Advertisement

Historical Perspective of Eukaryotic DNA Replication

  • Thomas KellyEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1042)

Abstract

The replication of the genome of a eukaryotic cell is a complex process requiring the ordered assembly of multiprotein replisomes at many chromosomal sites. The process is strictly controlled during the cell cycle to ensure the complete and faithful transmission of genetic information to progeny cells. Our current understanding of the mechanisms of eukaryotic DNA replication has evolved over a period of more than 30 years through the efforts of many investigators. The aim of this perspective is to provide a brief history of the major advances during this period.

Keywords

DNA replication Eukaryotes Viral models Origin of DNA replication Prereplicative complex Helicase Initiator Replisome 

References

  1. Abid Ali F, Renault L, Gannon J, Gahlon HL, Kotecha A, Zhou JC, Rueda D, Costa A (2016) Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate. Nat Commun 7:10708Google Scholar
  2. Aparicio OM, Weinstein DM, Bell SP (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91(1):59–69PubMedCrossRefGoogle Scholar
  3. Aparicio OM, Stout AM, Bell SP (1999) Differential assembly of cdc45p and DNA polymerases at early and late origins of DNA replication [in process citation]. Proc Natl Acad Sci U S A 96(16):9130–9135Google Scholar
  4. Araki H, Ropp PA, Johnson AL, Johnston LH, Morrison A, Sugino A (1992) DNA polymerase II, the probable homolog of mammalian DNA polymerase epsilon, replicates chromosomal DNA in the yeast Saccharomyces cerevisiae. EMBO J 11:733PubMedPubMedCentralGoogle Scholar
  5. Araki H, Leem SH, Phongdara A, Sugino A (1995) Dpb11, which interacts with DNA polymerase II (epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc Natl Acad Sci U S A 92(25):11791–11795Google Scholar
  6. Arias EE, Walter JC (2005) Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev 19(1):114–126Google Scholar
  7. Arias EE, Walter JC (2006) PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat Cell Biol 8(1):84–90Google Scholar
  8. Arias EE, Walter JC (2007) Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 21(5):497–518Google Scholar
  9. Balakrishnan L, Bambara RA (2013) Okazaki fragment metabolism. Cold Spring Harb Perspect Biol 5(2), a010173Google Scholar
  10. Baxter J, Diffley JF (2008) Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast. Mol Cell 30(6):790–802Google Scholar
  11. Beall EL, Manak JR, Zhou S, Bell M, Lipsick JS, Botchan MR (2002) Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420(6917):833–837Google Scholar
  12. Bechhoefer J, Rhind N (2012) Replication timing and its emergence from stochastic processes. Trends Genet 28(8):374–381Google Scholar
  13. Bell SP (1995) Eukaryotic replicators and associated protein complexes. Curr Opin Genet Dev 5(2):162–167PubMedCrossRefGoogle Scholar
  14. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374PubMedCrossRefGoogle Scholar
  15. Bell SP, Kaguni JM (2013) Helicase loading at chromosomal origins of replication. Cold Spring Harb Perspect Biol 5(6), a010124Google Scholar
  16. Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357(6374):128–134PubMedCrossRefGoogle Scholar
  17. Bell SP, Kobayashi R, Stillman B (1993) Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262(5141):1844–1849Google Scholar
  18. Bell SP, Mitchell J, Leber J, Kobayashi R, Stillman B (1995) The multidomain structure of Orc1p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell 83(4):563–568PubMedCrossRefGoogle Scholar
  19. Berbenetz NM, Nislow C, Brown GW (2010) Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 6(9), e1001092Google Scholar
  20. Bessman MJ, Kornberg A, Lehman IR, Simms ES (1956) Enzymic synthesis of deoxyribonucleic acid. Biochim Biophys Acta 21(1):197–198PubMedCrossRefGoogle Scholar
  21. Blow JJ (1993) Preventing re-replication of DNA in a single cell cycle: evidence for a replication licensing factor. J Cell Biol 122(5):993–1002PubMedCrossRefGoogle Scholar
  22. Blow JJ, Laskey RA (1988) A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature 332:546–548PubMedCrossRefGoogle Scholar
  23. Bochman ML, Schwacha A (2008) The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31(2):287–293Google Scholar
  24. Borowiec JA, Hurwitz J (1988) Localized melting and structural changes in the SV40 origin of replication induced by T-antigen. EMBO J 7(10):3149–3158PubMedPubMedCentralGoogle Scholar
  25. Bowman GD, Goedken ER, Kazmirski SL, O’Donnell M, Kuriyan J (2005) DNA polymerase clamp loaders and DNA recognition. FEBS Lett 579(4):863–867Google Scholar
  26. Breier AM, Chatterji S, Cozzarelli NR (2004) Prediction of Saccharomyces cerevisiae replication origins. Genome Biol 5(4):R22PubMedPubMedCentralCrossRefGoogle Scholar
  27. Brewer BJ, Fangman WL (1987) The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51(3):463–471PubMedCrossRefGoogle Scholar
  28. Broach JR, Li YY, Feldman J, Jayaram M, Abraham J, Nasmyth KA, Hicks JB (1983) Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harb Symp Quant Biol 47(Pt 2):1165–1173PubMedCrossRefGoogle Scholar
  29. Broek D, Bartlett R, Crawford K, Nurse P (1991) Involvement of p34cdc2 in establishing the dependency of S phase on mitosis. Nature 349(6308):388–393Google Scholar
  30. Brush GS, Kelly TJ, Stillman B (1995) Identification of eukaryotic DNA replication proteins using simian virus 40 in vitro replication system. Methods Enzymol 262:522–548PubMedCrossRefGoogle Scholar
  31. Budd ME, Sitney KC, Campbell JL (1989) Purification of DNA polymerase II, a distinct DNA polymerase, from Saccharomyces cerevisiae. J Biol Chem 264(11):6557–6565PubMedGoogle Scholar
  32. Burgers PM, Gordenin D, Kunkel TA (2016) Who is leading the replication fork, Pol epsilon or Pol delta? Mol Cell 61(4):492–493Google Scholar
  33. Byrnes JJ, Downey KM, Black VL, So AG (1976) A new mammalian DNA polymerase with 3′ to 5′ exonuclease activity: DNA polymerase delta. Biochemistry 15(13):2817–2823PubMedCrossRefGoogle Scholar
  34. Cai J, Uhlmann F, Gibbs E, Flores-Rozas H, Lee CG, Phillips B, Finkelstein J, Yao N, O’Donnell M, Hurwitz J (1996) Reconstitution of human replication factor C from its five subunits in baculovirus-infected insect cells. Proc Natl Acad Sci U S A 93(23):12896–12901Google Scholar
  35. Cairns J (1963) The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol 6:208–213PubMedCrossRefGoogle Scholar
  36. Campbell JL (1986) Eukaryotic DNA replication. Annu Rev Biochem 55:733–771PubMedCrossRefGoogle Scholar
  37. Campbell JL, Newlon CS (1991) Chromosomal DNA replication. In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cellular biology of the yeast saccharomyces, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 41–146Google Scholar
  38. Cegielska A, Virshup DM (1993) Control of simian virus 40 DNA replication by the HeLa cell nuclear kinase casein kinase I. Mol Cell Biol 13(2):1202–1211PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cegielska A, Moarefi I, Fanning E, Virshup DM (1994) T-antigen kinase inhibits simian virus 40 DNA replication by phosphorylation of intact T antigen on serines 120 and 123. J Virol 68(1):269–275PubMedPubMedCentralGoogle Scholar
  40. Celniker SE, Sweder K, Srienc F, Bailey JE, Campbell JL (1984) Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol Cell Biol 4(11):2455–2466PubMedPubMedCentralCrossRefGoogle Scholar
  41. Challberg MD, Kelly TJ (1979) Adenovirus DNA replication in vitro. Proc Natl Acad Sci U S A 76(2):655–659Google Scholar
  42. Challberg MD, Kelly TJ (1982) Eukaryotic DNA replication: viral and plasmid model systems. Annu Rev Biochem 51:901–934PubMedCrossRefGoogle Scholar
  43. Challberg MD, Kelly TJ (1989) Animal virus DNA replication. Annu Rev Biochem 58(671):671–717PubMedCrossRefGoogle Scholar
  44. Challberg MD, Desiderio SV, Kelly TJ (1980) Adenovirus DNA replication in vitro: characterization of a protein covalently linked to nascent DNA strands. Proc Natl Acad Sci U S A 77(9):5105–5109Google Scholar
  45. Challberg MD, Ostrove JM, Kelly TJ Jr (1982) Initiation of adenovirus DNA replication: detection of covalent complexes between nucleotide and the 80-kilodalton terminal protein. J Virol 41(1):265–270PubMedPubMedCentralGoogle Scholar
  46. Chen R, Wold MS (2014) Replication protein a: single-stranded DNA’s first responder: dynamic DNA-interactions allow replication protein A to direct single-strand DNA intermediates into different pathways for synthesis or repair. BioEssays 36(12):1156–1161Google Scholar
  47. Chong JP, Mahbubani HM, Khoo CY, Blow JJ (1995) Purification of an MCM-containing complex as a component of the DNA replication licensing system [see comments]. Nature 375(6530):418–421PubMedCrossRefGoogle Scholar
  48. Chong JP, Thommes P, Blow JJ (1996) The role of MCM/P1 proteins in the licensing of DNA replication. Trends Biochem Sci 21(3):102–106PubMedCrossRefGoogle Scholar
  49. Chong JP, Hayashi MK, Simon MN, Xu RM, Stillman B (2000) A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci U S A 97(4):1530–1535Google Scholar
  50. Chuang R, Kelly TJ (1999) The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc Natl Acad Sci U S A 96:2656–2661Google Scholar
  51. Clarey MG, Erzberger JP, Grob P, Leschziner AE, Berger JM, Nogales E, Botchan M (2006) Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex. Nat Struct Mol Biol 13(8):684–690Google Scholar
  52. Clyne RK, Kelly TJ (1995) Genetic analysis of an ARS element from the fission yeast Schizosaccharomyces pombe. EMBO J 14(24):6348–6357PubMedPubMedCentralGoogle Scholar
  53. Cocker JH, Piatti S, Santocanale C, Nasmyth K, Diffley JF (1996) An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379(6561):180–182PubMedCrossRefGoogle Scholar
  54. Coleman TR, Carpenter PB, Dunphy WG (1996) The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell 87(1):53–63PubMedCrossRefGoogle Scholar
  55. Collins KL, Kelly TJ (1991) Effects of T antigen and replication protein A on the initiation of DNA synthesis by DNA polymerase alpha-primase. Mol Cell Biol 11(4):2108–2115PubMedPubMedCentralCrossRefGoogle Scholar
  56. Collins KL, Russo AA, Tseng BY, Kelly TJ (1993) The role of the 70 kDa subunit of human DNA polymerase alpha in DNA replication. EMBO J 12(12):4555–4566PubMedPubMedCentralGoogle Scholar
  57. Cook JG, Chasse DA, Nevins JR (2004) The regulated association of Cdt1 with minichromosome maintenance proteins and Cdc6 in mammalian cells. J Biol Chem 279(10):9625–9633Google Scholar
  58. Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM (2011) The structural basis for MCM2-7 helicase activation by GINS and Cdc45. Nat Struct Mol Biol 18(4):471–477Google Scholar
  59. Costa A, Renault L, Swuec P, Petojevic T, Pesavento JJ, Ilves I, MacLellan-Gibson K, Fleck RA, Botchan MR, Berger JM (2014) DNA binding polarity, dimerization, and ATPase ring remodeling in the CMG helicase of the eukaryotic replisome. Elife 3, e03273Google Scholar
  60. D’Urso G, Marraccino RL, Marshak DR, Roberts JM (1990) Cell cycle control of DNA replication by a homologue from human cells of the p34cdc2 protein kinase. Science 250(4982):786–791PubMedCrossRefGoogle Scholar
  61. Dahmann C, Diffley JF, Nasmyth KA (1995) S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr Biol 5(11):1257–1269PubMedCrossRefGoogle Scholar
  62. Dai J, Chuang RY, Kelly TJ (2005) DNA replication origins in the Schizosaccharomyces pombe genome. Proc Natl Acad Sci U S A 102(2):337–342Google Scholar
  63. Danna KJ, Nathans D (1972) Bidirectional replication of Simian Virus 40 DNA. Proc Natl Acad Sci U S A 69(11):3097–3100Google Scholar
  64. Dave A, Cooley C, Garg M, Bianchi A (2014) Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep 7(1):53–61Google Scholar
  65. Dean FB, Bullock P, Murakami Y, Wobbe CR, Weissbach L, Hurwitz J (1987) Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc Natl Acad Sci U S A 84:16–20Google Scholar
  66. Dean FB, Borowiec JA, Eki T, Hurwitz J (1992) The simian virus 40 T antigen double hexamer assembles around the DNA at the replication origin. J Biol Chem 267(20):14129–14137PubMedGoogle Scholar
  67. Deegan TD, Yeeles JT, Diffley JF (2016) Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation. EMBO J 35(9):961–973Google Scholar
  68. Delucia A, Lewton B, Tjian R, Tegtmeyer P (1983) Topography of simian virus 40 A protein-DNA complexes: arrangement of pentanucleotide interaction sites at the origin of replication. J Virol 46:143–150PubMedPubMedCentralGoogle Scholar
  69. Dershowitz A, Snyder M, Sbia M, Skurnick JH, Ong LY, Newlon CS (2007) Linear derivatives of Saccharomyces cerevisiae chromosome III can be maintained in the absence of autonomously replicating sequence elements. Mol Cell Biol 27(13):4652–4663Google Scholar
  70. Desiderio SV, Kelly TJ (1981) Structure of the linkage between adenovirus DNA and the 55,000 molecular weight terminal protein. J Mol Biol 145(2):319–337PubMedCrossRefGoogle Scholar
  71. van Deursen F, Sengupta S, De Piccoli G, Sanchez-Diaz A, Labib K (2012) Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J 31(9):2195–2206Google Scholar
  72. Devault A, Vallen EA, Yuan T, Green S, Bensimon A, Schwob E (2002) Identification of Tah11/Sid2 as the ortholog of the replication licensing factor Cdt1 in Saccharomyces cerevisiae. Curr Biol 12(8):689–694PubMedCrossRefGoogle Scholar
  73. Devbhandari S, Jiang J, Kumar C, Whitehouse I, Remus D (2017) Chromatin constrains the initiation and elongation of DNA replication. Mol Cell 65(1):131–141Google Scholar
  74. Dewar JM, Budzowska M, Walter JC (2015) The mechanism of DNA replication termination in vertebrates. Nature 525(7569):345–350Google Scholar
  75. Diffley JF (1996) Once and only once upon a time: specifying and regulating origins of DNA replication in eukaryotic cells. Genes Dev 10(22):2819–2830PubMedCrossRefGoogle Scholar
  76. Diffley JF, Cocker JH (1992) Protein-DNA interactions at a yeast replication origin. Nature 357(6374):169–172PubMedCrossRefGoogle Scholar
  77. Diffley JF, Cocker JH, Dowell SJ, Rowley A (1994) Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78(2):303–316PubMedCrossRefGoogle Scholar
  78. DiNardo S, Voelkel K, Sternglanz R (1984) DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci U S A 81(9):2616–2620Google Scholar
  79. Donovan S, Harwood J, Drury LS, Diffley JF (1997) Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci U S A 94(11):5611–5616Google Scholar
  80. Dornreiter I, Erdile LF, Gilbert IU, von Winkler D, Kelly TJ, Fanning E (1992) Interaction of DNA polymerase alpha-primase with cellular replication protein A and SV40 T antigen. EMBO J 11(2):769–776PubMedPubMedCentralGoogle Scholar
  81. Drury LS, Perkins G, Diffley JF (1997) The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J 16(19):5966–5976PubMedPubMedCentralCrossRefGoogle Scholar
  82. Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal protein/protein interaction domain of saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain [in process citation]. J Biol Chem 274(32):22283–22288PubMedCrossRefGoogle Scholar
  83. Dubey DD, Zhu J, Carlson DL, Sharma K, Huberman JA (1994) Three ARS elements contribute to the ura4 replication origin region in the fission yeast, Schizosaccharomyces pombe. EMBO J 13(15):3638–3647PubMedPubMedCentralGoogle Scholar
  84. Dubey DD, Kim SM, Todorov IT, Huberman JA (1996) Large, complex modular structure of a fission yeast DNA replication origin. Curr Biol 6(4):467–473PubMedCrossRefGoogle Scholar
  85. Eaton ML, Prinz JA, MacAlpine HK, Tretyakov G, Kharchenko PV, MacAlpine DM (2011) Chromatin signatures of the Drosophila replication program. Genome Res 21(2):164–174Google Scholar
  86. Edgell DR, Doolittle FW (1997) Archaea and the origin(s) of DNA replication proteins. Cell 89:995–998PubMedCrossRefGoogle Scholar
  87. Enemark EJ, Joshua-Tor L (2008) On helicases and other motor proteins. Curr Opin Struct Biol 18(2):243–257Google Scholar
  88. Enomoto T, Lichy JH, Ikeda JE, Hurwitz J (1981) Adenovirus DNA replication in vitro: purification of the terminal protein in a functional form. Proc Natl Acad Sci U S A 78(11):6779–6783Google Scholar
  89. Evrin C, Clarke P, Zech J, Lurz R, Sun J, Uhle S, Li H, Stillman B, Speck C (2009) A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 106(48):20240–20245Google Scholar
  90. Fachinetti D, Bermejo R, Cocito A, Minardi S, Katou Y, Kanoh Y, Shirahige K, Azvolinsky A, Zakian VA, Foiani M (2010) Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol Cell 39(4):595–605Google Scholar
  91. Fairman MP, Stillman B (1988) Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J 7(4):1211–1218PubMedPubMedCentralGoogle Scholar
  92. Fangman WL, Brewer BJ (1991) Activation of replication origins within yeast chromosomes. Annu Rev Cell Biol 7(375):375–402PubMedCrossRefGoogle Scholar
  93. Feng W, D’Urso G (2001) Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control. Mol Cell Biol 21(14):4495–4504PubMedPubMedCentralCrossRefGoogle Scholar
  94. Friedman KL, Brewer BJ, Fangman WL (1997) Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 2(11):667–678PubMedCrossRefGoogle Scholar
  95. Fu YV, Yardimci H, Long DT, Ho TV, Guainazzi A, Bermudez VP, Hurwitz J, van Oijen A, Scharer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146(6):931–941Google Scholar
  96. Gai D, Zhao R, Li D, Finkielstein CV, Chen XS (2004) Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119(1):47–60Google Scholar
  97. Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8(4):358–366Google Scholar
  98. Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J 28(19):2992–3004Google Scholar
  99. Georgescu R, Langston L, O’Donnell M (2015a) A proposal: evolution of PCNA’s role as a marker of newly replicated DNA. DNA Repair (Amst) 29:4–15Google Scholar
  100. Georgescu RE, Schauer GD, Yao NY, Langston LD, Yurieva O, Zhang D, Finkelstein J, O’Donnell ME (2015b) Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Elife 4, e04988Google Scholar
  101. Gopalakrishnan V, Simancek P, Houchens C, Snaith HA, Frattini MG, Sazer S, Kelly TJ (2001) Redundant control of rereplication in fission yeast. Proc Natl Acad Sci U S A 98(23):13114–13119Google Scholar
  102. Gros J, Devbhandari S, Remus D (2014) Origin plasticity during budding yeast DNA replication in vitro. EMBO J 33(6):621–636Google Scholar
  103. Gros J, Kumar C, Lynch G, Yadav T, Whitehouse I, Remus D (2015) Post-licensing specification of eukaryotic replication origins by facilitated Mcm2-7 sliding along DNA. Mol Cell 60(5):797–807Google Scholar
  104. Guarino E, Shepherd ME, Salguero I, Hua H, Deegan RS, Kearsey SE (2011) Cdt1 proteolysis is promoted by dual PIP degrons and is modulated by PCNA ubiquitylation. Nucleic Acids Res 39(14):5978–5990Google Scholar
  105. Hardy CF, Dryga O, Seematter S, Pahl PM, Sclafani RA (1997) mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc Natl Acad Sci U S A 94(7):3151–3155Google Scholar
  106. Hauk G, Berger JM (2016) The role of ATP-dependent machines in regulating genome topology. Curr Opin Struct Biol 36:85–96Google Scholar
  107. Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H (2012) Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev 26(2):137–150Google Scholar
  108. Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H (2009) The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol 11(3):357–362Google Scholar
  109. Hayles J, Fisher D, Woollard A, Nurse P (1994) Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2-mitotic B cyclin complex. Cell 78(5):813–822PubMedCrossRefGoogle Scholar
  110. Heichinger C, Penkett CJ, Bahler J, Nurse P (2006) Genome-wide characterization of fission yeast DNA replication origins. EMBO J 25(21):5171–5179Google Scholar
  111. Heller RC, Kang S, Lam WM, Chen S, Chan CS, Bell SP (2011) Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146(1):80–91Google Scholar
  112. Hennessy KM, Clark CD, Botstein D (1990) Subcellular localization of yeast CDC46 varies with the cell cycle. Genes Dev 4(12B):2252–2263PubMedCrossRefGoogle Scholar
  113. Herrmann R, Huf J, Bonhoeffer F (1972) Cross hybridization and rate of chain elongation of the two classes of DNA intermediates. Nat New Biol 240(103):235–237PubMedCrossRefGoogle Scholar
  114. Hiraga S, Alvino GM, Chang F, Lian HY, Sridhar A, Kubota T, Brewer BJ, Weinreich M, Raghuraman MK, Donaldson AD (2014) Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev 28(4):372–383Google Scholar
  115. Hopwood B, Dalton S (1996) Cdc45p assembles into a complex with Cdc46p/Mcm5p, is required for minichromosome maintenance, and is essential for chromosomal DNA replication. Proc Natl Acad Sci U S A 93(22):12309–12314Google Scholar
  116. Hsiao CL, Carbon J (1979) High-frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene. Proc Natl Acad Sci U S A 76(8):3829–3833Google Scholar
  117. Hua XH, Newport J (1998) Identification of a preinitiation step in DNA replication that is independent of origin recognition complex and cdc6, but dependent on cdk2. J Cell Biol 140:271–281PubMedPubMedCentralCrossRefGoogle Scholar
  118. Hua XH, Yan H, Newport J (1997) A role for Cdk2 kinase in negatively regulating DNA replication during S phase of the cell cycle. J Cell Biol 137(1):183–192PubMedPubMedCentralCrossRefGoogle Scholar
  119. Huberman JA, Riggs AD (1968) On the mechanism of DNA replication in mammalian chromosomes. J Mol Biol 32(2):327–341PubMedCrossRefGoogle Scholar
  120. Huberman JA, Spotila LD, Nawotka KA, el Assouli S, Davis LR (1987) The in vivo replication origin of the yeast 2 microns plasmid. Cell 51(3):473–481PubMedCrossRefGoogle Scholar
  121. Hurwitz J, Dean FB, Kwong AD, Lee SH (1990) The in vitro replication of DNA containing the SV40 origin. J Biol Chem 265(30):18043–18046PubMedGoogle Scholar
  122. Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37(2):247–258Google Scholar
  123. Ishimi Y (1997) A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex [published erratum appears in J Biol Chem 1998 Sep 4;273(36):23616]. J Biol Chem 272(39):24508–24513PubMedCrossRefGoogle Scholar
  124. Ishimi Y, Sugasawa K, Hanaoka F, Eki T, Hurwitz J (1992) Topoisomerase II plays an essential role as a swivelase in the late stage of SV40 chromosome replication in vitro. J Biol Chem 267(1):462–466PubMedGoogle Scholar
  125. Jacob F, Brenner S, Cuzin F (1964) On the regulation of DNA replication in bacteria. Cold Spring Harb Symp Quant Biol 28:329–348CrossRefGoogle Scholar
  126. Jallepalli PV, Kelly TJ (1996) Rum1 and Cdc18 link inhibition of cyclin-dependent kinase to the initiation of DNA replication in Schizosaccharomyces pombe. Genes Dev 10(5):541–552PubMedCrossRefGoogle Scholar
  127. Jallepalli PV, Brown GW, Muzi-Falconi M, Tien D, Kelly TJ (1997) Regulation of the replication initiator protein p65cdc18 by CDK phosphorylation. Genes Dev 11(21):2767–2779PubMedPubMedCentralCrossRefGoogle Scholar
  128. Jeruzalmi D, O’Donnell M, Kuriyan J (2002) Clamp loaders and sliding clamps. Curr Opin Struct Biol 12(2):217–224PubMedCrossRefGoogle Scholar
  129. Johnson A, O’Donnell M (2005) Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74:283–315Google Scholar
  130. de Jong RN, van der Vliet PC, Brenkman AB (2003) Adenovirus DNA replication: protein priming, jumping back and the role of the DNA binding protein DBP. Curr Top Microbiol Immunol 272:187–211PubMedGoogle Scholar
  131. Kaguni LS, Rossignol JM, Conaway RC, Lehman IR (1983) Isolation of an intact DNA polymerase-primase from embryos of Drosophila melanogaster. Proc Natl Acad Sci U S A 80(8):2221–2225Google Scholar
  132. Kamimura Y, Masumoto H, Sugino A, Araki H (1998) Sld2, which interacts with Dpb11 in Saccharomyces cerevisiae, is required for chromosomal DNA replication. Mol Cell Biol 18(10):6102–6109PubMedPubMedCentralCrossRefGoogle Scholar
  133. Kamimura Y, Tak YS, Sugino A, Araki H (2001) Sld3, which interacts with Cdc45 (Sld4), functions for chromosomal DNA replication in Saccharomyces cerevisiae. EMBO J 20(8):2097–2107Google Scholar
  134. Kanemaki M, Labib K (2006) Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks. EMBO J 25(8):1753–1763Google Scholar
  135. Kanke M, Kodama Y, Takahashi TS, Nakagawa T, Masukata H (2012) Mcm10 plays an essential role in origin DNA unwinding after loading of the CMG components. EMBO J 31(9):2182–2194Google Scholar
  136. Kaplan DL, Davey MJ, O’Donnell M (2003) Mcm4,6,7 uses a “pump in ring” mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J Biol Chem 278(49):49171–49182Google Scholar
  137. Kawasaki Y, Kim HD, Kojima A, Seki T, Sugino A (2006) Reconstitution of Saccharomyces cerevisiae prereplicative complex assembly in vitro. Genes Cells 11(7):745–756Google Scholar
  138. Kaykov A, Nurse P (2015) The spatial and temporal organization of origin firing during the S-phase of fission yeast. Genome Res 25(3):391–401Google Scholar
  139. Kelly TJ (1988) SV40 DNA replication. J Biol Chem 263:17889–17892PubMedGoogle Scholar
  140. Kelman Z, Lee JK, Hurwitz J (1999) The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. Proc Natl Acad Sci U S A 96(26):14783–14788Google Scholar
  141. Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C (1999) DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3(5):679–685PubMedCrossRefGoogle Scholar
  142. Kim SM, Huberman JA (2001) Regulation of replication timing in fission yeast. EMBO J 20(21):6115–6126PubMedPubMedCentralCrossRefGoogle Scholar
  143. King AJ, van der Vliet PC (1994) A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism. EMBO J 13(23):5786–5792PubMedPubMedCentralGoogle Scholar
  144. Kong D, DePamphilis ML (2001) Site-specific DNA binding of the Schizosaccharomyces pombe origin recognition complex is determined by the Orc4 subunit. Mol Cell Biol 21(23):8095–8103PubMedPubMedCentralCrossRefGoogle Scholar
  145. Kornberg A (1981) DNA replication, 1st edn. W.H. Freeman and Co, New YorkGoogle Scholar
  146. Kornberg A, Baker TA (1992) DNA replication, 2nd edn. Freeman and Co., New YorkGoogle Scholar
  147. Kurat CF, Yeeles JT, Patel H, Early A, Diffley JF (2017) Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol Cell 65(1):117–130Google Scholar
  148. Labib K, Diffley JF, Kearsey SE (1999) G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nat Cell Biol 1(7):415–422PubMedCrossRefGoogle Scholar
  149. Labib K, Tercero JA, Diffley JF (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288(5471):1643–1647PubMedCrossRefGoogle Scholar
  150. Labib K, Kearsey SE, Diffley JF (2001) MCM2-7 proteins are essential components of prereplicative complexes that accumulate cooperatively in the nucleus during G1-phase and are required to establish, but not maintain, the S-phase checkpoint. Mol Biol Cell 12(11):3658–3667PubMedPubMedCentralCrossRefGoogle Scholar
  151. Lang GI, Murray AW (2011) Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol 3:799–811Google Scholar
  152. Langston LD, Zhang D, Yurieva O, Georgescu RE, Finkelstein J, Yao NY, Indiani C, O’Donnell ME (2014) CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc Natl Acad Sci U S A 111(43):15390–15395Google Scholar
  153. Lee S-H, Eki T, Hurwitz J (1989) Synthesis of DNA containing the simian virus 40 origin of replication by the combined action of DNA polymerases alpha and delta. Proc Natl Acad Sci U S A 86(19):7361–7365Google Scholar
  154. Lee SH, Kwong AD, Pan ZQ, Hurwitz J (1991) Studies on the activator 1 protein complex, an accessory factor for proliferating cell nuclear antigen-dependent DNA polymerase delta. J Biol Chem 266(1):594–602PubMedGoogle Scholar
  155. Lee C, Hong B, Choi JM, Kim Y, Watanabe S, Ishimi Y, Enomoto T, Tada S, Kim Y, Cho Y (2004) Structural basis for inhibition of the replication licensing factor Cdt1 by geminin. Nature 430(7002):913–917Google Scholar
  156. Lehman IR, Kaguni LS (1989) DNA polymerase alpha. J Biol Chem 264:4265–4268PubMedGoogle Scholar
  157. Leipe DD, Aravind L, Koonin EV (1999) Did DNA replication evolve twice independently? Nucleic Acids Res 27(17):3389–3401PubMedPubMedCentralCrossRefGoogle Scholar
  158. Leonard AC, Mechali M (2013) DNA replication origins. Cold Spring Harb Perspect Biol 5(10):a010116Google Scholar
  159. Levine AJ, Kang HS, Billheimer FE (1970) DNA replication in SV40 infected cells. I. Analysis of replicating SV40 DNA. J Mol Biol 50(2):549–568PubMedCrossRefGoogle Scholar
  160. Lewis JS, Jergic S, Dixon NE (2016) The E. coli DNA replication fork. Enzyme 39:31–88Google Scholar
  161. Li JJ, Kelly TJ (1984) Simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A 81:6973–6977Google Scholar
  162. Li D, Zhao R, Lilyestrom W, Gai D, Zhang R, DeCaprio JA, Fanning E, Jochimiak A, Szakonyi G, Chen XS (2003a) Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 423(6939):512–518Google Scholar
  163. Li X, Zhao Q, Liao R, Sun P, Wu X (2003b) The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 278(33):30854–30858Google Scholar
  164. Liu E, Li X, Yan F, Zhao Q, Wu X (2004) Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J Biol Chem 279(17):17283–17288Google Scholar
  165. Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP (2010) Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature 467(7314):479–483Google Scholar
  166. Lucas I, Germe T, Chevrier-Miller M, Hyrien O (2001) Topoisomerase II can unlink replicating DNA by precatenane removal. EMBO J 20(22):6509–6519Google Scholar
  167. Lutzmann M, Maiorano D, Mechali M (2006) A Cdt1-geminin complex licenses chromatin for DNA replication and prevents rereplication during S phase in Xenopus. EMBO J 25(24):5764–5774Google Scholar
  168. Madine MA, Khoo CY, Mills AD, Laskey RA (1995) MCM3 complex required for cell cycle regulation of DNA replication in vertebrate cells [see comments]. Nature 375(6530):421–424PubMedCrossRefGoogle Scholar
  169. Maine GT, Sinha P, Tye B-K (1984) Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 106:365–385PubMedPubMedCentralGoogle Scholar
  170. Maiorano D, Moreau J, Mechali M (2000) XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis [see comments]. Nature 404(6778):622–625PubMedCrossRefGoogle Scholar
  171. Makarova KS, Koonin EV (2013) Archaeology of eukaryotic DNA replication. Cold Spring Harb Perspect Biol 5(11):a012963Google Scholar
  172. Marahrens Y, Stillman B (1992) A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255(5046):817–823PubMedCrossRefGoogle Scholar
  173. Maric M, Maculins T, De Piccoli G, Labib K (2014) Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346(6208):1253596Google Scholar
  174. Masumoto H, Muramatsu S, Kamimura Y, Araki H (2002) S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415(6872):651–655PubMedCrossRefGoogle Scholar
  175. Mattarocci S, Shyian M, Lemmens L, Damay P, Altintas DM, Shi T, Bartholomew CR, Thoma NH, Hardy CF, Shore D (2014) Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep 7(1):62–69Google Scholar
  176. McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93(6):1043–1053PubMedCrossRefGoogle Scholar
  177. McVey D, Brizuela L, Mohr I, Marshak DR, Gluzman Y, Beach D (1989) Phosphorylation of large tumour antigen by cdc2 stimulates SV40 DNA replication. Nature 341:503–507PubMedCrossRefGoogle Scholar
  178. McVey D, Ray S, Gluzman Y, Berger L, Wildeman AG, Marshak DR, Tegtmeyer P (1993) cdc2 phosphorylation of threonine 124 activates the origin-unwinding functions of simian virus 40 T antigen. J Virol 67(9):5206–5215PubMedPubMedCentralGoogle Scholar
  179. Melendy T, Stillman B (1993) An interaction between replication protein A and SV40 T antigen appears essential for primosome assembly during SV40 DNA replication. J Biol Chem 268(5):3389–3395PubMedGoogle Scholar
  180. Meselson M, Stahl F (1958) The replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A 44(7):671–682Google Scholar
  181. Moarefi IF, Small D, Gilbert I, Hopfner M, Randall SK, Schneider C, Russo AA, Ramsperger U, Arthur AK, Stahl H, Kelly TJ, Fanning E (1993) Mutation of the cyclin-dependent kinase phosphorylation site in simian virus 40 (SV40) large T antigen specifically blocks SV40 origin DNA unwinding. J Virol 67(8):4992–5002PubMedPubMedCentralGoogle Scholar
  182. Moir D, Stewart SE, Osmond BC, Botstein D (1982) Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics 100(4):547–563PubMedPubMedCentralGoogle Scholar
  183. Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129(4):665–679Google Scholar
  184. Moreno S, Nurse P (1994) Regulation of progression through the G1 phase of the cell cycle by the rum1+ gene. Nature 367(6460):236–242PubMedCrossRefGoogle Scholar
  185. Morrison A, Araki H, Clark AB, Hamatake RK, Sugino A (1990) A third essential DNA polymerase in S. cerevisiae. Cell 62(6):1143–1151PubMedCrossRefGoogle Scholar
  186. Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci U S A 103(27):10236–10241Google Scholar
  187. Murakami Y, Wobbe CR, Weissbach L, Dean FB, Hurwitz J (1986) Role of DNA polymerase a and DNA primase in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A 83:2869–2873Google Scholar
  188. Murakami Y, Eki T, Hurwitz J (1992) Studies on the initiation of simian virus 40 replication in vitro: RNA primer synthesis and its elongation. Proc Natl Acad Sci U S A 89(3):952–956Google Scholar
  189. Muramatsu S, Hirai K, Tak YS, Kamimura Y, Araki H (2010) CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol (epsilon), and GINS in budding yeast. Genes Dev 24(6):602–612Google Scholar
  190. Nagata K, Guggenheimer RA, Enomoto T, Lichy JH, Hurwitz J (1982) Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci U S A 79(21):6438–6442Google Scholar
  191. Nagata K, Guggenheimer RA, Hurwitz J (1983) Adenovirus DNA replication in vitro: synthesis of full-length DNA with purified proteins. Proc Natl Acad Sci U S A 80(14):4266–4270Google Scholar
  192. Newlon CS (1988) Yeast chromosome replication and segregation. Microbiol Rev 52(4):568–601PubMedPubMedCentralGoogle Scholar
  193. Nguyen VQ, Co C, Irie K, Li JJ (2000) Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2-7. Curr Biol 10(4):195–205PubMedCrossRefGoogle Scholar
  194. Nguyen VQ, Co C, Li JJ (2001) Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411(6841):1068–1073PubMedCrossRefGoogle Scholar
  195. Nishitani H, Nurse P (1995) p65cdc18 plays a major role controlling the initiation of DNA replication in fission yeast. Cell 83(3):397–405PubMedCrossRefGoogle Scholar
  196. Nishitani H, Lygerou Z, Nishimoto T, Nurse P (2000) The Cdt1 protein is required to license DNA for replication in fission yeast [see comments]. Nature 404(6778):625–628PubMedCrossRefGoogle Scholar
  197. O’Donnell M, Li H (2016) The eukaryotic replisome goes under the microscope. Curr Biol 26(6):R247–R256Google Scholar
  198. O’Neill EA, Fletcher C, Burrow CR, Heintz N, Roeder RG, Kelly TJ (1988) Transcription factor OTF-1 is functionally identical to the DNA replication factor NF-III. Science 241:1210–1213PubMedCrossRefGoogle Scholar
  199. Okazaki R, Okazaki T, Sakabe K, Sugimoto K, Sugino A (1968) Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci U S A 59(2):598–605Google Scholar
  200. Olivera BM, Bonhoeffer F (1972) Discontinuous DNA replication in vitro. I. Two distinct size classes of intermediates. Nat New Biol 240(103):233–235PubMedCrossRefGoogle Scholar
  201. On KF, Beuron F, Frith D, Snijders AP, Morris EP, Diffley JF (2014) Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J 33(6):605–620Google Scholar
  202. Pacek M, Walter JC (2004) A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J 23(18):3667–3676Google Scholar
  203. Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC (2006) Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 21(4):581–587Google Scholar
  204. Patel PK, Arcangioli B, Baker SP, Bensimon A, Rhind N (2006) DNA replication origins fire stochastically in fission yeast. Mol Biol Cell 17(1):308–316PubMedPubMedCentralCrossRefGoogle Scholar
  205. Plevani P, Foiani M, Valsasnini P, Badaracco G, Cheriathundam E, Chang LM (1985) Polypeptide structure of DNA primase from a yeast DNA polymerase-primase complex. J Biol Chem 260(11):7102–7107PubMedGoogle Scholar
  206. Pospiech H, Kursula I, Abdel-Aziz W, Malkas L, Uitto L, Kastelli M, Vihinen-Ranta M, Eskelinen S, Syvaoja JE (1999) A neutralizing antibody against human DNA polymerase epsilon inhibits cellular but not SV40 DNA replication. Nucleic Acids Res 27(19):3799–3804PubMedPubMedCentralCrossRefGoogle Scholar
  207. Prelich G, Tan CK, Kostura M, Mathews MB, So AG, Downey KM, Stillman B (1987) Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature 326(6112):517–520PubMedCrossRefGoogle Scholar
  208. Pruijn GJ, van Driel W, van der Vliet PC (1986) Nuclear factor III, a novel sequence-specific DNA-binding protein from HeLa cells stimulating adenovirus DNA replication. Nature 322(6080):656–659PubMedCrossRefGoogle Scholar
  209. Ralph E, Boye E, Kearsey SE (2006) DNA damage induces Cdt1 proteolysis in fission yeast through a pathway dependent on Cdt2 and Ddb1. EMBO Rep 7(11):1134–1139Google Scholar
  210. Randell JC, Fan A, Chan C, Francis LI, Heller RC, Galani K, Bell SP (2010) Mec1 is one of multiple kinases that prime the Mcm2-7 helicase for phosphorylation by Cdc7. Mol Cell 40(3):353–363Google Scholar
  211. Rao PN, Johnson RT (1970) Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225(228):159–164PubMedCrossRefGoogle Scholar
  212. Rekosh DM, Russell WC, Bellet AJ, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11(2):283–295PubMedCrossRefGoogle Scholar
  213. Remus D, Beall EL, Botchan MR (2004) DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J 23(4):897–907Google Scholar
  214. Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139(4):719–730Google Scholar
  215. Romanowski P, Madine MA, Laskey RA (1996a) XMCM7, a novel member of the Xenopus MCM family, interacts with XMCM3 and colocalizes with it throughout replication [see comments]. Proc Natl Acad Sci U S A 93(19):10189–10194Google Scholar
  216. Romanowski P, Madine MA, Rowles A, Blow JJ, Laskey RA (1996b) The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Curr Biol 6(11):1416–1425PubMedCrossRefGoogle Scholar
  217. Rosenfeld PJ, Kelly TJ (1986) Purification of nuclear factor I by DNA recognition site affinity chromatography. J Biol Chem 261(3):1398–1408PubMedGoogle Scholar
  218. Rowles A, Chong JP, Brown L, Howell M, Evan GI, Blow JJ (1996) Interaction between the origin recognition complex and the replication licensing system in Xenopus. Cell 87(2):287–296PubMedCrossRefGoogle Scholar
  219. Rowles A, Tada S, Blow JJ (1999) Changes in association of the Xenopus origin recognition complex with chromatin on licensing of replication origins. J Cell Sci 112(Pt 12):2011–2018PubMedPubMedCentralGoogle Scholar
  220. Samora CP, Saksouk J, Goswami P, Wade BO, Singleton MR, Bates PA, Lengronne A, Costa A, Uhlmann F (2016) Ctf4 links DNA replication with sister chromatid cohesion establishment by recruiting the Chl1 helicase to the replisome. Mol Cell 63(3):371–384Google Scholar
  221. Santocanale C, Diffley JF (1998) A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395(6702):615–618PubMedCrossRefGoogle Scholar
  222. Santocanale C, Sharma K, Diffley JF (1999) Activation of dormant origins of DNA replication in budding yeast. Genes Dev 13(18):2360–2364PubMedPubMedCentralCrossRefGoogle Scholar
  223. Scheidtmann KH, Virshup DM, Kelly TJ (1991) Protein phosphatase 2A dephosphorylates SV40 large T antigen specifically at residues involved in regulation of the DNA binding activity. J Virol 65:2098–2101PubMedPubMedCentralGoogle Scholar
  224. Segurado M, de Luis A, Antequera F (2003) Genome-wide distribution of DNA replication origins at A+T-rich islands in Schizosaccharomyces pombe. EMBO Rep 4(11):1048–1053PubMedPubMedCentralCrossRefGoogle Scholar
  225. Senga T, Sivaprasad U, Zhu W, Park JH, Arias EE, Walter JC, Dutta A (2006) PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. J Biol Chem 281(10):6246–6252Google Scholar
  226. Sengupta S, van Deursen F, de Piccoli G, Labib K (2013) Dpb2 integrates the leading-strand DNA polymerase into the eukaryotic replisome. Curr Biol 23(7):543–552Google Scholar
  227. Sheu YJ, Stillman B (2010) The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 463(7277):113–117Google Scholar
  228. Shirahige K, Hori Y, Shiraishi K, Yamashita M, Takahashi K, Obuse C, Tsurimoto T, Yoshikawa H (1998) Regulation of DNA-replication origins during cell-cycle progression. Nature 395(6702):618–621PubMedCrossRefGoogle Scholar
  229. Siddiqui K, On KF, Diffley JF (2013) Regulating DNA replication in eukarya. Cold Spring Harb Perspect Biol 5(9), a012922Google Scholar
  230. Simmons DT, Melendy T, Usher D, Stillman B (1996) Simian virus 40 large T antigen binds to topoisomerase I. Virology 222(2):365–374PubMedCrossRefGoogle Scholar
  231. Simon AC, Zhou JC, Perera RL, van Deursen F, Evrin C, Ivanova ME, Kilkenny ML, Renault L, Kjaer S, Matak-Vinkovic D, Labib K, Costa A, Pellegrini L (2014) A Ctf4 trimer couples the CMG helicase to DNA polymerase alpha in the eukaryotic replisome. Nature 510(7504):293–297Google Scholar
  232. Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50Google Scholar
  233. Skarstad K, Katayama T (2013) Regulating DNA replication in bacteria. Cold Spring Harb Perspect Biol 5(4), a012922Google Scholar
  234. Speck C, Stillman B (2007) Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J Biol Chem 282(16):11705–11714Google Scholar
  235. Speck C, Chen Z, Li H, Stillman B (2005) ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol 12(11):965–971Google Scholar
  236. Stahl H, Droge P, Knippers R (1986) DNA helicase activity of SV40 large tumor antigen. EMBO J 5:1939–1944PubMedPubMedCentralGoogle Scholar
  237. Stamatoyannopoulos JA, Adzhubei I, Thurman RE, Kryukov GV, Mirkin SM, Sunyaev SR (2009) Human mutation rate associated with DNA replication timing. Nat Genet 41(4):393–395Google Scholar
  238. Stillman BW (1983) The replication of adenovirus DNA with purified proteins. Cell 35(1):7–9PubMedCrossRefGoogle Scholar
  239. Stillman B (1989) Initiation of eukaryotic DNA replication in vitro. Annu Rev Cell Biol 5(197):197–245PubMedCrossRefGoogle Scholar
  240. Stinchcomb DT, Struhl K, Davis RW (1979) Isolation and characterisation of a yeast chromosomal replicator. Nature 282(5734):39–43PubMedCrossRefGoogle Scholar
  241. Sugimoto N, Tatsumi Y, Tsurumi T, Matsukage A, Kiyono T, Nishitani H, Fujita M (2004) Cdt1 phosphorylation by cyclin A-dependent kinases negatively regulates its function without affecting geminin binding. J Biol Chem 279(19):19691–19697Google Scholar
  242. Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H (2014) Structural and mechanistic insights into Mcm2-7 double-hexamer assembly and function. Genes Dev 28(20):2291–2303Google Scholar
  243. Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT, Li H, O’Donnell ME (2015) The architecture of a eukaryotic replisome. Nat Struct Mol Biol 22(12):976–982Google Scholar
  244. Sundin O, Varshavsky A (1980) Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell 21(1):103–114PubMedCrossRefGoogle Scholar
  245. Sundin O, Varshavsky A (1981) Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of the final stages of SV40 DNA replication. Cell 25(3):659–669PubMedCrossRefGoogle Scholar
  246. Sussenbach JS, van der Vliet PC (1984) The mechanism of adenovirus DNA replication and the characterization of replication proteins. Curr Top Microbiol Immunol 109:53–73PubMedGoogle Scholar
  247. Sutani T, Shirahige K (2016) Attaching accessory devices to the replisome. Mol Cell 63(3):347–348. https://doi.org/10.1016/j.molcel.2016.07.017
  248. Tada S, Li A, Maiorano D, Mechali M, Blow JJ (2001) Repression of origin assembly in metaphase depends on inhibition of RLF- B/Cdt1 by geminin. Nat Cell Biol 3(2):107–113PubMedPubMedCentralCrossRefGoogle Scholar
  249. Tak YS, Tanaka Y, Endo S, Kamimura Y, Araki H (2006) A CDK-catalysed regulatory phosphorylation for formation of the DNA replication complex Sld2-Dpb11. EMBO J 25(9):1987–1996Google Scholar
  250. Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H (2003) GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev 17(9):1153–1165Google Scholar
  251. Takeda DY, Parvin JD, Dutta A (2005) Degradation of Cdt1 during S phase is Skp2-independent and is required for efficient progression of mammalian cells through S phase. J Biol Chem 280(24):23416–23423Google Scholar
  252. Tamanoi F, Stillman BW (1982) Function of adenovirus terminal protein in the initiation of DNA replication. Proc Natl Acad Sci U S A 79(7):2221–2225Google Scholar
  253. Tamanoi F, Stillman BW (1983) Initiation of adenovirus DNA replication in vitro requires a specific DNA sequence. Proc Natl Acad Sci U S A 80(21):6446–6450Google Scholar
  254. Tan CK, Castillo C, So AG, Downey KM (1986) An auxiliary protein for DNA polymerase-delta from fetal calf thymus. J Biol Chem 261(26):12310–12316PubMedGoogle Scholar
  255. Tanaka S, Araki H (2013) Helicase activation and establishment of replication forks at chromosomal origins of replication. Cold Spring Harb Perspect Biol 5(12), a010371Google Scholar
  256. Tanaka S, Diffley JF (2002) Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nat Cell Biol 4(3):198–207Google Scholar
  257. Tanaka T, Knapp D, Nasmyth K (1997) Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90(4):649–660PubMedCrossRefGoogle Scholar
  258. Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H (2007) CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445(7125):328–332Google Scholar
  259. Tanaka H, Katou Y, Yagura M, Saitoh K, Itoh T, Araki H, Bando M, Shirahige K (2009) Ctf4 coordinates the progression of helicase and DNA polymerase alpha. Genes Cells 14(7):807–820Google Scholar
  260. Tanaka S, Nakato R, Katou Y, Shirahige K, Araki H (2011) Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 21(24):2055–2063Google Scholar
  261. Tapper DP, DePamphilis ML (1978) Discontinuous DNA replication: accumulation of Simian virus 40 DNA at specific stages in its replication. J Mol Biol 120(3):401–422PubMedCrossRefGoogle Scholar
  262. Tegtmeyer P (1972) Simian virus 40 deoxyribonucleic acid synthesis: the viral replicon. J Virol 10(4):591–598PubMedPubMedCentralGoogle Scholar
  263. Ticau S, Friedman LJ, Ivica NA, Gelles J, Bell SP (2015) Single-molecule studies of origin licensing reveal mechanisms ensuring bidirectional helicase loading. Cell 161(3):513–525Google Scholar
  264. Tjian R (1978) The binding site on SV40 DNA for a T antigen-related protein. Cell 13:165–179PubMedCrossRefGoogle Scholar
  265. Tseng BY, Ahlem CN (1982) DNA primase activity from human lymphocytes. Synthesis of oligoribonucleotides that prime DNA synthesis. J Biol Chem 257(13):7280–7283PubMedGoogle Scholar
  266. Tsurimoto T, Stillman B (1989) Purification of a cellular replication factor, RF-C, that is required for coordinated synthesis of leading and lagging strands during simian virus 40 DNA replication in vitro. Mol Cell Biol 9(2):609–619PubMedPubMedCentralCrossRefGoogle Scholar
  267. Tsurimoto T, Stillman B (1990) Functions of replication factor C and proliferating-cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Proc Natl Acad Sci U S A 87:1023–1027Google Scholar
  268. Tsurimoto T, Stillman B (1991a) Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J Biol Chem 266(3):1950–1960PubMedGoogle Scholar
  269. Tsurimoto T, Stillman B (1991b) Replication factors required for SV40 DNA replication in vitro. II. Switching of DNA polymerase alpha and delta during initiation of leading and lagging strand synthesis. J Biol Chem 266(3):1961–1968PubMedGoogle Scholar
  270. Tsurimoto T, Melendy T, Stillman B (1990) Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin. Nature 346(6284):534–539PubMedCrossRefGoogle Scholar
  271. Valle M, Gruss C, Halmer L, Carazo JM, Donate LE (2000) Large T-antigen double hexamers imaged at the simian virus 40 origin of replication. Mol Cell Biol 20(1):34–41PubMedPubMedCentralCrossRefGoogle Scholar
  272. Van Houten J, Newlon CS (1990) Mutational analysis of the consensus sequence of a replication origin from yeast chromosome III. Mol Cell Biol 10(8):3917–3925PubMedPubMedCentralCrossRefGoogle Scholar
  273. Vashee S, Cvetic C, Lu W, Simancek P, Kelly TJ, Walter JC (2003) Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev 17(15):1894–1908PubMedPubMedCentralCrossRefGoogle Scholar
  274. Villa F, Simon AC, Ortiz Bazan MA, Kilkenny ML, Wirthensohn D, Wightman M, Matak-Vinkovic D, Pellegrini L, Labib K (2016) Ctf4 is a hub in the eukaryotic replisome that links multiple CIP-box proteins to the CMG helicase. Mol Cell 63(3):385–396Google Scholar
  275. Virshup DM, Kauffman MG, Kelly TJ (1989) Activation of SV40 DNA replication in vitro by cellular protein phosphatase 2A. EMBO J 8(12):3891–3898PubMedPubMedCentralGoogle Scholar
  276. Virshup DM, Russo AA, Kelly TJ (1992) Mechanism of activation of simian virus 40 DNA replication by protein phosphatase 2A. Mol Cell Biol 12(11):4883–4895PubMedPubMedCentralCrossRefGoogle Scholar
  277. Vujcic M, Miller CA, Kowalski D (1999) Activation of silent replication origins at autonomously replicating sequence elements near the HML locus in budding yeast. Mol Cell Biol 19(9):6098–6109PubMedPubMedCentralCrossRefGoogle Scholar
  278. Waga S, Stillman B (1994) Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369(6477):207–212PubMedCrossRefGoogle Scholar
  279. Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721–751PubMedCrossRefGoogle Scholar
  280. Waga S, Bauer G, Stillman B (1994) Reconstitution of complete SV40 DNA replication with purified replication factors. J Biol Chem 269(14):10923–10934PubMedGoogle Scholar
  281. Watase G, Takisawa H, Kanemaki MT (2012) Mcm10 plays a role in functioning of the eukaryotic replicative DNA helicase, Cdc45-Mcm-GINS. Curr Biol 22(4):343–349Google Scholar
  282. Weinberg DH, Kelly TJ (1989) Requirement for two DNA polymerases in the replication of simian virus 40 DNA in vitro. Proc Natl Acad Sci U S A 86:9742–9746Google Scholar
  283. Wobbe CR, Weissbach L, Borowiec JA, Dean FB, Murakami Y, Bullock P, Hurwitz J (1987) Replication of SV40 origin-containing DNA with purified proteins. Proc Natl Acad Sci U S A 84:1834–1838Google Scholar
  284. Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A (2000) Inhibition of eukaryotic DNA replication by geminin binding to cdt1. Science 290(5500):2309–2312PubMedCrossRefGoogle Scholar
  285. Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92PubMedCrossRefGoogle Scholar
  286. Wold MS, Kelly TJ (1988) Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad U S A 85:2523–2527Google Scholar
  287. Wold MS, Li JJ, Kelly TJ (1987) Initiation of simian virus 40 DNA replication in vitro: large-tumor-antigen- and origin-dependent unwinding of the template. Proc Natl Acad Sci U S A 84:3643–3647Google Scholar
  288. Wold MS, Li JJ, Weinberg DH, Virshup DM, Sherley JM, Verheyen E, Kelly T (1988) Cellular proteins required for SV40 DNA replication in vitro. In: Kelly T, Stillman B (eds) Eukaryotic DNA replication. Cancer Cells. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 133–142Google Scholar
  289. Woo YH, Li WH (2012) DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat Commun 3:1004Google Scholar
  290. Yan H, Gibson S, Tye BK (1991) Mcm2 and Mcm3, two proteins important for ARS activity, are related in structure and function. Genes Dev 5(6):944–957PubMedCrossRefGoogle Scholar
  291. Yang L, Wold MS, Li JJ, Kelly TJ, Liu LF (1987) Roles of DNA topoisomerases in simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A 84(4):950–954Google Scholar
  292. Yao NY, O’Donnell M (2012) The RFC clamp loader: structure and function. Subcell Biochem 62:259–279Google Scholar
  293. Yao NY, Johnson A, Bowman GD, Kuriyan J, O’Donnell M (2006) Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C. J Biol Chem 281(25):17528–17539Google Scholar
  294. Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF (2015) Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519(7544):431–435Google Scholar
  295. Yeeles JT, Janska A, Early A, Diffley JF (2017) How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol Cell 65(1):105–116Google Scholar
  296. Yuan Z, Bai L, Sun J, Georgescu R, Liu J, O’Donnell ME, Li H (2016) Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation. Nat Struct Mol Biol 23(3):217–224Google Scholar
  297. Zegerman P, Diffley JF (2007) Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445(7125):281–285Google Scholar
  298. Zegerman P, Diffley JF (2010) Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature 467(7314):474–478Google Scholar
  299. Zhou B, Arnett DR, Yu X, Brewster A, Sowd GA, Xie CL, Vila S, Gai D, Fanning E, Chen XS (2012) Structural basis for the interaction of a hexameric replicative helicase with the regulatory subunit of human DNA polymerase alpha-primase. J Biol Chem 287(32):26854–26866Google Scholar
  300. Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A (2007) Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev 21(18):2288–2299Google Scholar
  301. Zlotkin T, Kaufmann G, Jiang Y, Lee MY, Uitto L, Syvaoja J, Dornreiter I, Fanning E, Nethanel T (1996) DNA polymerase epsilon may be dispensable for SV40- but not cellular-DNA replication. EMBO J 15(9):2298–2305PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Sloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations