Gel Chemistry pp 153-189 | Cite as

Polymer Gels

  • Jianyong ZhangEmail author
  • Ya Hu
  • Yongguang Li
Part of the Lecture Notes in Chemistry book series (LNC, volume 96)


The cross-linking of long-chain polymeric gelators has been shown to be an effective driving force for the formation of polymer gels. In this chapter, various polymer gels are discussed according to the interaction species of the cross-linking between the gelators. The interactions include hydrogen bonding, metal–organic coordination and dynamic covalent bonding. Prior to discussing these interactions, several traditional polymer gels are introduced such as silicone-based gels and polymer hydrogels. The thermodynamic aspects relating to the swelling of polymer gels upon exposure to a liquid are described in detail. By analysing the macroscopic degree of swelling of a polymer gel, the microscopic cross-linking between polymer chains can be probed quantitatively. The formation of the polymer gels driven by different interactions is presented by illustrating the correlation between the properties and driving forces. Following the gel systems comprising individual interaction species, strategies to combine polymer and low molecular weight gels are presented. The emerging hybrid materials are promising to integrate the advantages of both polymer and low molecular weight gels.


Polymer gels Cross-linking Swelling Hydrogen bonding Metal–organic coordination Dynamic covalent bonding Hybrid gels 


  1. 1.
    Kim H-J, Zhang K, Moore L, Ho D (2014) Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano 8(3):2998–3005. CrossRefGoogle Scholar
  2. 2.
    Laschi C, Cianchetti M (2014) Soft robotics: new perspectives for robot bodyware and control. Front Bioeng Biotechnol 2:3. CrossRefGoogle Scholar
  3. 3.
    Sun Y, Jensen H, Petersen NJ, Larsen SW, Østergaard J (2017) Phase separation of in situ forming poly(lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV–vis imaging. J Pharm Biomed Anal 145:682–691. CrossRefGoogle Scholar
  4. 4.
    Bai W, Spivak DA (2014) A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract. Angew Chem 126(8):2127–2130. CrossRefGoogle Scholar
  5. 5.
    Mrozek RA, Sliozberg YR, Andzelm JW, Lenhart JL (2015) Polymer gels for defense applications. In: Barthelat F, Korach C, Zavattieri P, Prorok BC, Grande-Allen KJ (eds) Mechanics of biological systems and materials. Proceedings of the 2014 annual conference on experimental and applied mechanics, vol 7. Springer International Publishing, Cham, pp 47–51.
  6. 6.
    Sutar P, Maji TK (2016) Coordination polymer gels: soft metal-organic supramolecular materials and versatile applications. Chem Commun 52(52):8055–8074. CrossRefGoogle Scholar
  7. 7.
    Wang R, Geiger C, Chen L, Swanson B, Whitten DG (2000) Direct observation of sol−gel conversion: the role of the solvent in organogel formation. J Am Chem Soc 122(10):2399–2400. CrossRefGoogle Scholar
  8. 8.
    Shi C, Huang Z, Kilic S, Xu J, Enick RM, Beckman EJ, Carr AJ, Melendez RE, Hamilton AD (1999) The gelation of CO2: a sustainable route to the creation of microcellular materials. Science 286(5444):1540–1543. CrossRefGoogle Scholar
  9. 9.
    Jung JH, Ono Y, Shinkai S (2000) Sol–gel polycondensation of tetraethoxysilane in a cholesterol-based organogel system results in chiral spiral silica. Angew Chem Int Ed 39(10):1862–1865CrossRefGoogle Scholar
  10. 10.
    van den Berg O, Nguyen L-TT, Teixeira RFA, Goethals F, Özdilek C, Berghmans S, Du Prez FE (2014) Low modulus dry silicone-gel materials by photoinduced thiol–ene chemistry. Macromolecules 47(4):1292–1300. CrossRefGoogle Scholar
  11. 11.
    Forbes CJ, McCoy CF, Murphy DJ, Woolfson AD, Moore JP, Evans A, Shattock RJ, Malcolm RK (2014) Modified silicone elastomer vaginal gels for sustained release of antiretroviral HIV microbicides. J Pharm Sci 103(5):1422–1432. CrossRefGoogle Scholar
  12. 12.
    Bin Imran A, Esaki K, Gotoh H, Seki T, Ito K, Sakai Y, Takeoka Y (2014) Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat Commun 5:5124. CrossRefGoogle Scholar
  13. 13.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118CrossRefGoogle Scholar
  14. 14.
    Lloyd AW, Faragher RGA, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22(8):769–785. CrossRefGoogle Scholar
  15. 15.
    Nicolson PC, Vogt J (2001) Soft contact lens polymers: an evolution. Biomaterials 22(24):3273–3283. CrossRefGoogle Scholar
  16. 16.
    Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346(6282):345–347CrossRefGoogle Scholar
  17. 17.
    Kwon IC, Bae YH, Kim SW (1991) Electrically credible polymer gel for controlled release of drugs. Nature 354(6351):291–293CrossRefGoogle Scholar
  18. 18.
    Lowman AM, Morishita M, Kajita M, Nagai T, Peppas NA (1999) Oral delivery of insulin using pH-responsive complexation gels. J Pharm Sci 88(9):933–937. CrossRefGoogle Scholar
  19. 19.
    Wang C, Stewart RJ, KopeCek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397(6718):417–420CrossRefGoogle Scholar
  20. 20.
    Tsitsilianis C, Iliopoulos I, Ducouret G (2000) An associative polyelectrolyte end-capped with short polystyrene chains. Synth Rheological Behav Macromol 33(8):2936–2943. Google Scholar
  21. 21.
    Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281(5375):389–392. CrossRefGoogle Scholar
  22. 22.
    Hamley IW, Daniel C, Mingvanish W, Mai S-M, Booth C, Messe L, Ryan AJ (2000) From hard spheres to soft spheres: the effect of copolymer composition on the structure of micellar cubic phases formed by diblock copolymers in aqueous solution. Langmuir 16(6):2508–2514. CrossRefGoogle Scholar
  23. 23.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360. CrossRefGoogle Scholar
  24. 24.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880. CrossRefGoogle Scholar
  25. 25.
    Yuk H, Zhang T, Lin S, Parada GA, Zhao X (2016) Tough bonding of hydrogels to diverse non-porous surfaces. Nat Mater 15(2):190–196. CrossRefGoogle Scholar
  26. 26.
    Wang X, Chen Y, Xue L, Pothayee N, Zhang R, Riffle JS, Reineke TM, Madsen LA (2014) Diffusion of drug delivery nanoparticles into biogels using time-resolved micromri. J Phys Chem Lett 5(21):3825–3830. CrossRefGoogle Scholar
  27. 27.
    Leocmach M, Nespoulous M, Manneville S, Gibaud T (2015) Hierarchical wrinkling in a confined permeable biogel. Sci Adv 1(9).
  28. 28.
    Mahaffy RE, Shih CK, MacKintosh FC, Käs J (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett 85(4):880–883CrossRefGoogle Scholar
  29. 29.
    Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Func Mater 14(11):1124–1128. CrossRefGoogle Scholar
  30. 30.
    Tanaka Y, Kuwabara R, Na Y-H, Kurokawa T, Gong JP, Osada Y (2005) Determination of fracture energy of high strength double network hydrogels. J Phys Chem B 109(23):11559–11562. CrossRefGoogle Scholar
  31. 31.
    Yang J, Han C-R, Duan J-F, Xu F, Sun R-C (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5(8):3199–3207. CrossRefGoogle Scholar
  32. 32.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, New YorkGoogle Scholar
  33. 33.
    Dong L, Agarwal AK, Beebe DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442(7102):551–554CrossRefGoogle Scholar
  34. 34.
    Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339. CrossRefGoogle Scholar
  35. 35.
    Li J, Liu T, Xia S, Pan Y, Zheng Z, Ding X, Peng Y (2011) A versatile approach to achieve quintuple-shape memory effect by semi-interpenetrating polymer networks containing broadened glass transition and crystalline segments. J Mater Chem 21(33):12213–12217. CrossRefGoogle Scholar
  36. 36.
    Guo M, Pitet LM, Wyss HM, Vos M, Dankers PYW, Meijer EW (2014) Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J Am Chem Soc 136(19):6969–6977. CrossRefGoogle Scholar
  37. 37.
    Nair KP, Breedveld V, Weck M (2011) Multiresponsive reversible polymer networks based on hydrogen bonding and metal coordination. Macromolecules 44(9):3346–3357. CrossRefGoogle Scholar
  38. 38.
    Hackelbusch S, Rossow T, Becker H, Seiffert S (2014) Multiresponsive polymer hydrogels by orthogonal supramolecular chain cross-linking. Macromolecules 47(12):4028–4036. CrossRefGoogle Scholar
  39. 39.
    Ji X, Jie K, Zimmerman SC, Huang F (2015) A double supramolecular crosslinked polymer gel exhibiting macroscale expansion and contraction behavior and multistimuli responsiveness. Polym Chem 6(11):1912–1917. CrossRefGoogle Scholar
  40. 40.
    Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463(7279):339–343CrossRefGoogle Scholar
  41. 41.
    Partridge KS, Smith DK, Dykes GM, McGrail PT (2001) Supramolecular dendritic two-component gel. Chem Commun 4:319–320. CrossRefGoogle Scholar
  42. 42.
    Ge Z, Hu J, Huang F, Liu S (2009) Responsive supramolecular gels constructed by crown ether based molecular recognition. Angew Chem 121(10):1830–1834. CrossRefGoogle Scholar
  43. 43.
    Noro A, Matsushita Y, Lodge TP (2009) Gelation mechanism of thermoreversible supramacromolecular ion gels via hydrogen bonding. Macromolecules 42(15):5802–5810. CrossRefGoogle Scholar
  44. 44.
    Noro A, Hayashi M, Ohshika A, Matsushita Y (2011) Simple preparation of supramolecular polymer gels viahydrogen bonding by blending two liquid polymers. Soft Matter 7(5):1667–1670. CrossRefGoogle Scholar
  45. 45.
    Jung JH, Lee JH, Silverman JR, John G (2013) Coordination polymer gels with important environmental and biological applications. Chem Soc Rev 42(3):924–936. CrossRefGoogle Scholar
  46. 46.
    Rubin DJ, Miserez A, Waite JH (2010) Diverse strategies of protein sclerotization in marine invertebrates. Adv Insect Physiol 38:75–133. CrossRefGoogle Scholar
  47. 47.
    Harrington MJ, Masic A, Holten-Andersen N, Waite JH, Fratzl P (2010) Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328(5975):216–220. CrossRefGoogle Scholar
  48. 48.
    Holten-Andersen N, Harrington MJ, Birkedal H, Lee BP, Messersmith PB, Lee KYC, Waite JH (2011) pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc Natl Acad Sci USA 108(7):2651–2655. CrossRefGoogle Scholar
  49. 49.
    Piepenbrock M-OM, Lloyd GO, Clarke N, Steed JW (2010) Metal-and anion-binding supramolecular gels. Chem Rev 110(4):1960–2004. CrossRefGoogle Scholar
  50. 50.
    Zhang J, Su C-Y (2013) Metal-organic gels: from discrete metallogelatros to coordination polymers. Coord Chem Rev 257:1373–1408. CrossRefGoogle Scholar
  51. 51.
    Dubey M, Kumar A, Pandey DS (2014) Homochiral coordination polymeric gel: Zn2+-induced conformational changes leading to J-aggregated helical fibres formation. Chem Commun 50(14):1675–1677. CrossRefGoogle Scholar
  52. 52.
    Xu F, Padhy H, Al-Dossary M, Zhang G, Behzad AR, Stingl U, Rothenberger A (2014) Synthesis and properties of the metallo-supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate] AgNO3: Ag+/Cu2+ ion exchange and effective antibacterial activity. J Mater Chem B 2(37):6406–6411. CrossRefGoogle Scholar
  53. 53.
    Zhukhovitskiy AV, Zhong M, Keeler EG, Michaelis VK, Sun JEP, Hore MJA, Pochan DJ, Griffin RG, Willard AP, Johnson JA (2016) Highly branched and loop-rich gels via formation of metal–organic cages linked by polymers. Nat Chem 8(1):33–41. CrossRefGoogle Scholar
  54. 54.
    Foster JA, Parker RM, Belenguer AM, Kishi N, Sutton S, Abell C, Nitschke JR (2015) Differentially addressable cavities within metal-organic cage-cross-linked polymeric hydrogels. J Am Chem Soc 137(30):9722–9729. CrossRefGoogle Scholar
  55. 55.
    Wang Y, Zhong M, Park JV, Zhukhovitskiy AV, Shi W, Johnson JA (2016) Block co-polyMOCs by stepwise self-assembly. J Am Chem Soc 138(33):10708–10715. CrossRefGoogle Scholar
  56. 56.
    Wei Z, Yang JH, Zhou J, Xu F, Zrinyi M, Dussault PH, Osada Y, Chen YM (2014) Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem Soc Rev 43(23):8114–8131. CrossRefGoogle Scholar
  57. 57.
    Wu XL, He CL, Wu YD, Chen XS (2016) Synergistic therapeutic effects of Schiffs base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model. Biomaterials 75:148–162. CrossRefGoogle Scholar
  58. 58.
    Deng G, Tang C, Li F, Jiang H, Chen Y (2010) Covalent cross-linked polymer gels with reversible sol−gel transition and self-healing properties. Macromolecules 43(3):1191–1194. CrossRefGoogle Scholar
  59. 59.
    Cok AM, Zhou H, Johnson JA (2013) Synthesis of model network hydrogels via Tetrazine-Olefin Inverse electron demand Diels-Alder Cycloaddition. Macromolecular Symposia 329(1):108–112. CrossRefGoogle Scholar
  60. 60.
    Casuso P, Odriozola I, Pérez-San Vicente A, Loinaz I, Cabañero G, Grande H-J, Dupin D (2015) Injectable and self-healing dynamic hydrogels based on Metal(I)-Thiolate/Disulfide exchange as biomaterials with tunable mechanical properties. Biomacromol 16(11):3552–3561. CrossRefGoogle Scholar
  61. 61.
    Imato K, Irie A, Kosuge T, Ohishi T, Nishihara M, Takahara A, Otsuka H (2015) Mechanophores with a reversible radical system and freezing-induced mechanochemistry in polymer solutions and gels. Angew Chem Int Ed 54(21):6168–6172. CrossRefGoogle Scholar
  62. 62.
    Roberts MC, Hanson MC, Massey AP, Karren EA, Kiser PF (2007) Dynamically restructuring hydrogel networks formed with reversible covalent crosslinks. Adv Mater 19(18):2503–2507. CrossRefGoogle Scholar
  63. 63.
    Zhang Y, Tao L, Li S, Wei Y (2011) Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromol 12(8):2894–2901. CrossRefGoogle Scholar
  64. 64.
    Haldar U, Bauri K, Li R, Faust R, De P (2015) Polyisobutylene-based pH-responsive self-healing polymeric gels. ACS Appl Mater Interfaces 7(16):8779–8788. CrossRefGoogle Scholar
  65. 65.
    Deng G, Ma Q, Yu H, Zhang Y, Yan Z, Liu F, Liu C, Jiang H, Chen Y (2015) Macroscopic organohydrogel hybrid from rapid adhesion between dynamic covalent hydrogel and organogel. ACS Macro Lett 4(4):467–471. CrossRefGoogle Scholar
  66. 66.
    Guan Y, Zhang Y (2013) Boronic acid-containing hydrogels: synthesis and their applications. Chem Soc Rev 42(20):8106–8121. CrossRefGoogle Scholar
  67. 67.
    Xu J, Yang D, Li W, Gao Y, Chen H, Li H (2011) Phenylboronate-diol crosslinked polymer gels with reversible sol–gel transition. Polymer 52(19):4268–4276. CrossRefGoogle Scholar
  68. 68.
    Chujo Y, Sada K, Naka A, Nomura R, Saegusa T (1993) Synthesis and redox gelation of disulfide-modified polyoxazoline. Macromolecules 26(5):883–887. CrossRefGoogle Scholar
  69. 69.
    Chujo Y, Sada K, Saegusa T (1990) Reversible gelation of polyoxazoline by means of Diels–Alder reaction. Macromolecules 23(10):2636–2641. CrossRefGoogle Scholar
  70. 70.
    Koehler KC, Anseth KS, Bowman CN (2013) Diels-Alder mediated controlled release from a Poly(ethylene glycol) based hydrogel. Biomacromol 14(2):538–547. CrossRefGoogle Scholar
  71. 71.
    Su J, Amamoto Y, Nishihara M, Takahara A, Otsuka H (2011) Reversible cross-linking of hydrophilic dynamic covalent polymers with radically exchangeable alkoxyamines in aqueous media. Polym Chem 2(9):2021–2026. CrossRefGoogle Scholar
  72. 72.
    Imato K, Nishihara M, Kanehara T, Amamoto Y, Takahara A, Otsuka H (2012) Self-healing of chemical gels cross-linked by diarylbibenzofuranone-based trigger-free dynamic covalent bonds at room temperature. Angew Chem Int Ed 51(5):1138–1142. CrossRefGoogle Scholar
  73. 73.
    Nicolaÿ R, Kamada J, Van Wassen A, Matyjaszewski K (2010) Responsive gels based on a dynamic covalent Trithiocarbonate cross-linker. Macromolecules 43(9):4355–4361. CrossRefGoogle Scholar
  74. 74.
    Amamoto Y, Otsuka H, Takahara A, Matyjaszewski K (2012) Changes in network structure of chemical gels controlled by solvent quality through photoinduced radical reshuffling reactions of Trithiocarbonate units. ACS Macro Lett 1(4):478–481. CrossRefGoogle Scholar
  75. 75.
    Cornwell DJ, Smith DK (2015) Expanding the scope of gels—combining polymers with low-molecular-weight gelators to yield modified self-assembling smart materials with high-tech applications. Mater Horizons 2(3):279–293. CrossRefGoogle Scholar
  76. 76.
    de Loos M, van Esch J, Stokroos I, Kellogg RM, Feringa BL (1997) Remarkable stabilization of self-assembled organogels by polymerization. J Am Chem Soc 119(51):12675–12676. CrossRefGoogle Scholar
  77. 77.
    Eimura H, Yoshio M, Shoji Y, Hanabusa K, Kato T (2012) Liquid-crystalline gels exhibiting electrooptical light scattering properties: fibrous polymerized network of a lysine-based gelator having acrylate moieties. Polym J 44(6):594–599CrossRefGoogle Scholar
  78. 78.
    George M, Weiss RG (2003) Low molecular-mass gelators with Diyne functional groups and their unpolymerized and polymerized gel assemblies. Chem Mater 15(15):2879–2888. CrossRefGoogle Scholar
  79. 79.
    Kim C, Lee SJ, Lee IH, Kim KT, Song HH, Jeon H-J (2003) Stabilization of supramolecular nanostructures induced by self-assembly of dendritic building blocks. Chem Mater 15(19):3638–3642. CrossRefGoogle Scholar
  80. 80.
    Moffat JR, Coates IA, Leng FJ, Smith DK (2009) Metathesis within self-assembled gels: transcribing nanostructured soft materials into a more robust form. Langmuir 25(15):8786–8793. CrossRefGoogle Scholar
  81. 81.
    Díaz DD, Rajagopal K, Strable E, Schneider J, Finn MG (2006) “Click” chemistry in a supramolecular environment: stabilization of organogels by Copper(I)-catalyzed azide−alkyne [3+2] cycloaddition. J Am Chem Soc 128(18):6056–6057. CrossRefGoogle Scholar
  82. 82.
    Piepenbrock MOM, Clarke N, Foster JA, Steed JW (2011) Anion tuning and polymer templating in a simple low molecular weight organogelator. Chem Commun 47(7):2095–2097. CrossRefGoogle Scholar
  83. 83.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021CrossRefGoogle Scholar
  84. 84.
    Dasgupta D, Srinivasan S, Rochas C, Ajayaghosh A, Guenet JM (2009) Hybrid thermoreversible gels from covalent polymers and organogels. Langmuir 25(15):8593–8598. CrossRefGoogle Scholar
  85. 85.
    Wang J, Wang H, Song Z, Kong D, Chen X, Yang Z (2010) A hybrid hydrogel for efficient removal of methyl violet from aqueous solutions. Colloids Surf B Biointerfaces 80(2):155–160. CrossRefGoogle Scholar
  86. 86.
    Cornwell DJ, Okesola BO, Smith DK (2013) Hybrid polymer and low molecular weight gels—dynamic two-component soft materials with both responsive and robust nanoscale networks. Soft Matter 9(36):8730–8736. CrossRefGoogle Scholar
  87. 87.
    Cornwell DJ, Okesola BO, Smith DK (2014) Multidomain hybrid hydrogels: spatially resolved photopatterned synthetic nanomaterials combining polymer and low-molecular-weight gelators. Angew Chem 126(46):12669–12673. CrossRefGoogle Scholar
  88. 88.
    Li P, Dou X-Q, Feng C-L, Zhang D (2013) Mechanical reinforcement of C2-phenyl-derived hydrogels for controlled cell adhesion. Soft Matter 9(14):3750–3757. CrossRefGoogle Scholar
  89. 89.
    Huang R, Qi W, Feng L, Su R, He Z (2011) Self-assembling peptide-polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter 7(13):6222–6230. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  3. 3.School of Chemistry and Chemical EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations