Skip to main content

Alginates in Metabolic Syndrome

  • Chapter
  • First Online:
Book cover Alginates and Their Biomedical Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 11))

  • 1860 Accesses

Abstract

Alginates extracted from seaweeds are widely used for nutrition, but they are underutilised for the prevention or reversal of human disease. Alginates are long chains of α-L-guluronic acid and β-D-mannuronic acid from brown seaweeds that act as readily available, low cost, non-toxic and biodegradable biopolymers. Sodium alginates are primarily used for the management of gastrointestinal tract disorders, but they are of potential use to attenuate the components of the metabolic syndrome including obesity, type 2 diabetes, hypertension, non-alcoholic fatty liver disease and dyslipidaemia. As prebiotics, alginates changed the gut microbiome to increase production of short-chain fatty acids as substrates for Bifidobacteria. Alginates inhibited pancreatic lipases and so decreased triacylglycerol breakdown and uptake. Treatment with alginates decreased food intake by inducing satiety and increased weight loss in patients on a calorie-restricted diet. Both glucose and fatty acid uptake were reduced. In rat models of hypertension, alginates decreased blood pressure. An alginate-antacid combination is an effective treatment of gastric reflux disease by forming a raft on the gastric contents. Alginates are important as drug carriers in microparticles and nanoparticles to increase drug bioavailability, for example, in drugs used for treatment of metabolic syndrome. Alginates are also used to protect cells during transplantation from immune responses of the host, allowing potential long-term control of some endocrine disorders such as type 1 diabetes and increased thermogenesis by brown adipocytes in obesity. There are many potential uses for these versatile biopolymers in the treatment of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar SA, Brown L (2013) Seaweeds as potential therapeutic interventions for the metabolic syndrome. Rev Endocr Metab Disord 14(3):299–308

    Article  Google Scholar 

  2. Brown ES, Allsopp PJ, Magee PJ, Gill CI, Nitecki S, Strain CR, McSorley EM (2014) Seaweed and human health. Nutr Rev 72(3):205–216

    Article  Google Scholar 

  3. MacArtain P, Gill CI, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65(12 Pt 1):535–543

    Article  Google Scholar 

  4. Fischer FG, Dorfel H (1955) Die Polyuronsäuren der Braunalgen (Kohlenhydrate der Algen-1). Hoppe Seylers Z Physiol Chem 302(4-6):186–203

    Google Scholar 

  5. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  Google Scholar 

  6. Chemical composition of seaweeds; The Seaweed Site: information on marine algae (2016) Algaebase. http://www.seaweed.ie/nutrition/index.php

  7. Liu L, Heinrich M, Myers S, Dworjanyn SA (2012) Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review. J Ethnopharmacol 142(3):591–619

    Google Scholar 

  8. Shirosaki M, Koyama T (2011) Laminaria japonica as a food for the prevention of obesity and diabetes. Adv Food Nutr Res 64:199–212

    Article  Google Scholar 

  9. El Khoury D, Goff HD, Anderson GH (2015) The role of alginates in regulation of food intake and glycemia: a gastroenterological perspective. Crit Rev Food Sci Nutr 55(10):1406–1424

    Article  Google Scholar 

  10. Chater PI, Wilcox MD, Houghton D, Pearson JP (2015) The role of seaweed bioactives in the control of digestion: implications for obesity treatments. Food Funct 6(11):3420–3427

    Article  Google Scholar 

  11. Miyazaki T, Shirakami Y, Kubota M, Ideta T, Kochi T, Sakai H, Tanaka T, Moriwaki H, Shimizu M (2016) Sodium alginate prevents progression of non-alcoholic steatohepatitis and liver carcinogenesis in obese and diabetic mice. Oncotarget 7(9):10448–10458

    Article  Google Scholar 

  12. Terakado S, Ueno M, Tamura Y, Toda N, Yoshinaga M, Otsuka K, Numabe A, Kawabata Y, Murota I, Sato N, Uehara Y (2012) Sodium alginate oligosaccharides attenuate hypertension and associated kidney damage in Dahl salt-sensitive rats fed a high-salt diet. Clin Exp Hypertens 34(2):99–106

    Article  Google Scholar 

  13. de Jesus Raposo MF, de Morais AM, de Morais RM (2016) Emergent sources of prebiotics: seaweeds and microalgae. Mar Drugs 14(2):27

    Article  Google Scholar 

  14. Terada A, Harat T, Mitsuoka T (1995) Effect of dietary alginate on the faecal microbiota and faecal metabolic activity in humans. Microb Ecol Health Dis 8:259–266

    Google Scholar 

  15. Sanmiguel C, Gupta A, Mayer EA (2015) Gut microbiome and obesity: a plausible explanation for obesity. Curr Obes Rep 4(2):250–261

    Article  Google Scholar 

  16. John GK, Mullin GE (2016) The gut microbiome and obesity. Curr Oncol Rep 18(7):45

    Article  Google Scholar 

  17. Wilcox MD, Brownlee IA, Richardson JC, Dettmar PW, Pearson JP (2014) The modulation of pancreatic lipase activity by alginates. Food Chem 146:479–484

    Article  Google Scholar 

  18. Houghton D, Wilcox MD, Chater PI, Brownlee IA, Seal CJ, Pearson JP (2015) Biological activity of alginate and its effect on pancreatic lipase inhibition as a potential treatment for obesity. Food Hydrocoll 49:18–24

    Article  Google Scholar 

  19. Hellstrom PM (2013) Satiety signals and obesity. Curr Opin Gastroenterol 29(2):222–227

    Article  Google Scholar 

  20. Jensen MG, Kristensen M, Belza A, Knudsen JC, Astrup A (2012) Acute effect of alginate-based preload on satiety feelings, energy intake, and gastric emptying rate in healthy subjects. Obesity (Silver Spring) 20(9):1851–1858

    Article  Google Scholar 

  21. Hoad CL, Rayment P, Spiller RC, Marciani L, Alonso B de C, Traynor C, Mela DJ, Peters HP, Gowland PA (2004) In vivo imaging of intragastric gelation and its effect on satiety in humans. J Nutr 134(9):2293–2300

    Google Scholar 

  22. Pelkman CL, Navia JL, Miller AE, Pohle RJ (2007) Novel calcium-gelled, alginate-pectin beverage reduced energy intake in nondieting overweight and obese women: interactions with dietary restraint status. Am J Clin Nutr 86(6):1595–1602

    Google Scholar 

  23. Paxman JR, Richardson JC, Dettmar PW, Corfe BM (2008) Daily ingestion of alginate reduces energy intake in free-living subjects. Appetite 51(3):713–719

    Article  Google Scholar 

  24. Odunsi ST, Vazquez-Roque MI, Camilleri M, Papathanasopoulos A, Clark MM, Wodrich L, Lempke M, McKinzie S, Ryks M, Burton D, Zinsmeister AR (2010) Effect of alginate on satiation, appetite, gastric function, and selected gut satiety hormones in overweight and obesity. Obesity (Silver Spring) 18(8):1579–1584

    Article  Google Scholar 

  25. Carnahan S, Balzer A, Panchal SK, Brown L (2014) Prebiotics in obesity. Panminerva Med 56(2):165–175

    Google Scholar 

  26. Jensen MG, Pedersen C, Kristensen M, Frost G, Astrup A (2013) Review: efficacy of alginate supplementation in relation to appetite regulation and metabolic risk factors: evidence from animal and human studies. Obes Rev 14(2):129–144

    Article  Google Scholar 

  27. Jensen MG, Kristensen M, Astrup A (2012) Effect of alginate supplementation on weight loss in obese subjects completing a 12-wk energy-restricted diet: a randomized controlled trial. Am J Clin Nutr 96(1):5–13

    Article  Google Scholar 

  28. Williams JA, Lai CS, Corwin H, Ma Y, Maki KC, Garleb KA, Wolf BW (2004) Inclusion of guar gum and alginate into a crispy bar improves postprandial glycemia in humans. J Nutr 134(4):886–889

    Google Scholar 

  29. Ohta A, Taguchi A, Takizawa T, Adachi T, Kimura S, Hashizume N (1997) The alginate reduce the postprandial glycaemic response by forming a gel with dietary calcium in the stomach of the rat. Int J Vitam Nutr Res 67(1):55–61

    Google Scholar 

  30. Paxman JR, Richardson JC, Dettmar PW, Corfe BM (2008) Alginate reduces the increased uptake of cholesterol and glucose in overweight male subjects: a pilot study. Nutr Res 28(8):501–505

    Article  Google Scholar 

  31. Idota Y, Kogure Y, Kato T, Ogawa M, Kobayashi S, Kakinuma C, Yano K, Arakawa H, Miyajima C, Kasahara F, Ogihara T (2016) Cholesterol-lowering effect of calcium alginate in rats. Biol Pharm Bull 39(1):62–67

    Article  Google Scholar 

  32. Kimura Y, Watanabe K, Okuda H (1996) Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J Ethnopharmacol 54(1):47–54

    Article  Google Scholar 

  33. Chen YY, Ji W, Du JR, Yu DK, He Y, Yu CX, Li DS, Zhao CY, Qiao KY (2010) Preventive effects of low molecular mass potassium alginate extracted from brown algae on DOCA salt-induced hypertension in rats. Biomed Pharmacother 64(4):291–295

    Article  Google Scholar 

  34. Moriya C, Shida Y, Yamane Y, Miyamoto Y, Kimura M, Huse N, Ebisawa K, Kameda Y, Nishi A, Du D, Yoshinaga M, Murota I, Sato N, Uehara Y (2013) Subcutaneous administration of sodium alginate oligosaccharides prevents salt-induced hypertension in Dahl salt-sensitive rats. Clin Exp Hypertens 35(8):607–613

    Article  Google Scholar 

  35. Ueno M, Tamura Y, Toda N, Yoshinaga M, Terakado S, Otsuka K, Numabe A, Kawabata Y, Murota I, Sato N, Uehara Y (2012) Sodium alginate oligosaccharides attenuate hypertension in spontaneously hypertensive rats fed a low-salt diet. Clin Exp Hypertens 34(5):305–310

    Article  Google Scholar 

  36. de Paula Alves Sousa A, Barbosa PS, Torres MR, Martins AM, Martins RD, de Sousa Alves R, de Sousa DF, Alves CD, Costa-Lotufo LV, Monteiro HS (2008) The renal effects of alginates isolated from brown seaweed Sargassum vulgare. J Appl Toxicol 28(3):364–369

    Article  Google Scholar 

  37. Rohof WO, Bennink RJ, Smout AJ, Thomas E, Boeckxstaens GE (2013) An alginate-antacid formulation localizes to the acid pocket to reduce acid reflux in patients with gastroesophageal reflux disease. Clin Gastroenterol Hepatol 11(12):1585–1591

    Article  Google Scholar 

  38. Sun J, Yang C, Zhao H, Zheng P, Wilkinson J, Ng B, Yuan Y (2015) Randomised clinical trial: the clinical efficacy and safety of an alginate-antacid (Gaviscon Double Action) versus placebo, for decreasing upper gastrointestinal symptoms in symptomatic gastroesophageal reflux disease (GERD) in China. Aliment Pharmacol Ther 42(7):845–854

    Article  Google Scholar 

  39. Noureddin M, Rinella ME (2015) Nonalcoholic fatty liver disease, diabetes, obesity, and hepatocellular carcinoma. Clin Liver Dis 19(2):361–379

    Article  Google Scholar 

  40. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445

    Article  Google Scholar 

  41. Sarithakumari CH, Renju GL, Kurup GM (2013) Anti-inflammatory and antioxidant potential of alginic acid isolated from the marine algae, Sargassum wightii on adjuvant-induced arthritic rats. Inflammopharmacology 21(3):261–268

    Article  Google Scholar 

  42. Horibe S, Tanahashi T, Kawauchi S, Mizuno S, Rikitake Y (2016) Preventative effects of sodium alginate on indomethacin-induced small-intestinal injury in mice. Int J Med Sci 13(9):653–663

    Article  Google Scholar 

  43. Tønnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28(6):621–630

    Article  Google Scholar 

  44. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913

    Article  Google Scholar 

  45. Duchêne D, Gref R (2016) Small is beautiful: surprising nanoparticles. Int J Pharm 502(1–2):219–231

    Article  Google Scholar 

  46. Fonte P, Araujo F, Silva C, Pereira C, Reis S, Santos HA, Sarmento B (2015) Polymer-based nanoparticles for oral insulin delivery: revisited approaches. Biotechnol Adv 33(6 Pt 3):1342–1354

    Article  Google Scholar 

  47. Paques JP, van der Linden E, van Rijn CJ, Sagis LM (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interf Sci 209:163–171

    Article  Google Scholar 

  48. Nayak A, Jain SK, Pandey RS (2011) Controlling release of metformin HCl through incorporation into stomach specific floating alginate beads. Mol Pharm 8(6):2273–2281

    Article  Google Scholar 

  49. Mathavan S, Chen-Tan N, Arfuso F, Al-Salami H (2016) A comprehensive study of novel microcapsules incorporating gliclazide and a permeation enhancing bile acid: hypoglycemic effect in an animal model of Type-1 diabetes. Drug Delivt:23(8):2869-2880

    Google Scholar 

  50. Zhang B, He D, Fan Y, Liu N, Chen Y (2014) Oral delivery of exenatide via microspheres prepared by cross-linking of alginate and hyaluronate. PLoS One 9(1):e86064

    Article  Google Scholar 

  51. Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP (2015) pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol 72:640–648

    Article  Google Scholar 

  52. Kim DH, Chen J, Omary RA, Larson AC (2015) MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors. Theranostics 5(5):477–488

    Article  Google Scholar 

  53. Liao YT, Liu CH, Yu J, Wu KC (2014) Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres. Int J Nanomedicine 9:2767–2778

    Google Scholar 

  54. Mooranian A, Negrulj R, Chen-Tan N, Al-Sallami HS, Fang Z, Mukkur TK, Mikov M, Golocorbin-Kon S, Fakhoury M, Watts GF, Matthews V, Arfuso F, Al-Salami H (2014) Microencapsulation as a novel delivery method for the potential antidiabetic drug, probucol. Drug Des Devel Ther 8:1221–1230

    Google Scholar 

  55. Mooranian A, Negrulj R, Arfuso F, Al-Salami H (2015) The effect of a tertiary bile acid, taurocholic acid, on the morphology and physical characteristics of microencapsulated probucol: potential applications in diabetes: a characterization study. Drug Deliv Transl Res 5(5):511–522

    Article  Google Scholar 

  56. Li P, Dai YN, Zhang JP, Wang AQ, Wei Q (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 4(3):221–228

    Google Scholar 

  57. Mandal S, Basu SK, Sa B (2009) Sustained release of a water-soluble drug from alginate matrix tablets prepared by wet granulation method. AAPS PharmSciTech 10(4):1348–1356

    Article  Google Scholar 

  58. Meng X, Li P, Wei Q, Zhang HX (2011) pH sensitive alginate-chitosan hydrogel beads for carvedilol delivery. Pharm Dev Technol 16(1):22–28

    Article  Google Scholar 

  59. Hariyadi DM, Bostrom T, Bhandari B, Coombes AG (2012) A novel impinging aerosols method for production of propranolol hydrochloride-loaded alginate gel microspheres for oral delivery. J Microencapsul 29(1):63–71

    Article  Google Scholar 

  60. Kulkarni RV, Sreedhar V, Mutalik S, Setty CM, Sa B (2010) Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin. Int J Biol Macromol 47(4):520–527

    Article  Google Scholar 

  61. Hassan N, Ali M, Ali J (2010) Novel buccal adhesive system for anti-hypertensive agent nimodipine. Pharm Dev Technol 15(2):124–130

    Article  Google Scholar 

  62. Sabbah HN, Wang M, Gupta RC, Rastogi S, Ilsar I, Sabbah MS, Kohli S, Helgerson S, Lee RJ (2013) Augmentation of left ventricular wall thickness with alginate hydrogel implants improves left ventricular function and prevents progressive remodeling in dogs with chronic heart failure. JACC Heart Fail 1(3):252–258

    Article  Google Scholar 

  63. Beckerman Z, Azran A, Cohen O, Nir RR, Maessen JG, Bianco-Peled H, Bolotin G (2014) A novel amiodarone-eluting biological glue for reducing postoperative atrial fibrillation: first animal trial. J Cardiovasc Pharmacol Ther 19(5):481–491

    Article  Google Scholar 

  64. Fujikura J, Hosoda K, Nakao K (2013) Cell transplantation therapy for diabetes mellitus: endocrine pancreas and adipocyte. Endocr J 60(6):697–708

    Article  Google Scholar 

  65. Vegas AJ, Veiseh O, Gurtler M, Millman JR, Pagliuca FW, Bader AR, Doloff JC, Li J, Chen M, Olejnik K, Tam HH, Jhunjhunwala S, Langan E, Aresta-Dasilva S, Gandham S, McGarrigle JJ, Bochenek MA, Hollister-Lock J, Oberholzer J, Greiner DL, Weir GC, Melton DA, Langer R, Anderson DG (2016) Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 22(3):306–311

    Article  Google Scholar 

  66. Ludwig B, Reichel A, Steffen A, Zimerman B, Schally AV, Block NL, Colton CK, Ludwig S, Kersting S, Bonifacio E, Solimena M, Gendler Z, Rotem A, Barkai U, Bornstein SR (2013) Transplantation of human islets without immunosuppression. Proc Natl Acad Sci U S A 110(47):19054–19058

    Article  Google Scholar 

  67. Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S (2000) Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102(19 Suppl 3):III56–III61

    Google Scholar 

  68. Koehler E, Watt K, Charlton M (2009) Fatty liver and liver transplantation. Clin Liver Dis 13(4):621–630

    Article  Google Scholar 

  69. Jitraruch S, Dhawan A, Hughes RD, Filippi C, Soong D, Philippeos C, Lehec SC, Heaton ND, Longhi MS, Mitry RR (2014) Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS One 9(12):e113609

    Article  Google Scholar 

  70. Meier RP, Mahou R, Morel P, Meyer J, Montanari E, Muller YD, Christofilopoulos P, Wandrey C, Gonelle-Gispert C, Buhler LH (2015) Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. J Hepatol 62(3):634–641

    Article  Google Scholar 

  71. Shteyer E, Ben Ya’acov A, Zolotaryova L, Sinai A, Lichtenstein Y, Pappo O, Kryukov O, Elkayam T, Cohen S, Ilan Y (2014) Reduced liver cell death using an alginate scaffold bandage: a novel approach for liver reconstruction after extended partial hepatectomy. Acta Biomater 10(7):3209–3216

    Google Scholar 

  72. Chen MJ, Lu Y, Simpson NE, Beveridge MJ, Elshikha AS, Akbar MA, Tsai HY, Hinske S, Qin J, Grunwitz CR, Chen T, Brantly ML, Song S (2015) In situ transplantation of alginate bioencapsulated adipose tissues derived stem cells (ADSCs) via hepatic injection in a mouse model. PLoS One 10(9):e0138184

    Google Scholar 

  73. Schulz TJ, Tseng YH (2013) Brown adipose tissue: development, metabolism and beyond. Biochem J 453(2):167–178

    Article  Google Scholar 

  74. Unser AM, Mooney B, Corr DT, Tseng YH, Xie Y (2016) 3D brown adipogenesis to create “Brown-Fat-in-Microstrands”. Biomaterials 75:123–134

    Article  Google Scholar 

  75. Xu L, Shen Q, Mao Z, Lee LJ, Ziouzenkova O (2015) Encapsulation thermogenic preadipocytes for transplantation into adipose tissue depots. J Vis Exp 100:e52806

    Google Scholar 

  76. Tagalakis AD, Diakonov IA, Graham IR, Heald KA, Harris JD, Mulcahy JV, Dickson G, Owen JS (2005) Apolipoprotein E delivery by peritoneal implantation of encapsulated recombinant cells improves the hyperlipidaemic profile in apoE-deficient mice. Biochim Biophys Acta 1686(3):190–199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S.A., Brown, L. (2018). Alginates in Metabolic Syndrome. In: Rehm, B., Moradali, M. (eds) Alginates and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-10-6910-9_9

Download citation

Publish with us

Policies and ethics