Skip to main content

Origins of Calculation Abilities

  • Chapter
  • First Online:
Historical Development of Human Cognition

Part of the book series: Perspectives in Cultural-Historical Research ((PCHR,volume 3))

  • 777 Accesses

Abstract

The ability to calculate represents a complex cognitive process including verbal, spatial, somatic, memory, and executive functions. The origin of mathematical concepts can be traced to subhuman species. The immediate recognition of certain small quantities without counting – subitizing – is found not only in animals but also in small children. During child development, different stages in the acquisition of numerical knowledge are observed, including global quantification, recognition of small quantities, enumeration, correspondence construction, counting, and finally permutability (arithmetic). Some numerical abilities, such as correspondence construction, probably existed in prehistoric man. In human history, as well as in child development, counting begins with sequencing the fingers; this may be the reason for the frequent use of a decimal system. Written numbers appeared in history before written language. Neuroimaging techniques have demonstrated that different brain areas are active during arithmetical tasks, but the specific pattern of brain activity depends on the particular type of task that is performed. It can be assumed that during human history, the development of new numerical abilities was correlated with the involvement of new brain areas during the performance of progressively more complex numerical tasks. Mediators used in numerical cognition continue evolving with the introduction of new contemporary technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrillo, C. (2014). Numerical and arithmetic abilities in non-primate species. (Oxford: Oxford University Press.

    Google Scholar 

  • Ardila, A. (2010). On the evolution of calculation abilities. Frontiers in Evolutionary Neurosciences, 2, 1–8.

    Google Scholar 

  • Ardila, A. (2014). A proposed reinterpretation of Gerstmann’s syndrome. Archives of Clinical Neuropsychology, 29(8), 828–833.

    Article  Google Scholar 

  • Ardila, A. (2016). Some unusual neuropsychological syndromes: Somatoparaphrenia, akinetopsia, reduplicative paramnesia, autotopagnosia. Archives of Clinical Neuropsychology, 31(5), 456–464.

    Article  Google Scholar 

  • Ardila, A., & Rosselli, M. (2002). Acalculia and dyscalculia. Neuropsychology Review, 12, 179–231.

    Article  Google Scholar 

  • Ascher, M., & Ascher, R. (2013). Mathematics of the Incas: Code of the Quipu. North Chelmsford, MA: Courier Corporation.

    Google Scholar 

  • Ashkenazi, S., Henik, A., Ifergane, G., & Shelef, I. (2008). Basic numerical processing in left intraparietal sulcus (IPS) acalculia. Cortex, 44, 439–448.

    Article  Google Scholar 

  • Baldo, J. V., & Dronkers, N. F. (2007). Neural correlates of arithmetic and language comprehension: A common substrate? Neuropsychologia, 45, 229–235.

    Article  Google Scholar 

  • Basso, A., Burgio, F., & Caporali, A. (2000). Acalculia, aphasia and spatial disorders in left and right brain-damaged patients. Cortex, 36, 265–280.

    Article  Google Scholar 

  • Boller, F., & Grafman, J. (1983). Acalculia: Historical development and current significance. Brain and Cognition, 2, 205–223.

    Article  Google Scholar 

  • Boyle, E.K., & Wood, B. (2017). Human Evolutionary History. Elsevier.

    Google Scholar 

  • Boysen, S.T., & Capaldi, E.J. (2014). The development of numerical competence: Animal and human models. Psychology Press.

    Google Scholar 

  • Burbaud, P., Camus, O., Guehl, D., Bioulac, B., Caille, J. M., & Allard, M. (1999). A functional magnetic resonance imaging study of mental subtraction in human subjects. Neuroscience Letter, 273, 195–199.

    Article  Google Scholar 

  • Burbaud, P., Degreze, P., Lafon, P., Franconi, J. M., Bouligand, B., Bioulac, B., Caille, J. M., & Allard, M. (1995). Lateralization of prefrontal activation during internal mental calculation: A functional magnetic resonance imaging study. Journal of Neurophysiology, 74, 2194–2200.

    Google Scholar 

  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3–18.

    Article  Google Scholar 

  • Butterworth, B. (2008). Developmental dyscalculia. In Reed, L., Warner-Rogers, J. (Eds.), Child neuropsychology: Concepts, theory, and practice (pp. 357–374). Malden: Wiley-Blackwell.

    Google Scholar 

  • Cantlon, J. F., Merritt, D. J., & Brannon, E. M. (2016). Monkeys display classic signatures of human symbolic arithmetic. Animal Cognition, 19(2), 405–415.

    Article  Google Scholar 

  • Capaldi, E. J., & Miller, D. J. (1988). Counting in rats: Its functional significance and the independent cognitive processes that constitute it. Journal of Experimental Psychology: Animal Behavioral Processes, 14, 3–17.

    Google Scholar 

  • Cauty, A. (1984). Taxonomie, syntaxe et economie des numerations parlees. Amerindia, 9, 111–146.

    Google Scholar 

  • Childe, V. G. (1936). Man makes himself. London: Pitman Publishing.

    Google Scholar 

  • Cohen, L., Dehaene, S., Chochon, F., Lehericy, S., & Naccache, L. (2000). Language and calculation within the parietal lobe: A combined cognitive, anatomical and fMRI study. Neuropsychologia, 38, 1426–1440.

    Article  Google Scholar 

  • Colvin, M. K., Funnell, M. G., & Gazzaniga, M. S. (2005). Numerical processing in the two hemispheres: Studies of a split-brain patient. Brain and Cognition, 57, 43–52.

    Article  Google Scholar 

  • Cook, J.L., & Cook, G. (2009). Child development: Principles and perspectives. Boston: Pearson Allyn and Bacon.

    Google Scholar 

  • Dansilio, S. (2008). Los trastornos del cálculo y el procesamiento del número. Montevideo: Prensa Médica Latinoamericana.

    Google Scholar 

  • Davis, H., & Perusse, R. (1988). Numerical competence in animals: Definitional issues, current evidence and a new research agenda. Behavioral and Brain Sciences, 11, 561–615.

    Article  Google Scholar 

  • Dehaene, S. (1997). The number sense. How the mind creates mathematics. New York: Oxford University Press.

    Google Scholar 

  • Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. In Dehaene, S., Duhamel, J. R., & Hauser, M. D. et al. (Eds.), From monkey brain to human brain (pp. 133–157) MIT Press.

    Google Scholar 

  • Dehaene., S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219–250.

    Article  Google Scholar 

  • Dehaene, S., & Dehaene-Lambertz, G. (2009). Neuroimagerie cognitive: phylogenèse et ontogenèse. Bulletin de l’Académie Nationale de Medicine, 193, 883–889.

    Google Scholar 

  • Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinions in Neurobiology, 14, 218–224.

    Article  Google Scholar 

  • Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning complex arithmetic – an fMRI study. Cognitive Brain Research, 18, 76–88.

    Article  Google Scholar 

  • Gelman, R., & Butterworth, B. (2005). Number and language: How are they related? Trends Cognitive Sciences, 9, 6–10.

    Article  Google Scholar 

  • Gerstmann, J. (1940). The syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia. Archives of Neurology and Psychology, 44, 398–408.

    Article  Google Scholar 

  • Grafman, J. (1988). Acalculia. In Boller, F., Grafman, J., Rizzolatti, G., & Goodglass, H. (Eds.), Handbook of neuropsychology (Vol. 1; pp. 121–136). Amsterdam: Elsevier.

    Google Scholar 

  • Harrison, A. H., Noseworthy, M. D., Reilly, J. P., Guan, W., & Connolly, J. F. (2017). EEG and fMRI agree: Mental arithmetic is the easiest form of imagery to detect. Consciousness and Cognition, 48, 104–116.

    Article  Google Scholar 

  • Hecaen, H., Angelerges, T., & Houllier, S. (1961). Les varietes cliniques des acalculies au cours des lesions retrorolandiques. Revue Neurologique, (Paris), 105, 85–103.

    Google Scholar 

  • Henschen, S. E. (1925). Clinical and anatomical contributions on brain pathology. Archives of Neurology and Psychiatry, 13, 226–249.

    Article  Google Scholar 

  • Hurford, R. (1987). Language and number. Oxford: Basil Blackwell.

    Google Scholar 

  • Ifrah, G. (2000). The universal history of the numbers. New York: Wiley.

    Google Scholar 

  • Kansaku, K., Johnson, A., Grillon, M. L., Garraux, G., Sadato, N., & Hallett, M. (2006). Neural correlates of counting of sequential sensory and motor events in the human brain. Neuroimage, 31, 649–660.

    Article  Google Scholar 

  • Kas, A., de Souza, L. C., Samri, D., Bartolomeo, P., Lacomblez, L., Kalafat, M., et al. (2011). Neural correlates of cognitive impairment in posterior cortical atrophy. Brain, 134(Pt 5), 1464–1478.

    Article  Google Scholar 

  • Kaufmann, L. (2008). Dyscalculia: Neuroscience and education. Educational Research, 50, 163–175.

    Article  Google Scholar 

  • Kersey, A. J., & Cantlon, J. F. (2016). Neural tuning to numerosity relates to perceptual tuning in 3-to 6-year-old children. Journal of Neuroscience, 37(3), 512–522.

    Article  Google Scholar 

  • Klein, A., & Starkey, P. S. (1987). The origins and development of numerical cognition: A comparative analysis. In Sloboda, J. A., & Rogers, D. (Eds.), Cognitive processes in mathematics (pp. 1–25). Oxford: Clarendon Press.

    Google Scholar 

  • Koehler, O. (1951). The ability of birds to count. Bulletin of Animal Behavior, 9, 41–45.

    Google Scholar 

  • Leon-Portilla, M. (1986). Tiempo y Realidad en el Pensamiento Maya [Time and reality in Maya thinking]. México: Universidad Nacional Autónoma de México.

    Google Scholar 

  • Levine, S. C., Jordan, N. C., & Huttenlocher, J. (1992). Development of calculation abilities in young children. Journal of Experimental Child Psychology, 53(1), 72–103.

    Article  Google Scholar 

  • Levy-Bruhl, L. (1910/1947). Las Funciones Mentales en las Sociedades Inferiores [Mental functions in lower societies]. Buenos Aires. Lautaro.

    Google Scholar 

  • Loring, D. W., & Bowden, S. (2015). INS dictionary of neuropsychology and clinical neurosciences. Oxford University Press.

    Google Scholar 

  • Luria, A. R. (1973). The working brain. New York: Basic Books.

    Google Scholar 

  • Mayer, E., Reicherts, M., Deloche, G., Willadino-Braga, L., Taussik, I., Dordain, M., et al. (2003). Number processing after stroke: Anatomoclinical correlations in oral and written codes. Journal of the International Neuropsychological Society, 9, 899–912.

    Article  Google Scholar 

  • Mechner, F. (1958). Probability relations within response sequences under ratio reinforcement. Journal of Experimental Animal Behavior, 1, 109–121.

    Article  Google Scholar 

  • Pantelyat, A., Dreyfuss, M., Moore, P., Gross, R., Schuck, T., Irwin, D., et al. (2011). Acalculia in autopsy-proven corticobasal degeneration. Neurology, 76(7 Supplement 2), S61–S63.

    Article  Google Scholar 

  • Park, Y. H., Jang, J. W., Baek, M. J., Kim, J. E., & Kim, S. (2013). Parietal variant Alzheimer’s disease presenting with dyscalculia. Neurological Sciences, 34(5), 779–780.

    Article  Google Scholar 

  • Peng, P., Yang, X., & Meng, X. (2017). The relation between approximate number system and early arithmetic: The mediation role of numerical knowledge. Journal of Experimental Child Psychology, 157, 111–124.

    Article  Google Scholar 

  • Pontius, A. A. (1989). Color and spatial error in block design in stone-age Auca Indians: Ecological underuse of occipital-parietal system in men and of frontal lobes in women. Brain and Cognition, 10, 54–75.

    Article  Google Scholar 

  • Premack, D. (1976). Intelligence in ape and man. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Queixalos, F. (1989). Numeración tradicional Sikuani. [Traditional Sikuani numbering] Glotta, 3, 28–31.

    Google Scholar 

  • Rickard, T. C., Romero, S. G., Basso, G., Wharton, C., Flitman, S., & Grafman, J. (2000). The calculating brain: AnfMRI Study. Neuropsychologia, 38, 325–335.

    Article  Google Scholar 

  • Rosca, E. C. (2009). Arithmetic procedural knowledge: A cortico-subcortical circuit. Brain Research, 1302, 148–156.

    Article  Google Scholar 

  • Rosselli, M., Ardila, A., Arvizu, L., Kretzmer, T., Standish, V., & Liebermann, J. (1998). Arithmetical abilities in Alzheimer disease. International Journal of Neuroscience, 96(3–4), 141–148.

    Article  Google Scholar 

  • Roux, F. E., Boetto, S., Sacko, O., Chollet, F., & Tremoulet, M. (2003). Writing, calculating, and finger recognition in the region of the angular gyrus: A cortical stimulation study of Gerstmann syndrome. Journal of Neurosurgery, 99, 716–727.

    Article  Google Scholar 

  • Roux, F. E., Boukhatem, L., Draper, L., Sacko, O., & Démonet, J. F. (2009). Cortical calculation localization using electrostimulation. Journal of Neurosurgery, 110, 1291–1299.

    Article  Google Scholar 

  • Rueckert, L., Lange, N., Partiot, A., Appollonio, I., Litvan, I., Le Bihan, D., et al. (1996). Visualizing cortical activation during mental calculation with functional MRI. Neuroimage, 3, 97–103.

    Article  Google Scholar 

  • Rugani, R., Fontanari, L., Simoni, E., Regolin, L., & Vallortigara, G. (2009). Arithmetic in newborn chicks. Proceedings. Biological Sciences/The Royal Society, 276, 2451–2460.

    Article  Google Scholar 

  • Semenza, C., Delazer, M., Bertella, L., Granà, A., Mori, I., Conti, F. M., et al. (2006). Is math lateralized on the same side as language? Right hemisphere aphasia and mathematical abilities. Neuroscience Letter, 406, 285–288.

    Article  Google Scholar 

  • Siegler, R. S., & Lortie-Forgues, H. (2014). An integrative theory of numerical development. Child Development Perspectives, 8(3), 144–150.

    Article  Google Scholar 

  • Siegler, R. S., & Braithwaite, D. W. (2017). Numerical development. Annual Review of Psychology, 68, 187–213.

    Article  Google Scholar 

  • Swadesh, M. (1967). El Lenguage y La Vida Humana [Language and human life]. México. Fondo de Cultura Económica.

    Google Scholar 

  • Tanaka, S., Seki, K., Hanakawa, T., Harada, M., Sugawara, S. K., Sadato, N., et al. (2012). Abacus in the brain: A longitudinal functional MRI study of a skilled abacus user with a right hemispheric lesion. Frontiers in Psychology, 3, 315.

    Google Scholar 

  • Ting, S. K. S., Chia, P. S., Kwek, K., Tan, W., & Hameed, S. (2016). Characteristics of number transcoding errors of Chinese-versus English-speaking Alzheimer’s disease patients. Neurocase, 22(5), 469–471.

    Article  Google Scholar 

  • Troiani, V., Peelle, J. E., Clark, R., & Grossman, M. (2009). Is it logical to count on quantifiers? Dissociable neural networks underlying numerical and logical quantifiers. Neuropsychologia, 47(1), 104–111.

    Article  Google Scholar 

  • Tsvetkova, L. S. (1996). Acalculia: Aproximación neuropsicológica al análisis de la alteración y la rehabilitación del cálculo. In Ostrosky, F., Ardila, A., & Dochy, R. (Eds.), Rehabilitación neuropsicológica (pp. 114–131). México: Planeta.

    Google Scholar 

  • Turner, R. (1984). The great cultural tradition. The foundation of civilization. New York: McGraw-Hill.

    Google Scholar 

  • Woodruff, G., & Premack, D. (1981). Primitive mathematical concepts in the chimpanzee: Proportionality and numerosity. Nature, 293, 568–570.

    Article  Google Scholar 

  • Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155–193.

    Article  Google Scholar 

  • www.ethnologue.com. Retrieved March 17, 2017.

  • www.indian-cultures.com/cultures/guahibo-indians/. Retrieved March 17, 2017.

  • www.indian-cultures.com/cultures/huitoto-indians/. Retrieved March 17, 2017.

  • Zamarian, L., Ischebeck, A., & Delazer, M. (2009). Neuroscience of learning arithmetic – evidence from brain imaging studies. Neuroscience and Biobehavioral Reviews, 33, 909–925.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Ardila .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ardila, A. (2018). Origins of Calculation Abilities. In: Historical Development of Human Cognition. Perspectives in Cultural-Historical Research, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-10-6887-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6887-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6886-7

  • Online ISBN: 978-981-10-6887-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics