on Cdt2 and Ddb1. EMBO Rep 7(11):1134–1139

    Google Scholar 

  • Randell JC, Fan A, Chan C, Francis LI, Heller RC, Galani K, Bell SP (2010) Mec1 is one of multiple kinases that prime the Mcm2-7 helicase for phosphorylation by Cdc7. Mol Cell 40(3):353–363

    Google Scholar 

  • Rao PN, Johnson RT (1970) Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225(228):159–164

    Article  CAS  PubMed  Google Scholar 

  • Rekosh DM, Russell WC, Bellet AJ, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11(2):283–295

    Article  CAS  PubMed  Google Scholar 

  • Remus D, Beall EL, Botchan MR (2004) DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J 23(4):897–907

    Google Scholar 

  • Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139(4):719–730

    Google Scholar 

  • Romanowski P, Madine MA, Laskey RA (1996a) XMCM7, a novel member of the Xenopus MCM family, interacts with XMCM3 and colocalizes with it throughout replication [see comments]. Proc Natl Acad Sci U S A 93(19):10189–10194

    Google Scholar 

  • Romanowski P, Madine MA, Rowles A, Blow JJ, Laskey RA (1996b) The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Curr Biol 6(11):1416–1425

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld PJ, Kelly TJ (1986) Purification of nuclear factor I by DNA recognition site affinity chromatography. J Biol Chem 261(3):1398–1408

    CAS  PubMed  Google Scholar 

  • Rowles A, Chong JP, Brown L, Howell M, Evan GI, Blow JJ (1996) Interaction between the origin recognition complex and the replication licensing system in Xenopus. Cell 87(2):287–296

    Article  CAS  PubMed  Google Scholar 

  • Rowles A, Tada S, Blow JJ (1999) Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins. J Cell Sci 112(Pt 12):2011–2018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samora CP, Saksouk J, Goswami P, Wade BO, Singleton MR, Bates PA, Lengronne A, Costa A, Uhlmann F (2016) Ctf4 links DNA replication with sister chromatid cohesion establishment by recruiting the Chl1 helicase to the replisome. Mol Cell 63(3):371–384

    Google Scholar 

  • Santocanale C, Diffley JF (1998) A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395(6702):615–618

    Article  CAS  PubMed  Google Scholar 

  • Santocanale C, Sharma K, Diffley JF (1999) Activation of dormant origins of DNA replication in budding yeast. Genes Dev 13(18):2360–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheidtmann KH, Virshup DM, Kelly TJ (1991) Protein phosphatase 2A dephosphorylates SV40 large T antigen specifically at residues involved in regulation of the DNA binding activity. J Virol 65:2098–2101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segurado M, de Luis A, Antequera F (2003) Genome-wide distribution of DNA replication origins at A+T-rich islands in Schizosaccharomyces pombe. EMBO Rep 4(11):1048–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senga T, Sivaprasad U, Zhu W, Park JH, Arias EE, Walter JC, Dutta A (2006) PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. J Biol Chem 281(10):6246–6252

    Google Scholar 

  • Sengupta S, van Deursen F, de Piccoli G, Labib K (2013) Dpb2 integrates the leading-strand DNA polymerase into the eukaryotic replisome. Curr Biol 23(7):543–552

    Google Scholar 

  • Sheu YJ, Stillman B (2010) The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 463(7277):113–117

    Google Scholar 

  • Shirahige K, Hori Y, Shiraishi K, Yamashita M, Takahashi K, Obuse C, Tsurimoto T, Yoshikawa H (1998) Regulation of DNA-replication origins during cell-cycle progression. Nature 395(6702):618–621

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui K, On KF, Diffley JF (2013) Regulating DNA replication in eukarya. Cold Spring Harb Perspect Biol 5(9), a012922

    Google Scholar 

  • Simmons DT, Melendy T, Usher D, Stillman B (1996) Simian virus 40 large T antigen binds to topoisomerase I. Virology 222(2):365–374

    Article  CAS  PubMed  Google Scholar 

  • Simon AC, Zhou JC, Perera RL, van Deursen F, Evrin C, Ivanova ME, Kilkenny ML, Renault L, Kjaer S, Matak-Vinkovic D, Labib K, Costa A, Pellegrini L (2014) A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome. Nature 510(7504):293–297

    Google Scholar 

  • Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50

    Google Scholar 

  • Skarstad K, Katayama T (2013) Regulating DNA replication in bacteria. Cold Spring Harb Perspect Biol 5(4), a012922

    Google Scholar 

  • Speck C, Stillman B (2007) Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J Biol Chem 282(16):11705–11714

    Google Scholar 

  • Speck C, Chen Z, Li H, Stillman B (2005) ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol 12(11):965–971

    Google Scholar 

  • Stahl H, Droge P, Knippers R (1986) DNA helicase activity of SV40 large tumor antigen. EMBO J 5:1939–1944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatoyannopoulos JA, Adzhubei I, Thurman RE, Kryukov GV, Mirkin SM, Sunyaev SR (2009) Human mutation rate associated with DNA replication timing. Nat Genet 41(4):393–395

    Google Scholar 

  • Stillman BW (1983) The replication of adenovirus DNA with purified proteins. Cell 35(1):7–9

    Article  CAS  PubMed  Google Scholar 

  • Stillman B (1989) Initiation of eukaryotic DNA replication in vitro. Annu Rev Cell Biol 5(197):197–245

    Article  CAS  PubMed  Google Scholar 

  • Stinchcomb DT, Struhl K, Davis RW (1979) Isolation and characterisation of a yeast chromosomal replicator. Nature 282(5734):39–43

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto N, Tatsumi Y, Tsurumi T, Matsukage A, Kiyono T, Nishitani H, Fujita M (2004) Cdt1 phosphorylation by cyclin A-dependent kinases negatively regulates its function without affecting geminin binding. J Biol Chem 279(19):19691–19697

    Google Scholar 

  • Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H (2014) Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev 28(20):2291–2303

    Google Scholar 

  • Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT, Li H, O’Donnell ME (2015) The architecture of a eukaryotic replisome. Nat Struct Mol Biol 22(12):976–982

    Google Scholar 

  • Sundin O, Varshavsky A (1980) Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell 21(1):103–114

    Article  CAS  PubMed  Google Scholar 

  • Sundin O, Varshavsky A (1981) Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of the final stages of SV40 DNA replication. Cell 25(3):659–669

    Article  CAS  PubMed  Google Scholar 

  • Sussenbach JS, van der Vliet PC (1984) The mechanism of adenovirus DNA replication and the characterization of replication proteins. Curr Top Microbiol Immunol 109:53–73

    CAS  PubMed  Google Scholar 

  • Sutani T, Shirahige K (2016) Attaching accessory devices to the replisome. Mol Cell 63(3):347–348. https://doi.org/10.1016/j.molcel.2016.07.017

  • Tada S, Li A, Maiorano D, Mechali M, Blow JJ (2001) Repression of origin assembly in metaphase depends on inhibition of RLF- B/Cdt1 by geminin. Nat Cell Biol 3(2):107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tak YS, Tanaka Y, Endo S, Kamimura Y, Araki H (2006) A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2-Dpb11. EMBO J 25(9):1987–1996

    Google Scholar 

  • Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H (2003) GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev 17(9):1153–1165

    Google Scholar 

  • Takeda DY, Parvin JD, Dutta A (2005) Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J Biol Chem 280(24):23416–23423

    Google Scholar 

  • Tamanoi F, Stillman BW (1982) Function of adenovirus terminal protein in the initiation of DNA replication. Proc Natl Acad Sci U S A 79(7):2221–2225

    Google Scholar 

  • Tamanoi F, Stillman BW (1983) Initiation of adenovirus DNA replication in vitro requires a specific DNA sequence. Proc Natl Acad Sci U S A 80(21):6446–6450

    Google Scholar 

  • Tan CK, Castillo C, So AG, Downey KM (1986) An auxiliary protein for DNA polymerase-delta from fetal calf thymus. J Biol Chem 261(26):12310–12316

    CAS  PubMed  Google Scholar 

  • Tanaka S, Araki H (2013) Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol 5(12), a010371

    Google Scholar 

  • Tanaka S, Diffley JF (2002) Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol 4(3):198–207

    Google Scholar 

  • Tanaka T, Knapp D, Nasmyth K (1997) Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90(4):649–660

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H (2007) CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445(7125):328–332

    Google Scholar 

  • Tanaka H, Katou Y, Yagura M, Saitoh K, Itoh T, Araki H, Bando M, Shirahige K (2009) Ctf4 coordinates the progression of helicase and DNA polymerase alpha. Genes Cells 14(7):807–820

    Google Scholar 

  • Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H (2011) Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 21(24):2055–2063

    Google Scholar 

  • Tapper DP, DePamphilis ML (1978) Discontinuous DNA replication: accumulation of Simian virus 40 DNA at specific stages in its replication. J Mol Biol 120(3):401–422

    Article  CAS  PubMed  Google Scholar 

  • Tegtmeyer P (1972) Simian virus 40 deoxyribonucleic acid synthesis: the viral replicon. J Virol 10(4):591–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP (2015) Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161(3):513–525

    Google Scholar 

  • Tjian R (1978) The binding site on SV40 DNA for a T antigen-related protein. Cell 13:165–179

    Article  CAS  PubMed  Google Scholar 

  • Tseng BY, Ahlem CN (1982) DNA primase activity from human lymphocytes. Synthesis of oligoribonucleotides that prime DNA synthesis. J Biol Chem 257(13):7280–7283

    CAS  PubMed  Google Scholar 

  • Tsurimoto T, Stillman B (1989) Purification of a cellular replication factor, RF-C, that is required for coordinated synthesis of leading and lagging strands during simian virus 40 DNA replication in vitro. Mol Cell Biol 9(2):609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsurimoto T, Stillman B (1990) Functions of replication factor C and proliferating-cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Proc Natl Acad Sci U S A 87:1023–1027

    Google Scholar 

  • Tsurimoto T, Stillman B (1991a) Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J Biol Chem 266(3):1950–1960

    CAS  PubMed  Google Scholar 

  • Tsurimoto T, Stillman B (1991b) Replication factors required for SV40 DNA replication in vitro. II. Switching of DNA polymerase alpha and delta during initiation of leading and lagging strand synthesis. J Biol Chem 266(3):1961–1968

    CAS  PubMed  Google Scholar 

  • Tsurimoto T, Melendy T, Stillman B (1990) Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature 346(6284):534–539

    Article  CAS  PubMed  Google Scholar 

  • Valle M, Gruss C, Halmer L, Carazo JM, Donate LE (2000) Large T-antigen double hexamers imaged at the simian virus 40 origin of replication. Mol Cell Biol 20(1):34–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Houten J, Newlon CS (1990) Mutational analysis of the consensus sequence of a replication origin from yeast chromosome III. Mol Cell Biol 10(8):3917–3925

    Article  PubMed  PubMed Central  Google Scholar 

  • Vashee S, Cvetic C, Lu W, Simancek P, Kelly TJ, Walter JC (2003) Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev 17(15):1894–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa F, Simon AC, Ortiz Bazan MA, Kilkenny ML, Wirthensohn D, Wightman M, Matak-Vinkovic D, Pellegrini L, Labib K (2016) Ctf4 is a hub in the eukaryotic replisome that links multiple CIP-box proteins to the CMG helicase. Mol Cell 63(3):385–396

    Google Scholar 

  • Virshup DM, Kauffman MG, Kelly TJ (1989) Activation of SV40 DNA replication in vitro by cellular protein phosphatase 2A. EMBO J 8(12):3891–3898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Virshup DM, Russo AA, Kelly TJ (1992) Mechanism of activation of simian virus 40 DNA replication by protein phosphatase 2A. Mol Cell Biol 12(11):4883–4895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vujcic M, Miller CA, Kowalski D (1999) Activation of silent replication origins at autonomously replicating sequence elements near the HML locus in budding yeast. Mol Cell Biol 19(9):6098–6109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waga S, Stillman B (1994) Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369(6477):207–212

    Article  CAS  PubMed  Google Scholar 

  • Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721–751

    Article  CAS  PubMed  Google Scholar 

  • Waga S, Bauer G, Stillman B (1994) Reconstitution of complete SV40 DNA replication with purified replication factors. J Biol Chem 269(14):10923–10934

    CAS  PubMed  Google Scholar 

  • Watase G, Takisawa H, Kanemaki MT (2012) Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Curr Biol 22(4):343–349

    Google Scholar 

  • Weinberg DH, Kelly TJ (1989) Requirement for two DNA polymerases in the replication of simian virus 40 DNA in vitro. Proc Natl Acad Sci U S A 86:9742–9746

    Google Scholar 

  • Wobbe CR, Weissbach L, Borowiec JA, Dean FB, Murakami Y, Bullock P, Hurwitz J (1987) Replication of SV40 origin-containing DNA with purified proteins. Proc Natl Acad Sci U S A 84:1834–1838

    Google Scholar 

  • Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A (2000) Inhibition of eukaryotic DNA replication by geminin binding to cdt1. Science 290(5500):2309–2312

    Article  CAS  PubMed  Google Scholar 

  • Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    Article  CAS  PubMed  Google Scholar 

  • Wold MS, Kelly TJ (1988) Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad U S A 85:2523–2527

    Google Scholar 

  • Wold MS, Li JJ, Kelly TJ (1987) Initiation of simian virus 40 DNA replication in vitro: large-tumor-antigen- and origin-dependent unwinding of the template. Proc Natl Acad Sci U S A 84:3643–3647

    Google Scholar 

  • Wold MS, Li JJ, Weinberg DH, Virshup DM, Sherley JM, Verheyen E, Kelly T (1988) Cellular proteins required for SV40 DNA replication in vitro. In: Kelly T, Stillman B (eds) Eukaryotic DNA replication. Cancer Cells. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 133–142

    Google Scholar 

  • Woo YH, Li WH (2012) DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat Commun 3:1004

    Google Scholar 

  • Yan H, Gibson S, Tye BK (1991) Mcm2 and Mcm3, two proteins important for ARS activity, are related in structure and function. Genes Dev 5(6):944–957

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Wold MS, Li JJ, Kelly TJ, Liu LF (1987) Roles of DNA topoisomerases in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A 84(4):950–954

    Google Scholar 

  • Yao NY, O’Donnell M (2012) The RFC clamp loader: structure and function. Subcell Biochem 62:259–279

    Google Scholar 

  • Yao NY, Johnson A, Bowman GD, Kuriyan J, O’Donnell M (2006) Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C. J Biol Chem 281(25):17528–17539

    Google Scholar 

  • Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF (2015) Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519(7544):431–435

    Google Scholar 

  • Yeeles JT, Janska A, Early A, Diffley JF (2017) How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol Cell 65(1):105–116

    Google Scholar 

  • Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O’Donnell ME, Li H (2016) Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol 23(3):217–224

    Google Scholar 

  • Zegerman P, Diffley JF (2007) Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445(7125):281–285

    Google Scholar 

  • Zegerman P, Diffley JF (2010) Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature 467(7314):474–478

    Google Scholar 

  • Zhou B, Arnett DR, Yu X, Brewster A, Sowd GA, Xie CL, Vila S, Gai D, Fanning E, Chen XS (2012) Structural basis for the interaction of a hexameric replicative helicase with the regulatory subunit of human DNA polymerase alpha-primase. J Biol Chem 287(32):26854–26866

    Google Scholar 

  • Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A (2007) Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev 21(18):2288–2299

    Google Scholar 

  • Zlotkin T, Kaufmann G, Jiang Y, Lee MY, Uitto L, Syvaoja J, Dornreiter I, Fanning E, Nethanel T (1996) DNA polymerase epsilon may be dispensable for SV40- but not cellular-DNA replication. EMBO J 15(9):2298–2305

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kelly, T. (2017). Historical Perspective of Eukaryotic DNA Replication. In: Masai, H., Foiani, M. (eds) DNA Replication. Advances in Experimental Medicine and Biology, vol 1042. Springer, Singapore. https://doi.org/10.1007/978-981-10-6955-0_1

Download citation

Publish with us

Policies and ethics