Advertisement

Gel Chemistry pp 119-151 | Cite as

Dynamic Covalent Gels

  • Jianyong ZhangEmail author
  • Ya Hu
  • Yongguang Li
Chapter
Part of the Lecture Notes in Chemistry book series (LNC, volume 96)

Abstract

Various dynamic covalent bonds have been studied in the area of supramolecular gels, such as imine/acylhydrazone formation, boronic ester formation, disulphide formation and anthracene dimerization. Two catalogues of dynamic covalent gels are discussed in this chapter, namely gelation by discrete molecules and gelation by dynamic covalent polymers. Discrete gelators include imine/acylhydrazone gels, borate gels, anthracene-based gels and gels based on dynamic covalent cycles and cages. In the section of dynamic covalent polymer gels, imine gels and calix[4]arene-derived acylhydrazone gels are discussed in detail.

Keywords

Dynamic covalent chemistry Supramolecular gels Imine Acylhydrazone Cage compounds 

References

  1. 1.
    Lehn J-M (2007) From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev 36:151–160CrossRefGoogle Scholar
  2. 2.
    Luo W, Zhu Y, Zhang J, He J, Chi Z, Miller PW, Chen L, Su C-Y (2014) A dynamic covalent imine gel as a luminescent sensor. Chem Commun 50:11942–11945CrossRefGoogle Scholar
  3. 3.
    Foster JS, Żurek JM, Almeida NMS, Hendriksen WE, le Sage VAA, Lakshminarayanan V, Thompson AL, Banerjee R, Eelkema R, Mulvana H, Paterson MJ, van Esch JH, Lloyd GO (2015) Gelation landscape engineering using a multi-reaction supramolecular hydrogelator system. J Am Chem Soc 137:14236–14239CrossRefGoogle Scholar
  4. 4.
    Boekhoven J, Poolman JM, Maity C, Li F, van der Mee L, Minkenberg CB, Mendes E, van EschJan H, Eelkema R (2013) Catalytic control over supramolecular gel formation. Nat Chem 5:433–437CrossRefGoogle Scholar
  5. 5.
    Li J, Carnall JMA, Stuart MCA, Otto S (2011) Hydrogel formation upon photoinduced covalent capture of macrocycle stacks from dynamic combinatorial libraries. Angew Chem Int Ed 50:8384–8386CrossRefGoogle Scholar
  6. 6.
    Belowicha ME, Stoddart JF (2012) Dynamic imine chemistry. Chem Soc Rev 41:2003–2024CrossRefGoogle Scholar
  7. 7.
    Zhang JY, Zeng LH, Feng J (2017) Dynamic covalent gels assembled from small molecules: from discrete gelators to dynamic covalent polymers. Chin Chem Lett 28:168–183CrossRefGoogle Scholar
  8. 8.
    Wang Y-J, Xing P-Y, Li S-Y, Ma M-F, Yang M-M, Zhang Y-M, Wang B, Hao A-Y (2016) Facile stimuli-responsive transformation of vesicle to nanofiber to supramolecular gel via ω-amino acid-based dynamic covalent chemistry. Langmuir 32:10705–10711CrossRefGoogle Scholar
  9. 9.
    Yu X-D, Xie D-Y, Li Y-J, Geng L-J, Ren J-J, Wang T, Pang X-L (2017) Photochromic property of naphthalimide derivative: selective and visual F recognition by NSS isomers both in solution and in a self-assembly gel. Sens Actuators B 251:828–835CrossRefGoogle Scholar
  10. 10.
    Rajamalli P, Prasad E (2011) Low molecular weight fluorescent organogel for fluoride ion detection. Org Lett 13:3714–3717CrossRefGoogle Scholar
  11. 11.
    Rajamalli P, Prasad E (2012) Non-amphiphilic pyrene cored poly(aryl ether) dendron based gels: tunable morphology, unusual solvent effects on the emission and fluoride ion detection by the self-assembled superstructures. Soft Matter 8:8896–8903CrossRefGoogle Scholar
  12. 12.
    Lakshmi NV, Mandal D, Ghosh S, Prasad E (2014) Multi-stimuli-responsive organometallic gels based on ferrocene-linked poly(aryl ether) dendrons: reversible redox switching and Pb2+-Ion Sensing. Chem Eur J 20:9002–9011Google Scholar
  13. 13.
    Lv K, Zhang L, Liu M-H (2014) Self-assembly of triangular amphiphiles into diverse nano/ microstructures and release behavior of the hollow sphere. Langmuir 30:9295–9302CrossRefGoogle Scholar
  14. 14.
    Poolman JM, Maity C, Boekhoven J, van der Mee L, le Sage VAA, Groenewold GJM, van Kasteren SI, Versluis F, van Esch JH, Eelkema R (2016) A toolbox for controlling the properties and functionalisation of hydrazone-based supramolecular hydrogels. J Mater Chem B 4:852–858CrossRefGoogle Scholar
  15. 15.
    Sreenivasachary N, Lehn J-M (2005) Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. Proc Natl Acad Sci U S A 102:5938–5943CrossRefGoogle Scholar
  16. 16.
    Bunzen H, Nonappa Kalenius E, Hietala S, Kolehmainen E (2013) Subcomponent self-assembly: a quick way to new metallogels. Chem Eur J 19:12978–12981CrossRefGoogle Scholar
  17. 17.
    Zang L-B, Shang H-X, Wei D-Y, Jiang S-M (2013) A multi-stimuli-responsive organogel based on salicylidene Schiff base. Sens Actuators B 185:389–397CrossRefGoogle Scholar
  18. 18.
    Sun J-G, Liu Y-C, Jin L-Y, Chen T, Yin B-Z (2016) Coordination-induced gelation of an L-glutamic acid Schiff base derivative: the anion effect and cyanide-specific selectivity. Chem Commun 52:768–771CrossRefGoogle Scholar
  19. 19.
    Dixit MK, Pandey VK, Dubey M (2016) Alkali base triggered intramolecular charge transfer metallogels based on symmetrical A–π–d-chiral-d–π–A type ligands. Soft Matter 12:3622–3630CrossRefGoogle Scholar
  20. 20.
    Sarmah K, Pandit G, Das AB, Sarma B, Pratihar S (2017) Steric environment triggered self-healing CuII/HgII bimetallic gel with old CuII-Schiff Base complex as a new metalloligand. Cryst Growth Des 17:368–380CrossRefGoogle Scholar
  21. 21.
    Rajamalli P, Malakar P, Atta S, Prasad E (2014) Metal induced gelation from pyridine cored poly (aryl ether) dendrons with in situ synthesis and stabilization of hybrid hydrogel composites. Chem Commun 50:11023–11025CrossRefGoogle Scholar
  22. 22.
    Lin Q, Sun B, Yang Q-P, Fu Y-P, Zhu X, Wei T-B, Zhang Y-M (2014) Double metal ions competitively control the guest-sensing process: a facile approach to stimuli-responsive supramolecular gels. Chem Eur J 20:11457–11462CrossRefGoogle Scholar
  23. 23.
    Lin Q, Yang Q-P, Sun B, Fu Y-P, Zhu X, Wei T-B, Zhang Y-M (2014) Rewritable security display material and Cl sensor: based on a bimetal competitive coordination controlled supramolecular gel. Mater Lett 137:444–446CrossRefGoogle Scholar
  24. 24.
    Lin Q, Sun B, Yang Q-P, Fu Y-P, Zhu X, Zhang Y-M, Wei T-B (2014) A novel strategy for the design of smart supramolecular gels: controlling stimuli-response properties through competitive coordination of two different metal ions. Chem Commun 50:10669–10671CrossRefGoogle Scholar
  25. 25.
    Lin Q, Yang Q-P, Sun B, Fu Y-P, Zhu X, Wei T-B, Zhang Y-M (2014) Competitive coordination control of the AIE and micro states of supramolecular gel: an efficient approach for reversible dual-channel stimuli-response materials. Soft Matter 10:8427–8432CrossRefGoogle Scholar
  26. 26.
    Lin Q, Lu T-T, Zhu X, Sun B, Yang Q-P, Wei T-B, Zhang Y-M (2015) A novel supramolecular metallogel-based high-resolution anion sensor array. Chem Commun 51:1635–1638CrossRefGoogle Scholar
  27. 27.
    Lin Q, Lu T-T, Zhu X, Wei T-B, Li H, Zhang Y-M (2016) Rationally introduce multi-competitive binding interactions in supramolecular gels: a simple and efficient approach to develop multi-analyte sensor array. Chem Sci 7:5341–5346CrossRefGoogle Scholar
  28. 28.
    Peters GM, Skala LP, Plank TN, Hyman BJ, Reddy GNM, Marsh A, Brown SP, Davis JT (2014) A G4 K+ hydrogel stabilized by an anion. J Am Chem Soc 136:12596–12599CrossRefGoogle Scholar
  29. 29.
    Peters GM, Skala LP, Plank TN, Oh H, Reddy GNM, Marsh A, Brown SP, Raghavan SR, Davis JT (2015) G4-quartet M+ borate hydrogels. J Am Chem Soc 137:5819–5827CrossRefGoogle Scholar
  30. 30.
    Plank TN, Davis JT (2016) A G4 K+ hydrogel that self-destructs. Chem Commun 52:5037–5040CrossRefGoogle Scholar
  31. 31.
    Venkatesh V, Mishra NK, Romero-Canelon I, Vernooij RR, Shi H-Y, Coverdale JPC, Habtemariam A, Verma S, Sadler PJ (2017) Supramolecular photoactivatable anticancer hydrogels. J Am Chem Soc 139:5656–5659CrossRefGoogle Scholar
  32. 32.
    Xu J-F, Chen Y-Z, Wu L-Z, Tung C-H, Yang Q-Z (2013) Dynamic covalent bond based on reversible photo [4+4] cycloaddition of anthracene for construction of double-dynamic polymers. Org Lett 15:6148–6151CrossRefGoogle Scholar
  33. 33.
    Jin Y-H, Wang Q, Taynton P, Zhang W (2014) Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. Acc Chem Res 47:1575–1586CrossRefGoogle Scholar
  34. 34.
    Jin Y, Jin A, McCaffrey R, Long H, Zhang W (2012) Design strategies for shape-persistent covalent organic polyhedrons (COPs) through imine condensation/metathesis. J Org Chem 77:7392–7400CrossRefGoogle Scholar
  35. 35.
    Hasell T, Little MA, Chong S-Y, Schmidtmann M, Briggs EM, Santolini V, Jelfs KE, Cooper AI (2017) Chirality as a tool for function in porous organic cages. Nanoscale 9:6783–6790CrossRefGoogle Scholar
  36. 36.
    Jin Y, Zhu Y, Zhang W (2013) Development of organic porous materials through schiff-base chemistry. Cryst Eng Comm 15:1484–1499CrossRefGoogle Scholar
  37. 37.
    Hasell T, Cooper AI (2016) Porous organic cages: soluble, modular and molecular pores. Nat Rev Mater 1:16053CrossRefGoogle Scholar
  38. 38.
    Šolomek T, Powers-Riggs NE, Wu Y-L, Young RM, Krzyaniak MD, Horwitz NE, Wasielewski MR (2017) Electron hopping and charge separation within a naphthalene-1,4:5,8-bis(dicarboximide) chiral covalent organic cage. J Am Chem Soc 139:3348–3351CrossRefGoogle Scholar
  39. 39.
    Akine S, Miyashita M, Nabeshima T (2017) A metallo-molecular cage that can close the apertures with coordination bonds. J Am Chem Soc 139:4631–4634CrossRefGoogle Scholar
  40. 40.
    Chen H-Y, Gou M, Wang J-B (2017) De novo endo-functionalized organic cages as cooperative multi-hydrogen-bond-donating catalysts. Chem Commun 53:3524–3526CrossRefGoogle Scholar
  41. 41.
    Hasell T, Miklitz M, Stephenson A, Little MA, Chong SY, Clowes R, Chen L-J, Holden D, Tribello GA, Jelfs KE, Cooper AI (2016) Porous organic cages for sulfur hexafluoride separation. J Am Chem Soc 138:1653–1659CrossRefGoogle Scholar
  42. 42.
    Zhang G, Presly O, White F, Oppel IM, Mastalerz M (2014) A permanent mesoporous organic cage with an exceptionally high surface area. Angew Chem Int Ed 53:1516–1520CrossRefGoogle Scholar
  43. 43.
    Ide T, Takeuchi D, Osakada K (2012) Columnar self-assembly of rhomboid macrocyclic molecules via step-like intermolecular interaction. Crystal Formation Gelation Chem Commun 48:278–280Google Scholar
  44. 44.
    Xue M, Lu Y-C, Sun O-O, Liu K-Q, Liu Z, Sun P (2015) Ag (I)-coordinated supramolecular metallogels based on schiff base ligands: structural characterization and reversible thixotropic property. Cryst Growth Des 15:5360–5367CrossRefGoogle Scholar
  45. 45.
    Ito S, Takata H, Ono K, Iwasawa N (2013) Release and recovery of guest molecules during the reversible borate gel formation of guest-included macrocyclic boronic esters. Angew Chem Int Ed 52:11045–11048CrossRefGoogle Scholar
  46. 46.
    Li J-W, Carnall JMA, Stuart MCA, Otto S (2011) Hydrogel formation upon photoinduced covalent capture of macrocycle stacks from dynamic combinatorial libraries. Angew Chem 123:8534–8536CrossRefGoogle Scholar
  47. 47.
    Zhang J-Y, Liu L-P, Liu H-L, Lin M-J, Li S-Y, Ouyang G-F, Chen L-P, Su C-Y (2015) Highly porous aerogels based on imine chemistry: syntheses and sorption properties. J Mater Chem A 3:10990–10998CrossRefGoogle Scholar
  48. 48.
    Zeng L-H, Liao P-S, Liu H-L, Liu L-P, Liang Z-W, Zhang J-Y, Chen L-P, Su C-Y (2016) Impregnation of metal ions into porphyrin-based imine gels to modulate guest uptake and to assemble a catalytic microfluidic reactor. J Mater Chem A 4:8328–8336CrossRefGoogle Scholar
  49. 49.
    Liu H-L, Feng J, Zhang J-Y, Miller PW, Chen L-P, Su C-Y (2015) A catalytic chiral gel microfluidic reactor assembled via dynamic covalent chemistry. Chem Sci 6:2292–2296CrossRefGoogle Scholar
  50. 50.
    Lee J-H, Park J, Park J-W, Ahn H-J, Jaworski J, Jung J-H (2015) Supramolecular gels with high strength by tuning of calix[4]arene-derived networks. Nat Commun 6:6650–6658CrossRefGoogle Scholar
  51. 51.
    Lee J-H, Jung S-H, Lee S-S, Kwon K-Y, Sakurai K, Jaworski J, Jung J-H (2017) Ultraviolet patterned calixarene-derived supramolecular gels and films with spatially resolved mechanical and fluorescent properties. ACS Nano 11:4155–4164CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  3. 3.School of Chemistry and Chemical EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations