Skip to main content

Novel Strategy for Fairness-Aware Congestion Control and Power Consumption Speed with Mobile Node in Wireless Sensor Networks

  • Conference paper
  • First Online:
Smart Trends in Systems, Security and Sustainability

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 18))

Abstract

The power issue in wireless sensor network (WSN) stays one of the real barriers keeping the complete abuse of this technology. The WSN is a dense network of sensors which sense the environmental conditions, process and propagate that data towards sink node. Limited battery life of sensor node and unbalanced utilization of that energy can affect the lifetime of the entire sensor network. In proposed work, mobile nodes are used to transmit the data nearby the area where the power consumption of the nodes is more. The mobile node reduces the workload and congestion of the nodes which is controlled by adjusting the reporting rate (RR) according to the buffer occupancy level. In this paper, we have correlated the existing Ad hoc on demand vector (AODV) routing protocol with our new approach to the delivery of power consumption. The proposed work evaluate the performance of the lifetime and energy consumption of the WSN with and without mobile nodes and results achieved by adjusting the number of mobile nodes, location and the speed of mobile node. The RR is also adjusted to control the buffer occupancy of each node and mitigate the congestion that occurs in the sensor network. Based on this simulation results, this proposed work increases the lifetime of the nodes whose power consumption speed is high and enhances the life of the entire network. The use of a dual threshold for buffer and mobile node can reduce the congestion and the waiting time for data reducing the delay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Azad, A.K.M., Kamruzzaman, J.: Energy-balanced transmission policies for wireless sensor networks. IEEE Trans. Mob. Comput. 10(7), 927–940 (2011)

    Article  Google Scholar 

  2. Alippi, C., Anastasi, G., Di Francesco, M., Roveri, M.: Energy management in wireless sensor networks with energy-hungry sensors. IEEE Instrum. Measur. Mag. 12(2), 16–23 (2009)

    Article  Google Scholar 

  3. GowriDurga, A., Prakash, B.: A zigbee sms alert system with trust mechanism in wireless sensor networks. In: 2013 International Conference on Information Communication and Embedded Systems (ICICES), pp. 1010–1014. IEEE (2013)

    Google Scholar 

  4. Tubaishat, M., Madria, S.: Sensor networks: an overview. IEEE Potentials 22(2), 20–23 (2003)

    Article  Google Scholar 

  5. Suraiya, Ta, et al.: Energy conservation challenges in wireless sensor networks: a comprehensive study. Wireless Sens. Netw. 2(06), 483 (2010)

    Article  Google Scholar 

  6. Hefeeda, M., Bagheri, M.: Wireless sensor networks for early detection of forest fires. In: IEEE International Conference on Mobile Adhoc and Sensor Systems, 2007. MASS 2007, pp. 1–6. IEEE (2007)

    Google Scholar 

  7. Opasjumruskit, K., Thanthipwan, T., Sathusen, O., Sirinamarattana, P., Gadmanee, P., Pootarapan, E., Wongkomet, N., Thanachayanont, A., Thamsirianunt, M.: Self-powered wireless temperature sensors exploit RFID technology. IEEE Pervasive comput. 5(1), 54–61 (2006)

    Article  Google Scholar 

  8. Reindl, L., Shrena, I., Kenshil, S., Peter, R.: Wireless measurement of temperature using surface acoustic waves sensors. In: Proceedings of the 2003 IEEE International Frequency control symposium and PDA exhibition jointly with the 17th European Frequency And Time Forum, 2003, pp. 935–941. IEEE (2003)

    Google Scholar 

  9. Garzón, C.A.L., Riveros, O.J.R.: Temperature, humidity and luminescence monitoring system using wireless sensor networks (wsn) in flowers growing. In 2010 IEEE ANDESCON, pp. 1–4. IEEE (2010)

    Google Scholar 

  10. Luomala, J., Hakala, I.: Effects of temperature and humidity on radio signal strength in outdoor wireless sensor networks. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1247–1255. IEEE (2015)

    Google Scholar 

  11. Umit Bas, C., Coleri Ergen, S.: Ultra-wideband channel model for intra-vehicular wireless sensor networks beneath the chassis: from statistical model to simulations. IEEE Trans. Veh. Technol. 62(1), 14–25 (2013)

    Article  Google Scholar 

  12. Hung, C.-C., Peng, W.-C.: Model-driven traffic data acquisition in vehicular sensor networks. In: 2010 39th International Conference on Parallel Processing (ICPP), pp. 424–432. IEEE (2010)

    Google Scholar 

  13. Segura-Garcia, J., Felici-Castell, S., Perez-Solano, J.J., Cobos, M., Navarro, J.M.: Low-cost alternatives for urban noise nuisance monitoring using wireless sensor networks. IEEE Sens. J. 15(2), 836–844 (2015)

    Article  Google Scholar 

  14. Bekmezci, I., Alagöz, F.: Energy efficient, delay sensitive, fault tolerant wireless sensor network for military monitoring. Int. J. Distrib. Sens. Netw. 5(6), 729–747 (2009)

    Article  Google Scholar 

  15. Mascareñas, D., Flynn, E., Farrar, C., Park, G., Todd, M.: A mobile host approach for wireless powering and interrogation of structural health monitoring sensor networks. IEEE Sens. J. 9(12), 1719–1726 (2009)

    Article  Google Scholar 

  16. Bhuiyan, M.Z.A., Wang, G., Cao, J., Wu, J.: Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Trans. Comput. 64(2), 382–395 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mendis, C., Skvortsov, A., Gunatilaka, A., Karunasekera, S.: Performance of wireless chemical sensor network with dynamic collaboration. IEEE Sens. J. 12(8), 2630–2637 (2012)

    Article  Google Scholar 

  18. Pattnaik, P.K., Mall, R.: Fundamentals of Mobile Computing. PHI Learning Pvt. Ltd., (2015)

    Google Scholar 

  19. Kilts, S.: Advanced FPGA design: Architecture, Implementation, and Optimization. Wiley (2007)

    Google Scholar 

  20. Madurawe, R.U.: Alterable application specific integrated circuit (asic), June 20 2006. US Patent 7,064,579

    Google Scholar 

  21. Tao, L.Q., Yu, F.Q.: Ecoda: enhanced congestion detection and avoidance for multiple class of traffic in sensor networks. IEEE Trans. Consum. Electron. 56(3), 1387–1394 (2010)

    Article  Google Scholar 

  22. Wang, G., Liu, K.: Upstream hop-by-hop congestion control in wireless sensor networks. In: 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1406–1410. IEEE (2009)

    Google Scholar 

  23. Kafi, M.A., Ben-Othman, J., Ouadjaout, A., Bagaa, M., Badache, N.: REFIACC: reliable, efficient, fair and interference-aware congestion control protocol for wireless sensor networks. Comput. Commun. (2016)

    Google Scholar 

  24. Kafi, M.A., Djenouri, D., Othman, J.B., Ouadjaout, A., Bagaa, M., Lasla, N., Badache, N.: Interference-aware congestion control protocol for wireless sensor networks. Procedia Comput. Sci. 37, 181–188 (2014)

    Article  Google Scholar 

  25. Esmaeelzadeh, V., Hosseini, E.S., Berangi, R., Akan, O.B.: Modeling of rate-based congestion control schemes in cognitive radio sensor networks. Ad Hoc Netw. 36, 177–188 (2016)

    Article  Google Scholar 

  26. Ghaffari, A.: Congestion control mechanisms in wireless sensor networks: a survey. J. Netw. Comput. Appl. 52, 101–115 (2015)

    Article  Google Scholar 

  27. Heikalabad, S.R., Ghaffari, A., Hadian, M.A., Rasouli, H.: Dpcc: dynamic predictive congestion control in wireless sensor networks. IJCSI Int. J. Comput. Sci. Issues 8(1) (2011)

    Google Scholar 

  28. Shih, H.-C., Ho, J.-H., Liao, B.-Y., Pan, J.-S.: Fault node recovery algorithm for a wireless sensor network. IEEE Sens. J. 13(7), 2683–2689 (2013)

    Article  Google Scholar 

  29. Zou, Z., Bao, Y., Li, H., Spencer, B.F., Ou, J.: Embedding compressive sensing-based data loss recovery algorithm into wireless smart sensors for structural health monitoring. IEEE Sens. J. 15(2), 797–808 (2015)

    Article  Google Scholar 

  30. Sobrinho, J.L., Krishnakumar, A.S.: Quality-of-service in ad hoc carrier sense multiple access wireless networks. IEEE J. Sel. Areas Commun. 17(8), 1353–1368 (1999)

    Article  Google Scholar 

  31. Tati, R., Ahmadi, F., Rashidy, R., Ashkoti, F.: Designing and simulation of a distributed algorithm for quality of service in wireless sensor networks. In: International Conference on Application of Information and Communication Technologies, pp. 1–5. IEEE (2009)

    Google Scholar 

  32. Xiaoyan, Y., Xingshe, Z., Rongsheng, H., Yuguang, F., Shining, L.: A fairness-aware congestion control scheme in wireless sensor networks. IEEE Trans. Veh. Technol. 58(9), 5225–5234 (2009)

    Article  Google Scholar 

  33. Emad, F., Chang-Gun, L., Eylem, E.: Mmspeed: multipath multi-speed protocol for qos guarantee of reliability and timeliness in wireless sensor networks. IEEE Trans. Mob. Comput. 6, 738–754 (2006)

    Google Scholar 

  34. Mukhopadhyay, S., Schurgers, C., Panigrahi, D., Dey, S.: Model-based techniques for data reliability in wireless sensor networks. IEEE Trans. Mob. Comput. 8(4), 528–543 (2009)

    Article  Google Scholar 

  35. Ghaffari, A.: An energy efficient routing protocol for wireless sensor networks using a-star algorithm. J. Appl. Res. Technol. 12(4), 815–822 (2014)

    Article  Google Scholar 

  36. Wei, D., Jin, Y., Vural, S., Moessner, K., Tafazolli, R.: An energy-efficient clustering solution for wireless sensor networks. IEEE Trans. Wirel. Commun. 10(11), 3973–3983 (2011)

    Article  Google Scholar 

  37. Fang, W., Liu, F., Yang, F., Shu, L., Nishio, S.: Energy-efficient cooperative communication for data transmission in wireless sensor networks. IEEE Trans. Consum. Electron. 56(4), 2185–2192 (2010)

    Article  Google Scholar 

  38. Abusaimeh, H., Yang, S.-H.: Balancing the power consumption speed in flat and hierarchical wsn. Int. J. Autom. Comput. 5(4), 366–375 (2008)

    Article  Google Scholar 

  39. Park, S., Lee, E., Jin, M.-S., Kim, S.-H.: Novel strategy for data dissemination to mobile sink groups in wireless sensor networks. IEEE Commun. Lett. 14(3), 202–204 (2010)

    Article  Google Scholar 

  40. Fahmy, H.M.A.: Protocol stack of WSNs. In: Wireless Sensor Networks, pp. 55–68. Springer (2016)

    Google Scholar 

  41. Ye, W., Heidemann, J.: Medium access control in wireless sensor networks. In: Wireless Sensor Networks, pp. 73–91. Springer (2004)

    Google Scholar 

  42. Ahammed, G.F., Banu, R.: Analyzing the performance of active queue management algorithms. arXiv:1003.3909 (2010)

  43. Karenos, K., Kalogeraki, V.: Traffic management in sensor networks with a mobile sink. IEEE Trans. Parallel Distrib. Syst. 21(10), 1515–1530 (2010)

    Article  Google Scholar 

  44. Cheng, Z., Perillo, M., Heinzelman, W.B.: General network lifetime and cost models for evaluating sensor network deployment strategies. IEEE Trans. Mob. Comput. 7(4), 484–497 (2008)

    Article  Google Scholar 

  45. Ren, F., Zhang, J., He, T., Lin, C., Ren, S.K.D.: Ebrp: energy-balanced routing protocol for data gathering in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(12), 2108–2125 (2011)

    Article  Google Scholar 

  46. Park, S., Lee, W., Cho, D.: Fair clustering for energy efficiency in a cooperative wireless sensor network. In: 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2012)

    Google Scholar 

  47. Mhatre, V., Rosenberg, C.: Design guidelines for wireless sensor networks: communication, clustering and aggregation. Ad Hoc Netw. 2(1), 45–63 (2004)

    Article  Google Scholar 

  48. Tambe, S.B., Thool, R.C., Thool,V.R.: Power consumption and congestion control of rendezvous node for wireless biosensor network. In: Proceedings of International Conference on ICT for Sustainable Development, pp. 647–655. Springer (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar B. Tambe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tambe, S.B., Gajre, S.S. (2018). Novel Strategy for Fairness-Aware Congestion Control and Power Consumption Speed with Mobile Node in Wireless Sensor Networks. In: Yang, XS., Nagar, A., Joshi, A. (eds) Smart Trends in Systems, Security and Sustainability. Lecture Notes in Networks and Systems, vol 18. Springer, Singapore. https://doi.org/10.1007/978-981-10-6916-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6916-1_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6915-4

  • Online ISBN: 978-981-10-6916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics