Skip to main content

Biotechnological Tools for Enhancing Abiotic Stress Tolerance in Plant

  • Chapter
  • First Online:
Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity

Abstract

Environmental abiotic stresses, for example, high temperatures, low water accessibility, mineral insufficiency, high salt levels, and lethality, are serious threats to the harvest survival which someway influence the harvest yield. A few traditional strategies are used for sustainable harvest efficiency; however, with the expanding abiotic stress because of changing climatic conditions and enhancing pressure of populace, the conventional procedures of overcoming abiotic stress are not ready to meet the demands. Biotechnology is the best ways by which the productivity of crops can be improved by enhancing their ability to resist or tolerate biotic and abiotic stresses. In biotechnology different strategies are involved for the improvement of harvest yield and quality. This chapter concentrates on the traditional and new enhanced biotechnological strategies for the betterment of abiotic stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alia HH, Sakamoto A, Murata N (1998) Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J 16:155–161

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2003) Agriculture statistics, Ministry of Jihad – e – Agriculture, Te’hran, Iran

    Google Scholar 

  • Barakat MN, Al-Doss AA, Elshafei AA, Moustafa KA (2011) Identification of new microsatellite marker linked to the grain filling rate as indicator for heat tolerance genes in F2 wheat population. Aust J Crop Sci 5:104–110

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Biochemisty and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Brini F, Hanin M, Mezghani I (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+ pyrophosphatase TVP1 improve salt and drought stress tolerance in Arabidopsis thaliana plant. J Exp Bot 58:301–308

    Article  CAS  PubMed  Google Scholar 

  • Broman KW, Speed TP (1999) A review of methods for identifying QTLs in experimental crosses. In: Seiller-Moiseiwitsch F (ed) Statistics in molecular biology and genetics, IMS lecture notes-monograph series 33, pp 114–142

    Chapter  Google Scholar 

  • Ceccarelli S, Grando S (1996) Drought as a challenge for the breeder. Plant Growth Regul 20:149–155

    Article  CAS  Google Scholar 

  • Chaves MM, Marco TJ, Pereira SJ (2003) Understanding plant responses to drought from genes to the whole plant. Funt Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chen H, An R, Tang JH et al (2007a) Over expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breed 19:215–225

    Article  CAS  Google Scholar 

  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007b) Gm DREB2, a soybean DRE binding transcription factor, conferred drought and high salt tolerance in transgenic plants. Biochem Biophys Res Comun 353:299–305

    Article  CAS  Google Scholar 

  • Chen X, Moore M, Milus EA, Long DL, Line RF, Marshall D, Jackson L (2002) Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States. Plant Diseas 86:39–46

    Article  Google Scholar 

  • Christensen CA, Feldmann KA (2007) Biotechnology approaches to engineering drought tolerant crops. Springer, Dordrecht, pp 333–357

    Google Scholar 

  • Cuartero J, Bolarin MC, Moreno V et al (2008) Toleranica a la salinidad. In: Moreno MT, Cubero JI, Atienza S et al (eds) La Adaptacion al Ambiente Y los Estreses Abioticos en la Mejora Vegetal, Sevilla, Spain

    Google Scholar 

  • De Block M, Verduyn C, De Brouwer D, Cornelissen M (2005) Poly (ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–106

    Article  PubMed  CAS  Google Scholar 

  • Delmer DP (2005) Agriculture in the developing world: connecting innovation in plant research to downstream applications. PNAS 102:15739–15746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-shinozaki K (2003) OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-high salt and cold responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Egawa CF, Kobayshi M, Ishibashi T, Nakamura C, Nakamura T, Takaum S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91

    Article  CAS  PubMed  Google Scholar 

  • Estan MT, Martinez Rodriguez MM, Perez-Alfocea F et al (2005) Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J Exp Bot 56:703–712

    Article  CAS  PubMed  Google Scholar 

  • Gallagher J, Biscoe P, Scott R (1975) Barley and its environment V. stability of grain weight. J Appl Ecol 12:319–336

    Article  Google Scholar 

  • Gao F, Gao Q, Duan XG (2006) Cloning of an H+ PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Li JL, Undurraga S (2001) Drought and salt tolerant Plants result from overexpression of the AVP1 H+ pump. Proc Natl Acad Sci USA 98:11444–11449

    Google Scholar 

  • Gupta PK, Rustogi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Func Integr Genomics 4:139–162

    Article  CAS  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T (2000) Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Sun SJ, DQ X, Yang X, Bao YM, Wang ZF, Tag HJ, Zhang H (2009) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger proteins ZFP245. Biochem Biophys Res Commun 389:556–561

    Article  CAS  PubMed  Google Scholar 

  • Hur J, Jung KH, Lee CH, An G (2004) Stress inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167:417–426

    Article  CAS  Google Scholar 

  • Hwang EW, Kim KA, Park SC, et al. (2005) Expression profiles of hot pepper (Capsicum annuum genes under cold stress conditions J Biosci 30: 657–667

    Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K et al (2006) Functional analysis of rice DREB1/CBF-type transcription factor involved in cold responsive gene expression in transgenic rice. Plant Cell Physiol 147:141–153

    Article  CAS  Google Scholar 

  • Kang JY, Choi HI, Im MY et al (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signalling. Plant Cell 14:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462

    Article  CAS  PubMed  Google Scholar 

  • Karaba A, Dixit S, Greco R et al (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci U S A 104:15270–15275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuga M, Liu Q, Miura S et al (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121

    Article  CAS  Google Scholar 

  • Korzun V, Roder MS, Wendehake K, Pasqulone A, Lotti C, Ganal MW, Blanco A (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98:1202–1207

    Article  CAS  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130(4):2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Sengar RS (2013) Effect of delayed sowing on yield and proline content of different wheat cultivars. Res On crop 14(2):409–415

    Google Scholar 

  • Kumar LS (1999) DNA markers in plant improvement: an overview. Biotech Adv 17:143–182

    Article  CAS  Google Scholar 

  • Lanceras JC, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:344–399

    Article  Google Scholar 

  • Langridge P, Paltridge N, Fincher G (2006) Functional genomics of abiotic stress tolerance in cereals. Briefings Funct Genomics Proteomics 4:343–362

    Article  CAS  Google Scholar 

  • Laporte MM, Shen B, Tarczynski MC (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 53:699–705

    Article  CAS  PubMed  Google Scholar 

  • Laura M et al (2010) Metabolic response to cold and freezing of Oseospermum ecklonis overexpressing OsmyB4. Plant Physiol Biochem 48(9):764–771

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Hubel A, Schoffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J 8:603–612

    Article  CAS  PubMed  Google Scholar 

  • Li F, Guo S, Zhao Y, Chen D, Chong K, Xu Y (2010) Overexpression of a homopeptide repeat containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic. Arabidopsis Plant Cell Rep 29(9):977–986

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Bohnert HJ (2007) Integration of Arabidopsis thaliana stress related transcript profiles, promoter structures, and cell-specific expression. Genome Biol 8:R49. doi:https://doi.org/10.1186/gb-2007-8-4

  • Malik MK, Slovin JP, Hwang CH, Zimmerman JL (1999) Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. Plant J 20:89–99

    Article  CAS  PubMed  Google Scholar 

  • Mantra NL, Ford R, Coram TE et al (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high salinity, cold and drought. BMC Genomics 8:303

    Article  CAS  Google Scholar 

  • Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AMH, hays DB (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short term reproduction stage heat stress. Euphytica 174:423–436

    Article  Google Scholar 

  • Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H (2002) Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol Plant 116:317–327

    Article  CAS  Google Scholar 

  • McKersie BD, Bowley SR, Harjanto E (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1177–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi V, Modarraesi M, and Byrne P (2008a) Detection of QTLs for heat tolerance in wheat measured by grain filling duration. In: Appels R, Eastwood R, Lagudah E, Langridge P, Lynne MM (eds) Proceedings of 11th international wheat genetics symposium, Brisbane, Australia, pp 1000–1001

    Google Scholar 

  • Mohammadi V, Zali AA, Bihamta MR (2008b) Mapping QTLs for heat tolerance in wheat. J Agri Sci and Tech 10:261–267

    Google Scholar 

  • Mondal S, singh RP, Crossa J, Huerta-Espino J, Sharma I, Chatrath R, Singh GP, sohu VS, mavi GS, sukuru VSP, Kalappanavar IK, Mishra VK, Hussain M, Gautam NR, Uddin J, Barma NCD, Hakim A, Joshi AK (2013) Earliness in wheat: a key to adaptation under terminal and continual high temperature stress in South Asia. Field Crop Res 151:19–26

    Article  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Cardoza RE, Gutierrez S, Nicolás C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665

    Article  CAS  PubMed  Google Scholar 

  • Morris ML, Belaid A and Byerlee D (1991) Wheat and barley production in rainfed marginal environments of the developing world. Plart 1 of 1990–91 CIMMT world wheat factors and trends. Wheat and barley production in rainfed marginal environments of the developing world. CIMMYT, Mexico, D.F

    Google Scholar 

  • Nelson DE, Repetti PP, Adams TR et al (2007) Plant nuclear factor Y (NY-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci U S A 104:16450–16455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HT, Blum A (2004) Physiology and biotechnology integration for plant breeding: epilogue. Marcel Dekker, New York

    Google Scholar 

  • Oh SJ, Song SI, Kim YS et al (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono K, Hibino T, Kohinata T, Suzuki S, Tanaka Y, Nakamura T, Takabe T (2001) Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica enhances the high-temperature tolerance of tobacco during germination and early growth. Plant Sci 160:455–461

    Article  CAS  PubMed  Google Scholar 

  • Paliwal R, Roder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.) Theor Appl Genet 125:561–575

    Article  PubMed  Google Scholar 

  • Park S, Li J, Pittman JK et al (2005) Up-regulation of a H+-pyrophosphatase (H+ PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci U S A 102:18830–18835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SM, Hong CB (2002) Class I small heat shock protein gives thermotolerance in tobacco. J Plant Physiol 159:25–30

    Article  CAS  Google Scholar 

  • Parry ML, Duinder PN (1990) The potential effects of climate change on agriculture. In: Intergovernmental Panel on Climate change the IPCC Impacts Assessment, WMO and UNEP, Geneva, Switzerland, pp 2-1- 2-45

    Google Scholar 

  • Patterson AH (1998) Molecular dissection of complex traits. CRC Press, New York

    Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, mcintyre CL, Olivares-Villegas J, Champman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter JR, Moot DJ (1998) Research beyond the means: climatic variability and plant growth. In: Dalezios NR (ed) International symposium on applied agrometeorology and agroclimatology. Office for Official Publication of the European Commission, Luxembourg, pp 13–23

    Google Scholar 

  • Prasad SR, Bagali PG, Shailaja H, Shashidhar HE, Hittalmani S (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.) Curr Sci 78(2):162–164

    CAS  Google Scholar 

  • Qin X, Zeevart JAD (1999) The 9-cis epoxycarotenoid cleavage reaction in the key regulatory step of abscisic acid biosynthesis in water stressed bean. PNAS USA 96:15354–15361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin X, Liu Y, Mao S, Li T, Wu H, Chu C, Wang Y (2011) Genetic transformation of lipid transfer protein encoding gene in phalaenopsis amabilis to enhance cold resistance. Euphytica 177(1):33–43

    Article  CAS  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Ssakabe Y, Phan tran LS, Shinozaki K, Yamaguchi Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani A, Semikhodskii A, Lebreton C et al (2005) A high-density genetic map of hexaploid wheat( Triticum aestivum L.) from the cross Chinese Spring x SQI and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Queitsch C, Hong SW, Vierling E, Lindquist S (2000) Hsp101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rensink WA, Lobst S, Hart A et al (2005) Gene expression profiling of potato responses to cold, heat and salt stress. Funct Integr Genom 5:201–207

    Article  CAS  Google Scholar 

  • Rodriguez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotechnol Appl 22:1–10

    CAS  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi Shinozaki K (2002) DNA binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factor involved in dehydration and cold inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    Article  CAS  PubMed  Google Scholar 

  • Sanmiya K, Suzuki K, Egawa Y, Shono M (2004) Mitochondrial small heat shock protein enhances thermotolerance in tobacco plants. FEBS Lett 557:265–268

    Article  CAS  PubMed  Google Scholar 

  • Sehgal D, Bhat V, Raina SN (2008) Applicability of DNA markers for genome diagnostics of grain legumes. In Kirti PB (ed) Handbook of new technology for genetic improvement of grain legumes. CRC Press, New York, pp 497–557

    Google Scholar 

  • Seki M, Nzrusaka M, Abe H, Kasuga M, Carninci KP, hayashizaki Y, Shinozaki K (2000) Monitoring the expression pattern of 1300 Arabidopsis gens under drought and cold stresses using a full length c-DNA microarray. Plant Cell 13:61–72

    Article  Google Scholar 

  • Sharma SK, Goyal SS (2003) Progress in salinity resistance researches: integration of physiological, genetic and breeding approaches. In Crop production in saline environments. Howorth Press, New York, pp 387–407

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shi WM, Muramoto Y, Ueda A, Takabe T (2001) Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 273:23–27

    Article  CAS  PubMed  Google Scholar 

  • Shi HZ, Lee BH, Wu SJ et al (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Snape J, Fish L, Leader D, Bradburne R, Turner A (2005) The impact of genomics and genetics on wheat quality improvement. Turk J Agric For 29:97–103

    CAS  Google Scholar 

  • Sohn SO, Back K (2007) Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. Biol Plant 51:340–342

    Article  CAS  Google Scholar 

  • Taylor IB, Burbidge A, Thompson AJ (2000) Control of abscisic acid synthesis. J Exp Bot 51:1563–1575

    Article  CAS  PubMed  Google Scholar 

  • Thompson A, Jackson A, Rarker R, Morpeth D, Burbidge A, Taylor I (2000) Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cis epoxycarotenoid dioxygenase m-RNAs by light/dark cycles, water stress and abscisic acid. Plant Mol Biol 42:833–845

    Article  CAS  PubMed  Google Scholar 

  • Tiwari C, Wallwork H, Kumar U, Dhari R, Arun B, Mishra VK, Reynolds MP, Joshi AK (2013) Molecular mapping of high temperature tolerance in breed wheat adapted to the Eastern Gangetic Plain region of India. Field Crops Res 154:201–210

    Article  Google Scholar 

  • Trethowan RM, Crossa J, van Ginkel M, Rajaram S (2001) Relationships among bread wheat international yield testing location in dry areas. Crop Sci 41:1461–1469

    Article  Google Scholar 

  • Tuberosa R, Salvi S (2007) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    Article  CAS  Google Scholar 

  • Tuyen DD, Prasad DT (2008) Evaluating difference of yield trait among rice genotypes (Oryza sativa L.) under low moisture condition using candidate gene markers. Omonrice 16:24–33

    Google Scholar 

  • Umezawa T, Fujita M, Fujita Y et al (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2004) SRK2C, a SNF1- related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci U S A 101:17306–17311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    Article  CAS  PubMed  Google Scholar 

  • Vanderauwera S, De Block M, Van de Steene N et al (2007) Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction. Proc Natl Acad Sci U S A 104:15150–15155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinod MS, Shrama N, Manjunatha K et al (2006) Candidate genes for drought tolerance and improved productivity in rice. J Biosci 31:69–74

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ying J, Kuzma M et al (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant response to drought, salinity and extreme temperatures; towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wu CA, Yang GD, meng QW et al (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607

    Article  CAS  PubMed  Google Scholar 

  • Wu YY, chen Q, Chen M et al (2005) Salt tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by agrobacterium tumefaciens mediated transformed of the vacuolar Na+/H+ antiporter gene. Plant Sci 169:65–73

    Article  CAS  Google Scholar 

  • Xiao B, Huang Y, Tang N (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a sub specific rice cross. Theoretical Appl Genet 92:230–244

    Article  CAS  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid mediated gene regulation in barley and produced two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K (1992) Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol 33:217–224

    Article  CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430–440

    Google Scholar 

  • Zhang X (2010) Overexpression of SicZfp1, a novel TFIIIA type zinc finger protein from tomato, confers enhanced cold tolerance in transgenic Arabidopsis and rice. Plant Mol Biol Rep:1–12

    Google Scholar 

  • Zhang Y, Chen C, Jin XF, Xiong AS, Peng RH, Hong YH, Yao QH, Chen JM (2009) Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high salt tolerance in transgenic Arabidopsis. BMB Rep 42(8):486–492

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, Yu J, Su Z (2009) Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnol J 7(6):550–561

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Guo S, Zhang H (2006) Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci 170:216–224

    Article  CAS  Google Scholar 

  • Zhu BC, Su J, Chan MC et al (1998) Overexpression of a d-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-stress and salt-stress in transgenic rice. Plant Sci 139:41–48

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Sengar, R.S., Singh, A., Dixit, R., Singh, R. (2018). Biotechnological Tools for Enhancing Abiotic Stress Tolerance in Plant. In: Sengar, R., Singh, A. (eds) Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity. Springer, Singapore. https://doi.org/10.1007/978-981-10-6934-5_8

Download citation

Publish with us

Policies and ethics