Gel Chemistry pp 191-208 | Cite as

Inorganic Gels

  • Jianyong ZhangEmail author
  • Ya Hu
  • Yongguang Li
Part of the Lecture Notes in Chemistry book series (LNC, volume 96)


This chapter focuses on the discussion of various inorganic gels including the formation mechanism, molecular systems and functional properties. The inorganic gels include silica-based gels, chalcogels and others. In the first section of the chapter, the concept of sol–gel process, which is a commonly used principle to explain the formation of inorganic gels, is introduced. In the following sections, three catalogues of inorganic gels are discussed in detail. For silica-based gels, the nanoparticles of silica derivatives are used as silica sources. The growth mechanism of silica gels from the nanoparticles and the key factors to determine the formation process are reviewed. Several representative silica gel systems are presented to show the versatility of the materials. In the following section, chalcogels are discussed and discussions focus on the preparation methods and catalytic performance of chalcogels. At last, a brief description about other gels including AgVO3 and V2O5 gels is given.


Inorganic gels Sol–gel process Silica-based gels Chalcogels 


  1. 1.
    Ebelmen M (1846) Ann Chim Phys 16:129–166Google Scholar
  2. 2.
    Beelen TPM (1996) Inorganic particle gels. Curr Opin Colloid Inter Sci 1(6):718–725. CrossRefGoogle Scholar
  3. 3.
    Weiser H (1923) Cupric oxide Jellies. J Phys Chem 27(7):685–691CrossRefGoogle Scholar
  4. 4.
    Finch L (1914) Cupric oxide jellies. J Phys Chem 18(1):26–33CrossRefGoogle Scholar
  5. 5.
    Danks AE, Hall SR, Schnepp Z (2016) The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horizons 3(2):91–112. CrossRefGoogle Scholar
  6. 6.
    Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4266. CrossRefGoogle Scholar
  7. 7.
    Chung I, Kanatzidis MG (2014) Metal chalcogenides: a rich source of nonlinear optical materials. Chem Mater 26(1):849–869. CrossRefGoogle Scholar
  8. 8.
    Bag S, Arachchige IU, Kanatzidis MG (2008) Aerogels from metal chalcogenides and their emerging unique properties. J Mater Chem 18(31):3628–3632. CrossRefGoogle Scholar
  9. 9.
    Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18(4):259–341. CrossRefGoogle Scholar
  10. 10.
    Sanderson RT (1951) An interpretation of bond lengths and a classification of bonds. Science 114(2973):670–672CrossRefGoogle Scholar
  11. 11.
    Kistler S (1932) Coherent expanded-aerogels. J Phys Chem 36(1):52–64CrossRefGoogle Scholar
  12. 12.
    Herrmann G, Iden R, Mielke M, Teich F, Ziegler B (1995) On the way to commercial production of silica aerogel. J Non-Cryst Solids 186 (Supplement C):380–387.
  13. 13.
    Carcouët CCMC, van de Put MWP, Mezari B, Magusin PCMM, Laven J, Bomans PHH, Friedrich H, Esteves ACC, Sommerdijk NAJM, van Benthem RATM, de With G (2014) Nucleation and growth of monodisperse silica nanoparticles. Nano Lett 14(3):1433–1438. CrossRefGoogle Scholar
  14. 14.
    Nassif N, Bouvet O, Rager MN, Roux C, Coradin T, Livage J (2002) Living bacteria in silica gels. Nat Mater 1(1):42CrossRefGoogle Scholar
  15. 15.
    Finnie KS, Bartlett JR, Woolfrey JL (2000) Encapsulation of sulfate-reducing bacteria in a silica host. J Mater Chem 10(5):1099–1101CrossRefGoogle Scholar
  16. 16.
    Mutlu BR, Yeom S, Tong H-W, Wackett LP, Aksan A (2013) Silicon alkoxide cross-linked silica nanoparticle gels for encapsulation of bacterial biocatalysts. J Mater Chem A 1(36):11051–11060. CrossRefGoogle Scholar
  17. 17.
    Dorcheh AS, Abbasi M (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Tech 199(1):10–26CrossRefGoogle Scholar
  18. 18.
    Dai S, Ju YH, Gao HJ, Lin JS, Pennycook SJ, Barnes CE (2000) Preparation of silica aerogel using ionic liquids as solvents. Chem Commun 3:243–244. CrossRefGoogle Scholar
  19. 19.
    Guo Y, Guadalupe RA (1999) Functional silica aerogel from metastable lamellar composite. Chem Commun (4):315–316.
  20. 20.
    Morris CA, Anderson ML, Stroud RM, Merzbacher CI, Rolison DR (1999) Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science 284(5414):622–624CrossRefGoogle Scholar
  21. 21.
    Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-MM (2002) Nanoengineering strong silica aerogels. Nano Lett 2(9):957–960. CrossRefGoogle Scholar
  22. 22.
    Leventis N, Elder IA, Long GJ, Rolison DR (2002) Using nanoscopic hosts, magnetic guests, and field alignment to create anisotropic composite gels and aerogels. Nano Lett 2(1):63–67. CrossRefGoogle Scholar
  23. 23.
    Patel A, Mankoč B, Sintang MB, Lesaffer A, Dewettinck K (2015) Fumed silica-based organogels and ‘aqueous-organic’ bigels. RSC Adv 5(13):9703–9708CrossRefGoogle Scholar
  24. 24.
    Wu X-J, Wang Y, Yang W, Xie B-H, Yang M-B, Dan W (2012) A rheological study on temperature dependent microstructural changes of fumed silica gels in dodecane. Soft Matter 8(40):10457–10463CrossRefGoogle Scholar
  25. 25.
    Gun’ko V, Mironyuk I, Zarko V, Turov V, Voronin E, Pakhlov E, Goncharuk E, Leboda R, Skubiszewska-Ziȩba J, Janusz W (2001) Fumed silicas possessing different morphology and hydrophilicity. J Colloid Interface Sci 242(1):90–103CrossRefGoogle Scholar
  26. 26.
    Raghavan SR, Walls H, Khan SA (2000) Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir 16(21):7920–7930CrossRefGoogle Scholar
  27. 27.
    Zheng Z, Song Y, Yang R, Zheng Q (2015) Direct evidence for percolation of immobilized polymer layer around nanoparticles accounting for sol–gel transition in fumed silica dispersions. Langmuir 31(50):13478–13487CrossRefGoogle Scholar
  28. 28.
    Binks BP, Horozov TS (2005) Aqueous foams stabilized solely by silica nanoparticles. Angew Chem 117(24):3788–3791CrossRefGoogle Scholar
  29. 29.
    Gençten M, Dönmez KB, Şahin Y, Pekmez K, Suvacı E (2014) Voltammetric and electrochemical impedimetric behavior of silica-based gel electrolyte for valve-regulated lead-acid battery. J Solid State Electro 18(9):2469–2479. CrossRefGoogle Scholar
  30. 30.
    Bag S, Trikalitis PN, Chupas PJ, Armatas GS, Kanatzidis MG (2007) Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317(5837):490–493. CrossRefGoogle Scholar
  31. 31.
    Subrahmanyam KS, Malliakas CD, Sarma D, Armatas GS, Wu J, Kanatzidis MG (2015) Ion-exchangeable molybdenum sulfide porous chalcogel: gas adsorption and capture of iodine and mercury. J Am Chem Soc 137(43):13943–13948. CrossRefGoogle Scholar
  32. 32.
    Oh Y, Morris CD, Kanatzidis MG (2012) Polysulfide chalcogels with ion-exchange properties and highly efficient mercury vapor sorption. J Am Chem Soc 134(35):14604–14608. CrossRefGoogle Scholar
  33. 33.
    Subrahmanyam KS, Malliakas CD, Islam SM, Sarma D, Wu J, Kanatzidis MG (2016) High-surface-area antimony sulfide chalcogels. Chem Mater 28(21):7744–7749. CrossRefGoogle Scholar
  34. 34.
    Staszak-Jirkovsky J, Malliakas CD, Lopes PP, Danilovic N, Kota SS, Chang K-C, Genorio B, Strmcnik D, Stamenkovic VR, Kanatzidis MG, Markovic NM (2016) Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat Mater 15(2):197–203. CrossRefGoogle Scholar
  35. 35.
    Liu J, Kelley MS, Wu W, Banerjee A, Douvalis AP, Wu J, Zhang Y, Schatz GC, Kanatzidis MG (2016) Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc Natl Acad Sci USA 113(20):5530–5535. CrossRefGoogle Scholar
  36. 36.
    Bag S, Gaudette AF, Bussell ME, Kanatzidis MG (2009) Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts. Nat Chem 1(3):217–224CrossRefGoogle Scholar
  37. 37.
    Startsev AN (1995) The mechanism of HDS catalysis. Catal Rev 37(3):353–423. CrossRefGoogle Scholar
  38. 38.
    Banerjee A, Yuhas BD, Margulies EA, Zhang Y, Shim Y, Wasielewski MR, Kanatzidis MG (2015) Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. J Am Chem Soc 137(5):2030–2034. CrossRefGoogle Scholar
  39. 39.
    Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Ann Rev Biochem 78(1):701–722. CrossRefGoogle Scholar
  40. 40.
    Yang Z-Y, Khadka N, Lukoyanov D, Hoffman BM, Dean DR, Seefeldt LC (2013) On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase. Proc Natl Acad Sci USA 110(41):16327–16332. CrossRefGoogle Scholar
  41. 41.
    Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297(5587):1696–1700.
  42. 42.
    Mondal C, Ganguly M, Pal J, Sahoo R, Sinha AK, Pal T (2013) Pure inorganic gel: a new host with tremendous sorption capability. Chem Commun 49(82):9428–9430. CrossRefGoogle Scholar
  43. 43.
    Commeinhes X, Davidson P, Bourgaux C, Livage J (1997) Orientation of liquid-crystalline suspensions of vanadium pentoxide ribbons by a magnetic field. Adv Mater 9(11):900–903. CrossRefGoogle Scholar
  44. 44.
    Chandrappa GT, Steunou N, Cassaignon S, Bauvais C, Livage J (2003) Hydrothermal synthesis of vanadium oxide nanotubes from V2O5 gels. Cataly Today 78(1):85–89. CrossRefGoogle Scholar
  45. 45.
    Alonso B, Livage J (1999) Synthesis of vanadium oxide gels from peroxovanadic acid solutions: a 51 V NMR study. J Solid State Chem 148(1):16–19. CrossRefGoogle Scholar
  46. 46.
    Livage J (1991) Vanadium pentoxide gels. Chem Mater 3(4):578–593. CrossRefGoogle Scholar
  47. 47.
    Chen J, Yoshida M, Maekawa Y, Tsubokawa N (2001) Temperature-switchable vapor sensor materials based on N-isopropylacrylamide and calcium chloride. Polymer 42(23):9361–9365. CrossRefGoogle Scholar
  48. 48.
    van Bommel KJC, Stuart MCA, Feringa BL, van Esch J (2005) Two-stage enzyme mediated drug release from LMWG hydrogels. Org Bio Chem 3(16):2917–2920. CrossRefGoogle Scholar
  49. 49.
    Fernandez de Luis R, Martinez-Amesti A, Larrea ES, Lezama L, Aguayo AT, Arriortua MI (2015) Composite [small beta]-AgVO3@V1.65+V0.44+O4.8 hydrogels and xerogels for iodide capture. J Mater Chem A 3(39):19996–20012.
  50. 50.
    Song J-M, Lin Y-Z, Yao H-B, Fan F-J, Li X-G, Yu S-H (2009) Superlong β-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability. Electr Electrochem Prop ACS Nano 3(3):653–660. Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  3. 3.School of Chemistry and Chemical EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations