Metal–Organic Gels

  • Jianyong ZhangEmail author
  • Ya Hu
  • Yongguang Li
Part of the Lecture Notes in Chemistry book series (LNC, volume 96)


Metal–organic coordination has been incorporated in gels. In this chapter, metal–organic gels are classified into two general catalogues according to the nature of gelators and the interactions between gelators: gelation by discrete molecules, and gelation by coordination polymers. In the section of discrete gelators, metal–organic gelators with monodentate ligands, metal–organic gelators with chelate ligands, organometallic gelators and metal–organic gelators based on tripyridine and tridentate ligands are discussed. Coordination cycles and cages have been employed as supramolecular gelators and are discussed in the second section. In the third section, coordination polymer gels are discussed including metal-carboxylate gels, metal-heterocycle polymer gels and coordination polymer gels with hybrid donors. Finally, some typical applications of metal–organic gels are discussed including gels as crystallization media, post-modification of organogels by metal ions, metal–organic gels for sorption, metal–organic gels as template and metal–organic gels as catalyst.


Metal–organic gels Supramolecular gels Discrete gelators Organometallic compounds Coordination polymers Cage compounds Porous materials 


  1. 1.
    Rest C, Mayoral MJ, Fucke K, Schellheimer J, Stepanenko V, Fernández G (2014) Self-assembly and (hydro)gelation triggered by cooperative π–π and unconventional C–H···X hydrogen bonding interactions. Angew Chem Int Ed 53:700–705CrossRefGoogle Scholar
  2. 2.
    Rest C, Martin A, Stepanenko V, Allampally NK, Schmidt D, Fernández G (2014) Multiple CH···O interactions involving glycol chains as driving force for the self-assembly of amphiphilic Pd(II) complexes. Chem Commun 50:13366–13369CrossRefGoogle Scholar
  3. 3.
    Hafkamp RJH, Kokke BPA, Danke IM, Geurts HPM, Rowan AE, Feiters MC, Nolte RJM (1997) Organogel formation and molecular imprinting by functionalized gluconamides and their metal complexes. Chem Commun 545Google Scholar
  4. 4.
    Dawn A, Andrew KS, Yufit DS, Hong Y, Reddy JP, Jones CD, Aguilar JA, Steed JW (2015) Supramolecular gel control of cisplatin crystallization: identification of a new solvate form using a cisplatin-mimetic gelator. Cryst Growth Des 15:4591–4599CrossRefGoogle Scholar
  5. 5.
    Liu Z, Feng Y, Zhao Z, Yan Z, He Y, Luo X, Liu C, Fan Q (2014) A new class of dendritic metallogels with multiple stimuli-responsiveness and as templates for the in situ synthesis of silver nanoparticles. Chem Eur J 20:533–541Google Scholar
  6. 6.
    Taira T, Suzaki Y, Osakada K (2013) Metallohydrogel formed from amphiphilic Pd complex and α-cyclodextrin: control of its sol-gel transition. Chem Lett 42:1062–1064Google Scholar
  7. 7.
    Dey S, Datta D, Chakraborty K, Nandi S, Anoop A, Pathak T (2013) A coordination-assisted general approach to nickel-based nanometallogels. RSC Adv 3:9163–9166CrossRefGoogle Scholar
  8. 8.
    Araujo M, Escuder B (2017) Transient catalytic activity of a triazole-based gelator regulated by molecular gel assembly/disassembly. Chem Select 2:854–862Google Scholar
  9. 9.
    Ghosh K, Panja S, Bhattacharya S (2017) Visual sensing of Ag+ ions through gelation of cholesterol-appended benzimidazole and associated ion conducting behaviour. Chem Select 2:959–966Google Scholar
  10. 10.
    Shirakawa M, Fujita N, Tani T, Kaneko K, Shinkai S (2005) Organogel of an 8-quinolinol platinum(II) chelate derivative and its efficient phosphorescence emission effected by inhibition of dioxygen quenching. Chem Commun 4149Google Scholar
  11. 11.
    Miao W, Zhang L, Wang X, Cao H, Jin Q, Liu M (2013) A dual-functional metallogel of amphiphilic Copper(II) quinolinol: redox responsiveness and enantioselectivity. Chem Eur J 19:3029–3036CrossRefGoogle Scholar
  12. 12.
    Miao W, Zhang L, Wang X, Qin L, Liu M (2013) Gelation-induced visible supramolecular chiral recognition by fluorescent metal complexes of quinolinol-glutamide. Langmuir 29:5435–5442Google Scholar
  13. 13.
    Zhang Y, Zhang B, Kuang Y, Gao Y, Shi J, Zhang X, Xu B (2013) A redox responsive, fluorescent supramolecular metallohydrogel consists of nanofibers with single-molecule width. J Am Chem Soc 135:5008–5011CrossRefGoogle Scholar
  14. 14.
    Mitsumoto K, Cameron JM, Wei R, Nishikawa H, Shiga T, Nihei M, Newton GN, Oshio H (2017) A multi-redox responsive cyanometalate-based metallogel. Chem Eur J 23:1502–1506Google Scholar
  15. 15.
    Cametti M, Cetina M, Džolić Z (2015) Cu(II)-specific metallogel formation by an amido-anthraquinone-pyridyloxalamide ligand in DMSO-water. Dalton Trans 44:7223–7229CrossRefGoogle Scholar
  16. 16.
    Bühler G, Feiters MC, Nolte RJM, Dötz KH (2003) A metal-carbene carbohydrate amphiphile as a low-molecular-mass organometallic gelator. Angew Chem Int Ed 42:2494–2497Google Scholar
  17. 17.
    Hsu THT, Naidu JJ, Yang BJ, Jang MY, Lin IJB (2012) Self-assembly of silver(I) and gold(I) N-heterocyclic carbene complexes in solid state, mesophase, and solution. Inorg Chem 51:98–108CrossRefGoogle Scholar
  18. 18.
    Klawonn T, Gansäuer A, Winkler I, Lauterbach T, Franke D, Nolte RJM, Feiters MC, Börner H, Hentschel J, Dötz KN (2007) A tailored organometallic gelator with enhanced amphiphilic character and structural diversity of gelation. Chem Commun 1894Google Scholar
  19. 19.
    Gansäuer A, Winkler I, Klawonn T, Nolte RJM, Feiters MC, Börner HG, Hentschel J, Dötz KH (2009) Novel organometallic gelators with enhanced amphiphilic character: structure-property correlations, principles for design, and diversity of gelation. Organometallics 28:1377CrossRefGoogle Scholar
  20. 20.
    Tu T, Assenmacher W, Peterlik H, Weisbarth R, Nieger M, Dötz KH (2007) An air-stable organometallic low-molecular-mass gelator: synthesis, aggregation, and catalytic application of a palladium pincer complex. Angew Chem Int Ed 46:6368CrossRefGoogle Scholar
  21. 21.
    Tu T, Bao X, Assenmacher W, Peterlik H, Daniels J, Dötz KH (2009) Efficient air-stable organometallic low-molecular-mass gelators for ionic liquids: synthesis, aggregation and application of pyridine-bridged bis(benzimidazolylidene)-palladium complexes. Chem Eur J 15:1853CrossRefGoogle Scholar
  22. 22.
    Ogata K, Sasano D, Yokoi T, Isozaki K, Yoshida R, Takenaka T, Seike H, Ogawa T, Kurata H, Yasuda N, Takaya H, Nakamura M (2013) Synthesis and self-assembly of NCN-pincer Pd-complex-bound norvalines. Chem Eur J 19:12356–12375CrossRefGoogle Scholar
  23. 23.
    Tu T, Fang W, Bao X, Li X, Dötz KH (2011) Visual chiral recognition through enantioselective metallogel collapsing: synthesis, characterization, and application of platinum-steroid low-molecular-mass gelators. Angew Chem Int Ed 50:6601CrossRefGoogle Scholar
  24. 24.
    Afrasiabi R, Kraatz H (2015) Rational design and application of a redox-active, photoresponsive, discrete metallogelator. Chem Eur J 21:7695–7700CrossRefGoogle Scholar
  25. 25.
    He T, Li K, Wang N, Liao Y, Wang X, Yu X (2014) A ferrocene-based multiple-stimuli responsive organometallogel. Soft Matter 10:3755–3761 CrossRefGoogle Scholar
  26. 26.
    Liu J, He P, Yan J, Fang X, Peng J, Liu K, Fang Y (2008) An organometallic super-gelator with multiple-stimulus responsive properties. Adv Mater 20:2508CrossRefGoogle Scholar
  27. 27.
    Liu J, Yan J, Yuan X, Liu K, Peng J, Fang Y (2008) A novel low-molecular-mass gelator with a redox active ferrocenyl group: tuning gel formation by oxidation. J Colloid Interface Sci 318:397CrossRefGoogle Scholar
  28. 28.
    Sahoo P, Kumar DK, Trivedi DR, Dastidar P (2008) An easy access to an organometallic low molecular weight gelator: a crystal engineering approach. Tetrahedron Lett 49:3052CrossRefGoogle Scholar
  29. 29.
    Yadav YJ, Heinrich B, Luca GD, Talarico AM, Mastropietro TF, Ghedini M, Donnio B, Szerb EI (2013) Chromonic-like physical luminescent gels formed by ionic octahedral Iridium(III) complexes in diluted water solutions. Adv Optical Mater 1:844–854Google Scholar
  30. 30.
    Siu SKL, Po C, Yim KC, Au VKM, Yam VWW (2015) Synthesis, characterization and spectroscopic studies of luminescent l-valine modified alkynyl-based cyclometalated gold (iii) complexes with gelation properties driven by π–π stacking, hydrogen bonding and hydrophobic-hydrophobic interactions. Cryst Eng Comm 17:8153–8162CrossRefGoogle Scholar
  31. 31.
    Wu NW, Zhang J, Xu XD, Yang HB (2014) Design and preparation of ethynyl-pyrene modified platinum-acetylidegelators and their application in dispersion of graphene. Chem Commun 50:10269–10272CrossRefGoogle Scholar
  32. 32.
    Tatikonda R, Bhowmik S, Rissane K, Haukka M, Cametti M (2016) Metallogel formation in aqueous DMSO by perfluoroalkyl decorated terpyridine ligands. Dalton Trans 45:12756–12762CrossRefGoogle Scholar
  33. 33.
    Chen X, Huang Z, Chen SY, Li K, Yu XQ, Pu L (2010) Enantioselective gel collapsing: a new means of visual chiral sensing. J Am Chem Soc 132:7297–7299CrossRefGoogle Scholar
  34. 34.
    Bhowmik S, Ghosh BN, Marjomäki V, Rissanen K (2014) Nanomolar pyrophosphate detection in water and in a self-assembled hydrogel of a dimple terpyridine-Zn2+ complex. J Am Chem Soc 136:5543–5546CrossRefGoogle Scholar
  35. 35.
    Fang W, Sun Z, Tu T (2013) Novel supramolecular thixotropic metallohydrogels consisting of rare metal-organic nanoparticles: synthesis, characterization, and mechanism of aggregation. J Phys Chem C 117:25185–25194CrossRefGoogle Scholar
  36. 36.
    Fang W, Liu X, Lu Z, Tao T (2014) Photoresponsive metallo-hydrogels based on visual discrimination of the positional isomers through selective thixotropic gel collapse. Chem Commun 50:3313–3316CrossRefGoogle Scholar
  37. 37.
    Fang W, Liu C, Chen J, Lu Z, Li ZM, Bao X, Tu T (2015) The electronic effects of ligands on metal-coordination geometry: a key role in the visual discrimination of dimethylaminopyridine and its application towards chemo-switch. Chem Commun 51(20):4267–4270CrossRefGoogle Scholar
  38. 38.
    Jie K, Zhou Y, Shi B, Yao Y (2015) A Cu2+ specific metallohydrogel: preparation, multi-responsiveness and pillar[5]arene-induced morphology transformation. Chem Commun 51:8461–8464CrossRefGoogle Scholar
  39. 39.
    Biswas A, Dubey M, Mukhopadhyay S, Kumar A, Pandey DS (2016) Anion triggered metallogels: demetalation and crystal growth inside the gel matrix and improvement in viscoelastic properties using Au-NPs. Soft Matter 12:2997–3003CrossRefGoogle Scholar
  40. 40.
    Po C, Ke Z, Tam AYY, Chow HF, Yam VWW (2013) A Platinum(II) terpyridine metallogel with an L-valine-modified alkynyl ligand: interplay of Pt···Pt, π–π and hydrogen-bonding interactions. Chem Eur J 19:15735–15744CrossRefGoogle Scholar
  41. 41.
    Peng Z, Yuan D, Jiang Z, Li Y (2017) Novel metal-organic gels of bis (benzimidazole)-based ligands with copper(II) for electrochemical selectively sensing of nitrite. Electrochim Acta 238:1–8CrossRefGoogle Scholar
  42. 42.
    Chan MHY, Ng M, Leung SYL, Wai HL, Yam VWW (2017) Synthesis of luminescent Platinum(II) 2,6-bis(N-dodecylbenzimidazol-2′-yl) pyridine foldamers and their supramolecular assembly and metallogel formation. J Am Chem Soc 139:8639–8645CrossRefGoogle Scholar
  43. 43.
    Ganta S, Chand DK (2015) Nanoscale metallogel via self-assembly of self-assembled trinuclear coordination rings: multi-stimuli-responsive soft materials. Dalton Trans 44:15181–15188CrossRefGoogle Scholar
  44. 44.
    Howlader P, Mukherjee PS (2016) Face and edge directed self-assembly of Pd 12 tetrahedral nano-cages and their self-sorting. Chem Sci 7:5893–5899CrossRefGoogle Scholar
  45. 45.
    Qin L, Wang P, Guo Y, Chen C, Liu M (2015) Self-assembled soft nanomaterials via Silver(I)-coordination: nanotube, nanofiber, and remarkably enhanced antibacterial effect. Adv Sci 2(11):1500134CrossRefGoogle Scholar
  46. 46.
    Yan X, Cook TR, Pollock JB, Wei P, Zhang Y, Yu Y, Huang F, Stang PJ (2014) Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven self-assembly and host/guest interactions. J Am Chem Soc 136:4460–4463CrossRefGoogle Scholar
  47. 47.
    Wei Q, James SL (2005) A metal-organic gel used as a template for a porous organic polymer. Chem Commun 1555–1556Google Scholar
  48. 48.
    Xiang S, Li L, Zhang J, Tan X, Cui H, Shi J, Hu Y, Chen L, Su C, James SL (2012) Porous organic-inorganic hybrid aerogels based on Cr3+/Fe3+ and rigid bridging carboxylates. J Mater Chem 22:1862–1867CrossRefGoogle Scholar
  49. 49.
    Li L, Xiang S, Cao S, Zhang J, Ouyang G, Chen L, Su C (2013) A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nat Commun 4:1774CrossRefGoogle Scholar
  50. 50.
    Lohe MR, Rose M, Kaskel S (2009) Metal-organic framework (MOF) aerogels with high micro- and macroporosity. Chem Commun 6056–6058Google Scholar
  51. 51.
    Rose M, Weber D, Lotsch BV, Kremer RK, Goddard R, Palkovits R (2013) Biogenic metal-organic frameworks: 2,5-furandicarboxylic acid as versatile building block. Microporous Mesoporous Mater 18:217–221CrossRefGoogle Scholar
  52. 52.
    Liu L, Zhang J, Fang H, Chen L, Su C (2016) Metal-organic gel material based on UiO-66-NH2 nanoparticles for improved adsorption and conversion of CO2. Chem Asian J 11:2278–2283Google Scholar
  53. 53.
    Chaudhari AK, Han I, Tan JC (2015) Multifunctional supramolecular hybrid materials constructed from hierarchical self-ordering of in situ generated metal-organic framework (MOF) nanoparticles. Adv Mater 27:4438–4446CrossRefGoogle Scholar
  54. 54.
    Liao P, Fang H, Zhang J, Hu Y, Chen L, Su C (2017) Transforming HKUST-1 metal-organic frameworks into gels-stimuli-responsiveness and morphology evolution. Eur J Inorg Chem 19:2580–2584CrossRefGoogle Scholar
  55. 55.
    Saha S, Schön EM, Cativiela C, Díaz DD, Banerjee R (2013) Proton-conducting supramolecular metallogels from the lowest molecular weight assembler ligand: aquote for simplicity. Chem Eur J 19:9562–9568CrossRefGoogle Scholar
  56. 56.
    Feldner T, Häring M, Saha S, Esquena J, Banerjee R, Díaz DD (2016) Supramolecular metallogel that imparts self-healing properties to other gel networks. Chem Mater 28:3210–3217Google Scholar
  57. 57.
    Knichal JV, Gee WJ, Burrows AD, Raithby PR, Wilson CC (2015) A new small molecule gelator and 3D framework ligator of lead(II). Cryst Eng Comm 17:8139–8145CrossRefGoogle Scholar
  58. 58.
    Banerjee S, Adarsh NN, Dastidar P (2012) A crystal engineering rationale in designing a CdII coordination polymer based metallogel derived from a C3 symmetric tris-amide-tris-carboxylate ligand. Soft Matter 8:7623–7629CrossRefGoogle Scholar
  59. 59.
    Luisi BS, Rowland KD, Moulton B (2007) Coordination polymer gels: synthesis, structure and mechanical properties of amorphous coordination polymers. Chem Commun 2802Google Scholar
  60. 60.
    Kim KY, Park S, Jung SH, Lee SS, Park KM, Shinkai S, Jung JH (2014) Geometric change of a thiacalix [4] are nesupramolecular gel with volatile gases and its chromogenic detection for rapid analysis. Inorga Chem 53:3004–3011CrossRefGoogle Scholar
  61. 61.
    Hwang D, Lee E, Jung JH, Lee SS, Park KM (2013) Formation of calix[4]arene-based supramolecular gels triggered by K+ and Rb+: exemplification of a structure-property relationship. Cryst Growth Des 13:4177–4180CrossRefGoogle Scholar
  62. 62.
    Aiyappa HB, Saha S, Wadge P, Banerjee R, Kurungot S (2015) Fe(III) phytate metallogel as a prototype anhydrous, intermediate temperature proton conductor. Chem Sci 6:603–607CrossRefGoogle Scholar
  63. 63.
    Rahim M, Björnmalm M, Suma T, Faria M, Ju Y, Kempe K, Caruso F (2016) Metal-phenolic supramolecular gelation. Angew Chem Int Ed 55:13803–13807CrossRefGoogle Scholar
  64. 64.
    Yang Q, Tan X, Wang S, Zhang J, Chen L, Zhang JP, Su CY (2014) Porous organic-inorganic hybrid aerogels based on bridging acetylacetonate. Microporous and Mesoporous Mater 187:108–113CrossRefGoogle Scholar
  65. 65.
    Dhara B, Ballav N (2013) In situ generation of conducting polymer in a redoxactive metal-organic gel. RSC Adv 3:4909–4913CrossRefGoogle Scholar
  66. 66.
    Dhara B, Sappati S, Singh SK, Kurungot S, Ghosh P, Ballav N (2016) Coordination polymers of Fe(III) and Al(III) ions with TCA ligand: distinctive fluorescence, CO2 uptake, redox-activity and oxygen evolution reaction. Dalton Trans 45:6901–6908CrossRefGoogle Scholar
  67. 67.
    Dhara B, Patra PP, Jha PK, Jadhav VS, Pavan Kumar GV, Ballav N (2014) Redox-induced photoluminescence of metal-organic coordination polymer gel. J Phys Chem C 118:19287–19293CrossRefGoogle Scholar
  68. 68.
    Wei SC, Pan M, Li K, Wang S, Zhang J, Su CY (2014) A multistimuli-responsive photochromic metal-organic gel. Adv Mater 26:2072–2077CrossRefGoogle Scholar
  69. 69.
    Mukhopadhyay RD, Praveen VK, Hazra A, Maji TK, Ajayaghosh A (2015) Light driven mesoscale assembly of a coordination polymeric gelator into flowers and stars with distinct properties. Chem Sci 6:6583–6591CrossRefGoogle Scholar
  70. 70.
    Li H, Zhu Y, Zhang J, Chi Z, Chen L, Su CY (2013) Luminescent metal-organic gels with tetraphenylethylene moieties: porosity and aggregation-induced emission. RSC Adv 3:16340–16344CrossRefGoogle Scholar
  71. 71.
    Barman S, Garg JA, Blacque O, Venkatesan K, Berke H (2012) Triptycene based luminescent metal-organic gels for chemosensing. Chem Commun 48:11127–11129CrossRefGoogle Scholar
  72. 72.
    Feng X, Zeng L, Zou D, Zhang Z, Zhong G, Peng S, Zhang J (2017) Trace-doped metal-organic gels with remarkably enhanced luminescence. RSC Adv 7:37194–37199Google Scholar
  73. 73.
    Eicher T, Hauptmann S, Speicher A (2012) The chemistry of heterocycles. Wiley-VCH Verlag GmbH & Co., KGaA, WeinheimGoogle Scholar
  74. 74.
    Kim HJ, Lee JH, Lee M (2005) Stimuli-responsive gels from reversible coordination polymers. Angew Chem Int Ed 44:5810–5814Google Scholar
  75. 75.
    Adarsh NN, Dastidar P (2010) A new series of ZnII coordination polymer based metallogels derived from bis-pyridyl-bis-amide ligands: a crystal engineering approach. Cryst Growth Des 11:328–336Google Scholar
  76. 76.
    Lee H, Lee JH, Kang S, Lee JY, John G, Jung JH (2011) Pyridine-based coordination polymeric hydrogel with Cu2+ ion and its encapsulation of a hydrophobic molecule. Chem Commun 47:2937–2939CrossRefGoogle Scholar
  77. 77.
    Paul M, Adarsh NN, Dastidar P (2012) CuII coordination polymers capable of gelation and selective SO4 2− separation. Cryst Growth Des 12:4135–4143CrossRefGoogle Scholar
  78. 78.
    Bhattacharjee S, Bhattacharya S (2014) Pyridylenevinylene based Cu2+-specific, injectable metallo(hydro)gel: thixotropy and nanoscale metal-organic particles. Chem Commun 50:11690–11693CrossRefGoogle Scholar
  79. 79.
    Kartha KK, Praveen VK, Babu SS, Cherumukkil S, Ajayaghosh A (2015) Pyridyl-amides as a multimode self-assembly driver for the design of a stimuli-responsive π-gelator. Chem Asian J 10:2250–2256Google Scholar
  80. 80.
    Araújo M, Díaz-Oltra S, Escuder B (2016) Triazolyl-based molecular gels as ligands for autocatalytic “Click” reactions. Chem Eur J 22:8676–8684CrossRefGoogle Scholar
  81. 81.
    Zhang S, Yang S, Lan J, Tang Y, Xue Y, You J (2009) Ultrasound-induced switching of sheetlike coordination polymer microparticles to nanofibers capable of gelating solvents. J Am Chem Soc 131:1689–1691CrossRefGoogle Scholar
  82. 82.
    Lee HH, Jung SH, Park S, Park KM, Jung JH (2013) A metal-organic framework gel with Cd2+ derived from only coordination bonds without intermolecular interactions and its catalytic ability. New J Chem 37:2330–2335CrossRefGoogle Scholar
  83. 83.
    Roy S, Katiyar AK, Mondal SP, Ray SK, Biradha K (2014) Multifunctional white-light-emitting metal-organic gels with a sensing ability of nitrobenzene. ACS Appl Mater Interfaces 6:11493–11501CrossRefGoogle Scholar
  84. 84.
    Hamilton TD, Bučar DK, Baltrusaitis J, Flanagan DR, Li Y, Ghorai S, MacGillivray LR (2011) Thixotropic hydrogel derived from a product of an organic solid-state synthesis: properties and densities of metal-organic nanoparticles. J Am Chem Soc 133:3365–3371CrossRefGoogle Scholar
  85. 85.
    Xing B, Choi MF, Xu B (2002) Design of coordination polymer gels as stable catalytic systems. Chem Eur J 8:5028–5032CrossRefGoogle Scholar
  86. 86.
    Liu YR, He L, Zhang J, Wang X, Su CY (2009) Evolution of spherical assemblies to fibrous networked Pd(II) metallogels from a pyridine-based tripodal ligand and their catalytic property. Chem Mater 21:557–563CrossRefGoogle Scholar
  87. 87.
    Liao Y, He L, Huang J, Zhang J, Zhuang L, Shen H, Su CY (2010) Magnetite nanoparticle-supported coordination polymer nanofibers: synthesis and catalytic application in suzuki-miyaura coupling. ACS Appl Mater Inter 2:2333–2338CrossRefGoogle Scholar
  88. 88.
    Yan L, Gou S, Ye Z, Zhang S, Ma L (2014) Self-healing and moldable material with the deformation recovery ability from self-assembled supramolecular metallogels. Chem Commun 50:12847–12850Google Scholar
  89. 89.
    Yan L, Shen L, Lv M, Yu W, Chen J, Wang S, Ye Z (2015) Self-healing supramolecular heterometallic gels based on the synergistic effect of the constituent metal ions. Chem Commun 51:17627–17629CrossRefGoogle Scholar
  90. 90.
    Lee H, Jung SH, Han WS, Moon JH, Kang S, Lee JY, Shinkai S (2011) A Chromo-fluorogenic tetrazole-based CoBr2 coordination polymer gel as a highly sensitive and selective chemosensor for volatile gases containing chloride. Chem Eur J 17:2823–2827CrossRefGoogle Scholar
  91. 91.
    Sutar P, Suresh VM, Maji TK (2015) Tunable emission in lanthanide coordination polymer gels based on a rationally designed blue emissive gelator. Chem Commun 51:9876–9879CrossRefGoogle Scholar
  92. 92.
    Kim C, Kim KY, Lee JH, Ahn J, Sakurai K, Lee SS, Jung JH (2017) Chiral supramolecular gels with lanthanide ions: correlation between luminescence and helical pitch. ACS Appl Mater Inter 9:3799–3807CrossRefGoogle Scholar
  93. 93.
    Terech P, Yan M, Maréchal M, Royal G, Galvez J, Velu SK (2013) Characterization of strain recovery and “self-healing” in a self-assembled metallo-gel. Phys Chem Chem Phys 15:7338–7344CrossRefGoogle Scholar
  94. 94.
    Gasnier A, Royal G, Terech P (2009) Metallo-supramolecular gels based on a multitopic cyclam bis-terpyridine platform. Langmuir 25:8751–8762CrossRefGoogle Scholar
  95. 95.
    Kotova O, Daly R, dos Santos CM, Kruger PE, Boland JJ, Gunnlaugsson T (2015) Cross-linking the fibers of supramolecular gels formed from a tripodal terpyridine derived ligand with d-block metal ions. Inorg Chem 54:7735–7741CrossRefGoogle Scholar
  96. 96.
    Kotova O, Daly R, dos Santos CM, Boese M, Kruger PE, Boland JJ, Gunnlaugsson T (2012) Europium-directed self-assembly of a luminescent supramolecular gel from a tripodal terpyridine-based ligand. Angew Chem Int Ed 51:7208–7212CrossRefGoogle Scholar
  97. 97.
    Suresh VM, De A, Maji TK (2015) High aspect ratio, processable coordination polymer gel nanotubes based on an AIE-active LMWG with tunable emission. Chem Commun 51:14678–14681Google Scholar
  98. 98.
    Zhang J, Chen S, Xiang S, Huang J, Chen L, Su CY (2011) Heterometallic coordination polymer gels based on a rigid, bifunctional ligand. Chem Eur J 17:2369–2372CrossRefGoogle Scholar
  99. 99.
    Nandi G, Titi HM, Thakuria R, Goldberg I (2014) Solvent dependent formation of metallogels and single-crystal MOFs by La(III) and Ce(III) connectors and 3,5-pyridinedicarboxylate. Cryst Growth Des 14:2714–2719CrossRefGoogle Scholar
  100. 100.
    Wang X, He T, Yang L, Wu H, Yin J, Shen R, Wei C (2016) Designing isomerical gel precursors to identify the gelation pathway for nickel-selective metallohydrogels. Dalton Trans 45:18438–18442CrossRefGoogle Scholar
  101. 101.
    Xiao B, Zhang Q, Huang C, Li Y (2015) Luminescent Zn(II)-terpyridine metal-organic gel for visual recognition of anions. RSC Adv 5:2857–2860CrossRefGoogle Scholar
  102. 102.
    Samai S, Biradha K (2012) Chemical and mechano responsive metal-organic gels of bis (benzimidazole)-based ligands with Cd(II) and Cu(II) halide salts: self sustainability and gas and dye sorptions. Chem Mater 24:1165–1173CrossRefGoogle Scholar
  103. 103.
    Dey A, Mandal SK, Biradha K (2013) Metal-organic gels and coordination networks of pyridine-3,5-bis(1-methyl-benzimidazole-2-yl) and metal halides: self sustainability, mechano, chemical responsiveness and gas and dye sorptions. Cryst Eng Comm 15:9769–9778CrossRefGoogle Scholar
  104. 104.
    Sengupta S, Mondal R (2013) Elusive nanoscale metal-organic-particle-supported metallogel formation using a nonconventional chelating pyridine-pyrazole-based bis-amide ligand. Chem Eur J 19:5537–5541CrossRefGoogle Scholar
  105. 105.
    Sengupta S, Mondal R (2014) A novel gel-based approach to wastewater treatment-unique one-shot solution to potentially toxic metal and dye removal problems. J Mater Chem A 2:16373–16377CrossRefGoogle Scholar
  106. 106.
    Sengupta S, Mondal R (2016) A novel low molecular weight supergelator showing an excellent gas adsorption, dye adsorption, self-sustaining and chemosensing properties in the gel state. RSC Adv 6:14009–14015CrossRefGoogle Scholar
  107. 107.
    Sarkar S, Dutta S, Bairi P, Pal T (2014) Redox-responsive copper(I) metallogel: a metal-organic hybrid sorbent for reductive removal of chromium(VI) from aqueous solution. Langmuir 30:7833–7841CrossRefGoogle Scholar
  108. 108.
    Ma X, Yu D, Tang N, Wu J (2014) Tb3+-containing supramolecular hydrogels: luminescence properties and reversible sol-gel transitions induced by external stimuli. Dalton Trans 43:9856–9859CrossRefGoogle Scholar
  109. 109.
    Sharma B, Mahata A, Mandani S, Sarma TK, Pathak B (2016) Coordination polymer hydrogels through Ag(I)-mediated spontaneous self-assembly of unsubstituted nucleobases and their antimicrobial activity. RSC Adv 6:62968–62973CrossRefGoogle Scholar
  110. 110.
    Yadav P, Ballabh A (2014) Room temperature metallogelation for a simple series of aminothiazole ligands with potential applications in identifying and scavenging mercury ions. RSC Adv 4:563–566CrossRefGoogle Scholar
  111. 111.
    Saha S, Bachl J, Kundu T, Díaz DD, Banerjee R (2014) Dissolvable metallohydrogels for controlled release: evidence of a kinetic supramolecular gel phase intermediate. Chem Commun 50:7032–7035Google Scholar
  112. 112.
    Suvendu K, Sushil K, Saibal B, David DD, Subhrashis B, Kumar V, Rahul B (2017) Interplaying anions in a supramolecular metallohydrogel to form metal organic frameworks. Chem Commun 53:3705–3708CrossRefGoogle Scholar
  113. 113.
    Saha S, Das G, Thote J, Banerjee R (2014) Photocatalytic metal-organic framework from CdS quantum dot incubated luminescent metallohydrogel. J Am Chem Soc 136:14845–14851CrossRefGoogle Scholar
  114. 114.
    Aiyappa HB, Saha S, Garai B, Thote J, Kurungot S, Banerjee R (2014) A distinctive PdCl2-mediated transformation of Fe-based metallogels into metal-organic frameworks. Cryst Growth Des 14:3434–3437CrossRefGoogle Scholar
  115. 115.
    Tang XQ, Xiao BW, Li CM, Wang DM, Huang CZ, Li YF (2017) Co-metal-organic-frameworks with pure uniform crystal morphology prepared via Co2+ exchange-mediated transformation from Zn-metallogels for luminol catalyzed chemiluminescence. Spectrochim Acta A Mol Biomol Spectrosc 175:11–16CrossRefGoogle Scholar
  116. 116.
    Lin Q, Zheng F, Lu T, Liu J, Li H, Wei T, Yao H, Zhang Y (2017) A novel imidazophenazine-based metallogel act as reversible H2PO4 sensor and rewritable fluorescent display material. Sens Actuators B: Chem 251:250–255CrossRefGoogle Scholar
  117. 117.
    Mehdi H, Pang H, Gong W, Dhinakaran MK, Wajahat A, Kuang X, Ning G (2016) A novel smart supramolecular organic gelator exhibiting dual-channel responsive sensing behaviours towards fluoride ion via gel-gel states. Org Bio Chem 14:5956–5964Google Scholar
  118. 118.
    Nune SK, Thallapally PK, McGrail BP (2010) Metal organic gels (MOGs): a new class of sorbents for CO2 separation applications. J Mater Chem 20:7623–7625CrossRefGoogle Scholar
  119. 119.
    Mahmood A, Xia W, Mahmood N, Wang Q, Zou R (2015) Hierarchical heteroaggregation of binary metal-organic gels with tunable porosity and mixed valence metal sites for removal of dyes in water. Sci Rep 5:10556Google Scholar
  120. 120.
    Xia W, Zhang X, Xu L, Wang Y, Lin J, Zou R (2013) Facile and economical synthesis of metal-organic framework MIL-100(Al) gels for high efficiency removal of microcystin-LR. RSC Adv 3:11007–11013CrossRefGoogle Scholar
  121. 121.
    Zhu B, Yu X, Jia Y, Peng F, Sun B, Zhang M, Luo T, Liu J, Huang X (2012) Iron and 1,3,5-Benzenetricarboxylic metal-organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions. J Phys Chem C 116:8601–8607CrossRefGoogle Scholar
  122. 122.
    Fan J, Li L, Rao H, Yang Q, Zhang J, Chen H, Chen L, Kuang D, Su C (2014) Novel metal-organic gel based electrolyte for efficient quasi-solid-state dye-sensitized solar cells. J Mater Chem A 2:15406–15413CrossRefGoogle Scholar
  123. 123.
    Yan J, Yang G, Wang H, Chen Y (2007) Macroporous polymer monoliths fabricated by using a metal-organic coordination gel template. Chem Commun 4614–4616Google Scholar
  124. 124.
    Yang F, Lin Z, He X, Chen L, Zhang Y (2011) Synthesis and application of a macroporous boronate affinity monolithic column using a metal-organic gel as a porogenic template for the specific capture of glycoproteins. J Chromatogr A 1218:9194–9201CrossRefGoogle Scholar
  125. 125.
    Ma L, Tang L, Li R, Huang Y, Liu Z (2015) Water-compatible molecularly imprinted polymers prepared using metal-organic gel as porogen. RSC Adv 5:84601–84609CrossRefGoogle Scholar
  126. 126.
    Wen X, Tang L (2015) One-dimensional copolymer nanostructures loaded with silver nanoparticles fabricated via metallogel template copolymerization and their pH dependent photocatalytic degradation of methylene blue. J Mol Catal A: Chem 399:86–96CrossRefGoogle Scholar
  127. 127.
    Xia W, Qiu B, Xia D, Zou R (2013) Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci Rep 3:1935CrossRefGoogle Scholar
  128. 128.
    Cui L, Wu J, Ju H (2014) Nitrogen-doped porous carbon derived from metal-organic gel for electrochemical analysis of heavy-metal ion. ACS Appl Mater Interfaces 6:16210–16216CrossRefGoogle Scholar
  129. 129.
    Zhang J, James SL (2011) Chapter 5 supramolecular gel catalyst: bridging homogeneous and heterogeneous catalysis, in homogeneous catalysts: types, reactions and applications (Editor: Poehler AC). Nova Science Publishers, Inc., New YorkGoogle Scholar
  130. 130.
    Díaz DD, Kühbeck D, Koopmans RJ (2011) Stimuli-responsive gels as reaction vessels and reusable catalysts. Chem Soc Rev 40:427–448CrossRefGoogle Scholar
  131. 131.
    Escuder B, Rodríguez-Llansola F, Miravet JF (2010) Supramolecular gels as active media for organic reactions and catalysis. New J Chem 34:1044–1054Google Scholar
  132. 132.
    Zhu B, Liu G, Chen L, Qiu L, Chen L, Zhang J, Zhang L, Barboiu M, Si R, Su C (2016) Metal-organic aerogels based on dinuclear rhodium paddle-wheel units: design, synthesis and catalysis. Inorg Chem Front 3:702–710CrossRefGoogle Scholar
  133. 133.
    Yamada YM, Maeda Y, Uozumi Y (2006) Novel 3D coordination palladium-network complex: a recyclable catalyst for Suzuki-Miyaura reaction. Org Lett 8:4259–4262CrossRefGoogle Scholar
  134. 134.
    Zhang J, Wang X, He L, Chen L, Su C, James SL (2009) Metal-organic gels as functionals able supports for catalysis. New J Chem 33:1070–1075Google Scholar
  135. 135.
    Huang J, He L, Zhang J, Chen L, Su C (2010) Dynamic functionalised metallogel: an approach to immobilised catalysis with improved activity. J Mol Catal A Chem 317:97–103CrossRefGoogle Scholar
  136. 136.
    Okesola BO, Suravaram SK, Parkin A, Smith DK (2016) Selective extraction and in situ reduction of precious metal salts from model waste to generate hybrid gels with embedded electrocatalytic nanoparticles. Angew Chem Int Ed 55:183–187CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  3. 3.School of Chemistry and Chemical EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations