Supramolecular Gels

  • Jianyong ZhangEmail author
  • Ya Hu
  • Yongguang Li
Part of the Lecture Notes in Chemistry book series (LNC, volume 96)


Supramolecular gels constructed by the assembly of small molecules have been extensively investigated. The gels bearing functional groups also exhibit intelligent and potential applications in the fields of tissue engineering and wound healing, drug delivery, templating or transcribing self-assembly morphology, molecular electronics, sensing and so forth. Due to various kinds of weak non-covalent interactions, abundant architectures are constructed and are smart to the external stimuli, such as temperature, light, mechanical stress, chemical, pH value. Therefore, supramolecular gels are sorted and stated according to different stimuli in this chapter.


Supramolecular gels Non-covalent interaction Driving force Stimuli-responsive gels 


  1. 1.
    Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H (2011) Macroscopic self-assembly through molecular recognition. Nat Chem 3:34CrossRefGoogle Scholar
  2. 2.
    Park T, Zimmerman SC (2006) Formation of a miscible supramolecular polymer blend through self-assembly mediated by a quadruply hydrogen-bonded heterocomplex. J Am Chem Soc 128:11582CrossRefGoogle Scholar
  3. 3.
    Shirakawa M, Fujita N, Shinkai S (2003) [60]Fullerene-motivated organogel formation in a porphyrin derivative bearing programmed hydrogen-bonding sites. J Am Chem Soc 125:9902CrossRefGoogle Scholar
  4. 4.
    Dastidar P (2008) Supramolecular gelling agents: can they be designed? Chem Soc Rev 37:2699CrossRefGoogle Scholar
  5. 5.
    de Jong JDD, Feringa BL (2006) In Molecular gels, materials with self-assembled fibrillar networks. Springer, The NetherlandsGoogle Scholar
  6. 6.
    Puigmartí-Luis J, Laukhin V, Pérez del Pino Á, Vidal-Gancedo J, Rovira C, Laukhina E, Amabilino DB (2007) Supramolecular conducting nanowires from organogels. Angew Chem Int Ed 46:238CrossRefGoogle Scholar
  7. 7.
    Yang Z, Ho P-L, Liang G, Chow KH, Wang Q, Cao Y, Guo Z, Xu B (2007) Using β-lactamase to trigger supramolecular hydrogelation. J Am Chem Soc 129:266CrossRefGoogle Scholar
  8. 8.
    Hirst AR, Escuder B, Miravet JF, Smith DK (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 47:8002CrossRefGoogle Scholar
  9. 9.
    Yu G, Yan X, Han C, Huang F (2013) Characterization of supramolecular gels. Chem Soc Rev 42:6697CrossRefGoogle Scholar
  10. 10.
    Pal A, Dey J (2013) L-cysteine-derived ambidextrous gelators of aromatic solvents and ethanol/water mixtures. Langmuir 29:2120CrossRefGoogle Scholar
  11. 11.
    Caplar V, Frkanec L, Sijakovic Vujicic N, Zinic M (2010) Positionally isomeric organic gelators: structure-gelation study, racemic versus enantiomeric gelators, and solvation effects. Chem Eur J 16:3066CrossRefGoogle Scholar
  12. 12.
    Abraham S, Lan Y, Lam RS, Grahame DA, Kim JJ, Weiss RG, Rogers MA (2012) Influence of positional isomers on the macroscale and nanoscale architectures of aggregates of racemic hydroxyoctadecanoic acids in their molecular gel, dispersion, and solid states. Langmuir 28:4955CrossRefGoogle Scholar
  13. 13.
    Piepenbrock MOM, Lloyd GO, Clarke N, Steed JW (2008) Gelation is crucially dependent on functional group orientation and may be tuned by anion binding. Chem Commun 2644Google Scholar
  14. 14.
    Nakagawa T, Amakatsu M, Munenobu K, Fujii H, Yamanaka M (2013) Effect of optical purity of C3-symmetric chiral tris-ureas on supramolecular gel formation. Chem Lett 42:229CrossRefGoogle Scholar
  15. 15.
    Grahame DAS, Olauson C, Lam RSH, Pedersen T, Borondics F, Abraham S, Weiss RG, Rogers MA (2011) Influence of chirality on the modes of self-assembly of 12-hydroxystearic acid in molecular gels of mineral oil. Soft Matter 7:7359CrossRefGoogle Scholar
  16. 16.
    Kuroiwa K, Shibata T, Takada A, Nemoto N, Kimizuka N (2004) Heat-set gel-like networks of lipophilic Co(II) triazole complexes in organic media and their thermochromic structural transitions. J Am Chem Soc 126:2016CrossRefGoogle Scholar
  17. 17.
    Peterca M, Imam MR, Ahn CH, Balagurusamy VS, Wilson DA, Rosen BM, Percec V (2011) Transfer, amplification, and inversion of helical chirality mediated by concerted interactions of C3-supramolecular dendrimers. J Am Chem Soc 133:2311CrossRefGoogle Scholar
  18. 18.
    Kasha M (1963) Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat Res 20:55Google Scholar
  19. 19.
    Yamane S, Sagara Y, Kato T (2013) Steric effects on excimer formation for photoluminescent smectic liquid-crystalline materials. Chem Commun 49:3839Google Scholar
  20. 20.
    Das A, Molla MR, Maity B, Koley D, Ghosh S (2012) Hydrogen-bonding induced alternate stacking of donor (D) and acceptor (A) chromophores and their supramolecular switching to segregated states. Chemistry 18:9849CrossRefGoogle Scholar
  21. 21.
    Bowen EJ, Sahu J (1959) The effect of temperature on fluorescence of solutions. J Phys Chem 63:4CrossRefGoogle Scholar
  22. 22.
    Praveen VK, George SJ, Varghese R, Vijayakumar C, Ajayaghosh A (2006) Self-assembled π-nanotapes as donor scaffolds for selective and thermally gated fluorescence resonance energy transfer (FRET). J Am Chem Soc 128:7542CrossRefGoogle Scholar
  23. 23.
    Zhao Z, Lam JWY, Tang BZ (2013) Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter 9:4564CrossRefGoogle Scholar
  24. 24.
    Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361CrossRefGoogle Scholar
  25. 25.
    Kamikawa Y, Kato T (2007) Color-tunable fluorescent organogels: columnar self-assembly of pyrene-containing oligo(glutamic acid)s. Langmuir 23:274CrossRefGoogle Scholar
  26. 26.
    Yan N, Xu Z, Diehn KK, Raghavan SR, Fang Y, Weiss RG (2013) Pyrenyl-linker-glucono gelators. Correlations of gel properties with gelator structures and characterization of solvent effects. Langmuir 29:793CrossRefGoogle Scholar
  27. 27.
    Braga D, d’Agostino S, D’Amen E, Grepioni F (2011) Polymorphs from supramolecular gels: four crystal forms of the same silver(i) supergelator crystallized directly from its gels. Chem Commun 47:5154CrossRefGoogle Scholar
  28. 28.
    Ruiz-Palomero C, Kennedy SR, Soriano ML, Jones CD, Valcarcel M, Steed JW (2016) Pharmaceutical crystallization with nanocellulose organogels. Chem Commun 52:7782CrossRefGoogle Scholar
  29. 29.
    Cayuela A, Kennedy SR, Soriano ML, Jones CD, Valcárcel M, Steed JW (2015) Fluorescent carbon dot–molecular salt hydrogels. Chem Sci 6:6139CrossRefGoogle Scholar
  30. 30.
    Foster JA, PiepenbrockMarc-Oliver M, Lloyd GO, Clarke N, HowardJudith AK, Steed JW (2010) Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth. Nat Chem 2:1037CrossRefGoogle Scholar
  31. 31.
    Diaz Diaz D, Kuhbeck D, Koopmans RJ (2011) Stimuli-responsive gels as reaction vessels and reusable catalysts. Chem Soc Rev 40:427CrossRefGoogle Scholar
  32. 32.
    Escuder B, Rodriguez-Llansola F, Miravet JF (2010) Supramolecular gels as active media for organic reactions and catalysis. New J Chem 34:1044CrossRefGoogle Scholar
  33. 33.
    Rodríguez-Llansola F, Escuder B, Miravet JF (2009) Remarkable increase in basicity associated with supramolecular gelation. Org Biomol Chem 7:3091CrossRefGoogle Scholar
  34. 34.
    Quesada-Perez M, Ramos J, Forcada J, Martin-Molina A (2012) Computer simulations of thermo-sensitive microgels: quantitative comparison with experimental swelling data. J Chem Phys 136:244903CrossRefGoogle Scholar
  35. 35.
    Xing B, Yu C-W, Chow K-H, Ho P-L, Fu D, Xu B (2002) Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 124:14846CrossRefGoogle Scholar
  36. 36.
    Zhou SL, Matsumoto S, Tian HD, Yamane H, Ojida A, Kiyonaka S, Hamachi I (2005) pH-Responsive shrinkage/swelling of a supramolecular hydrogel composed of two small amphiphilic molecules. Chemistry 11:1130CrossRefGoogle Scholar
  37. 37.
    Shi C, Huang Z, Kilic S, Xu J, Enick RM, Beckman EJ, Carr AJ, Melendez RE, Hamilton AD (1999) The gelation of CO2: a sustainable route to the creation of microcellular materials. Science 286:1540CrossRefGoogle Scholar
  38. 38.
    Zhang M, Meng L, Cao X, Jiang M, Yi T (2012) Morphological transformation between three-dimensional gel network and spherical vesicles via sonication. Soft Matter 8:4494CrossRefGoogle Scholar
  39. 39.
    Bromberg L, Temchenko M, Moeser GD, Hatton TA (2004) Thermodynamics of temperature-sensitive polyether-modified poly(acrylic acid) microgels. Langmuir 20:5683CrossRefGoogle Scholar
  40. 40.
    Krieg E, Shirman E, Weissman H, Shimoni E, Wolf SG, Pinkas I, Rybtchinski B (2009) Supramolecular gel based on a perylene diimide dye: multiple stimuli responsiveness, robustness, and photofunction. J Am Chem Soc 131:14365CrossRefGoogle Scholar
  41. 41.
    Komatsu H, Matsumoto S, Tamaru S-i, Kaneko K, Ikeda M, Hamachi I (2009) Supramolecular hydrogel exhibiting four basic logic gate functions to fine-tune substance release. J Am Chem Soc 131:5580CrossRefGoogle Scholar
  42. 42.
    Kiyonaka S, Sugiyasu K, Shinkai S, Hamachi I (2002) First thermally responsive supramolecular polymer based on glycosylated amino acid. J Am Chem Soc 124:10954CrossRefGoogle Scholar
  43. 43.
    de Loos M, Feringa BL, van Esch JH (2005) Design and application of self-assembled low molecular weight hydrogels. Eur J Org Chem 2005:3615CrossRefGoogle Scholar
  44. 44.
    Tiller JC (2003) Increasing the local concentration of drugs by hydrogel formation. Angew Chem Int Ed 42:3072CrossRefGoogle Scholar
  45. 45.
    Vintiloiu A, Leroux JC (2008) Organogels and their use in drug delivery–a review. J Control Release 125:179CrossRefGoogle Scholar
  46. 46.
    Yagai S, Karatsu T, Kitamura A (2005) Photocontrollable self-assembly. Chemistry 11:4054CrossRefGoogle Scholar
  47. 47.
    Pieroni O, Fissi A, Angelini N, Lenci F (2001) Photoresponsive polypeptides. Acc Chem Res 34:9CrossRefGoogle Scholar
  48. 48.
    Tian H, Wang S (2007) Photochromic bisthienylethene as multi-function switches. Chem Commun 781Google Scholar
  49. 49.
    Yagai S, Kitamura A (2008) Recent advances in photoresponsive supramolecular self-assemblies. Chem Soc Rev 37:1520CrossRefGoogle Scholar
  50. 50.
    Xie F, Qin L, Liu M (2016) A dual thermal and photo-switchable shrinking-swelling supramolecular peptide dendron gel. Chem Commun 52:930CrossRefGoogle Scholar
  51. 51.
    Yagai S, Nakajima T, Kishikawa K, Kohmoto S, Karatsu T, Kitamura A (2005) Hierarchical organization of photoresponsive hydrogen-bonded rosettes. J Am Chem Soc 127:11134CrossRefGoogle Scholar
  52. 52.
    Tamai N, Miyasaka H (2000) Ultrafast dynamics of photochromic systems. Chem Rev 100:1875–1890 CrossRefGoogle Scholar
  53. 53.
    Das S, Varghese S, Kumar NS (2010) Butadiene-based photoresponsive soft materials. Langmuir 26:1598CrossRefGoogle Scholar
  54. 54.
    Melanie RM, Hecht S (2010) Photoswitches: from molecules to materials. Adv Mater 22:3348CrossRefGoogle Scholar
  55. 55.
    Bleger D, Yu Z, Hecht S (2011) Toward optomechanics: maximizing the photodeformation of individual molecules. Chem Commun 47:12260CrossRefGoogle Scholar
  56. 56.
    Murata K, Aoki M, Suzuki T, Harada T, Kawabata H, Komori T, Ohseto F, Ueda K, Shinkai S (1994) Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J Am Chem Soc 116:6664CrossRefGoogle Scholar
  57. 57.
    Murata K, Aoki M, Shinkai S (1992) Sol-gel phase transition of switch-functionalized cholesterols as detected by circular dichroism. Chem Lett 21:739CrossRefGoogle Scholar
  58. 58.
    Duan P, Li Y, Li L, Deng J, Liu M (2011) Multiresponsive chiroptical switch of an azobenzene-containing lipid: solvent, temperature, and photoregulated supramolecular chirality. J Phys Chem B 115:3322CrossRefGoogle Scholar
  59. 59.
    Wu Y, Wu S, Tian X, Wang X, Wu W, Zou G, Zhang Q (2011) Photoinduced reversible gel–sol transitions of dicholesterol-linked azobenzene derivatives through breaking and reforming of van der Waals interactions. Soft Matter 7:716CrossRefGoogle Scholar
  60. 60.
    Ran X, Wang H, Zhang P, Bai B, Zhao C, Yu Z, Li M (2011) Photo-induced fiber–vesicle morphological change in an organogel based on an azophenyl hydrazide derivative. Soft Matter 7:8561CrossRefGoogle Scholar
  61. 61.
    Koehler JM, Mueller SC (1995) Frozen chemical waves in the belousov-zhabotinsky reaction. J Phys Chem 99:980CrossRefGoogle Scholar
  62. 62.
    Li Y, Tanaka Toyoichi (1990) Kinetics of swelling and shrinking of gels. J Chem Phys 92:1365CrossRefGoogle Scholar
  63. 63.
    Xu JF, Chen YZ, Wu D, Wu LZ, Tung CH, Yang QZ (2013) Photoresponsive hydrogen-bonded supramolecular polymers based on a stiff stilbene unit. Angew Chem Int Ed 52:9738CrossRefGoogle Scholar
  64. 64.
    Draper ER, Eden EG, McDonald TO, Adams DJ (2015) Spatially resolved multicomponent gels. Nat Chem 7:848CrossRefGoogle Scholar
  65. 65.
    Zhu L, Li X, Zhang Q, Ma X, Li M, Zhang H, Luo Z, Agren H, Zhao Y (2013) Unimolecular photoconversion of multicolor luminescence on hierarchical self-assemblies. J Am Chem Soc 135:5175CrossRefGoogle Scholar
  66. 66.
    Srivastava A, Ghorai S, Bhattacharjya A, Bhattacharya S (2005) A tetrameric sugar-based azobenzene that gels water at various pH values and in the presence of salts. J Org Chem 70:6574CrossRefGoogle Scholar
  67. 67.
    Yagai S, Karatsu T, Kitamura A (2005) Melamine-barbiturate/cyanurate binary organogels possessing rigid azobenzene-tether moiety. Langmuir 21:11048CrossRefGoogle Scholar
  68. 68.
    Miljanić S, Frkanec L, Meić Z, Žinić M (2005) Photoinduced gelation by stilbene oxalyl amide compounds. Langmuir 21:2754CrossRefGoogle Scholar
  69. 69.
    Yagai S, Ishiwatari K, Lin X, Karatsu T, Kitamura A, Uemura S (2013) Rational design of photoresponsive supramolecular assemblies based on diarylethene. Chem Eur J 19:6971CrossRefGoogle Scholar
  70. 70.
    Yarimaga O, Jaworski J, Yoon B, Kim JM (2012) Polydiacetylenes: supramolecular smart materials with a structural hierarchy for sensing, imaging and display applications. Chem Commun 48:2469CrossRefGoogle Scholar
  71. 71.
    Neabo JR, Rondeau-Gagne S, Vigier-Carriere C, Morin JF (2013) Soluble conjugated one-dimensional nanowires prepared by topochemical polymerization of a butadiynes-containing star-shaped molecule in the xerogel state. Langmuir 29:3446CrossRefGoogle Scholar
  72. 72.
    Aoki K, Kudo M, Tamaoki N (2004) Novel odd/even effect of alkylene chain length on the photopolymerizability of organogelators. Org Lett 6:4009CrossRefGoogle Scholar
  73. 73.
    Fujita N, Sakamoto Y, Shirakawa M, Ojima M, Fujii A, Ozaki M, Shinkai S (2007) Polydiacetylene nanofibers created in low-molecular-weight gels by post modification: control of blue and red phases by the odd−even effect in alkyl chains. J Am Chem Soc 129:4134CrossRefGoogle Scholar
  74. 74.
    Minkin VI (2004) Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem Rev 104:2751CrossRefGoogle Scholar
  75. 75.
    Berkovic G, Nuclear S, Krongauz V (2000) Spiropyrans and spirooxazines for memories and switches. Chem Rev 100:1741CrossRefGoogle Scholar
  76. 76.
    Raymo FM, Tomasulo M (2005) Electron and energy transfer modulation with photochromic switches. Chem Soc Rev 34:327CrossRefGoogle Scholar
  77. 77.
    Qiu Z, Yu H, Li J, Wang Y, Zhang Y (2009) Spiropyran-linked dipeptide forms supramolecular hydrogel with dual responses to light and to ligand-receptor interaction. Chem Commun 0:3342Google Scholar
  78. 78.
    Li Y, Wong KM, Tam AY, Wu L, Yam VW (2010) Thermo- and acid-responsive photochromic spironaphthoxazine-containing organogelators. Chem Eur J 16:8690CrossRefGoogle Scholar
  79. 79.
    Chen Q, Feng Y, Zhang D, Zhang G, Fan Q, Sun S, Zhu D (2010) Light-triggered self-assembly of a spiropyran-functionalized dendron into nano-/micrometer-sized particles and photoresponsive organogel with switchable fluorescence. Adv Funct Mater 20:36CrossRefGoogle Scholar
  80. 80.
    Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100:1685CrossRefGoogle Scholar
  81. 81.
    Praveen VK, George SJ, Varghese R, Vijayakumar C, Ajayaghosh A (2012) A smart gelator as a chemosensor: application to integrated logic gates in solution, gel, and film. Chem Eur J 18:3549CrossRefGoogle Scholar
  82. 82.
    Foster JA, Parker RM, Belenguer AM, Kishi N, Sutton S, Abell C, Nitschke JR (2015) Differentially addressable cavities within metal-organic cage-cross-linked polymeric hydrogels. J Am Chem Soc 137:9722CrossRefGoogle Scholar
  83. 83.
    de Jong JJD, Lucas LN, Kellogg RM, van Esch JH, Feringa BL (2004) Reversible optical transcription of supramolecular chirality into molecular chirality. Science 304:278CrossRefGoogle Scholar
  84. 84.
    Xiao S, Zou Y, Yu M, Yi T, Zhou Y, Li F, Huang C (2007) A photochromic fluorescent switch in an organogel system with non-destructive readout ability. Chem Commun 4758Google Scholar
  85. 85.
    de Jong JJ, Browne WR, Walko M, Lucas LN, Barrett LJ, McGarvey JJ, van Esch JH, Feringa BL (2006) Raman scattering and FT-IR spectroscopic studies on dithienylethene switches-towards non-destructive optical readout. Org Biomol Chem 4:2387CrossRefGoogle Scholar
  86. 86.
    Tian H, Yang S (2004) Recent progresses on diarylethene based photochromic switches. Chem Soc Rev 33:85CrossRefGoogle Scholar
  87. 87.
    Andréasson J, Pischel U (2010) Smart molecules at work-mimicking advanced logic operations. Chem Soc Rev 39:174Google Scholar
  88. 88.
    Andreasson J, Pischel U, Straight SD, Moore TA, Moore AL, Gust D (2011) All-photonic multifunctional molecular logic device. J Am Chem Soc 133:11641CrossRefGoogle Scholar
  89. 89.
    Cravotto G, Cintas P (2009) Molecular self-assembly and patterning induced by sound waves. The case of gelation. Chem Soc Rev 38:2684CrossRefGoogle Scholar
  90. 90.
    Paulusse JM, Sijbesma RP (2006) Molecule-based rheology switching. Angew Chem Int Ed 45:2334CrossRefGoogle Scholar
  91. 91.
    Gerber TP, Hout M (1998) More shock than therapy: market transition, employment, and income in Russia, 1991–1995. Am J Sociol 104:1CrossRefGoogle Scholar
  92. 92.
    Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHKK, Lange RFM, Lowe JKL, Meijer EW (1997) Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278:1601CrossRefGoogle Scholar
  93. 93.
    Wu J, Yi T, Xia Q, Zou Y, Liu F, Dong J, Shu T, Li F, Huang C (2009) Tunable gel formation by both sonication and thermal processing in a cholesterol-based self-assembly system. Chem Eur J 15:6234CrossRefGoogle Scholar
  94. 94.
    Jadhav SR, Vemula PK, Kumar R, Raghavan SR, John G (2010) Sugar-derived phase-selective molecular gelators as model solidifiers for oil spills. Angew Chem Int Ed 49:7695CrossRefGoogle Scholar
  95. 95.
    Mukherjee S, Mukhopadhyay B (2012) Phase selective carbohydrate gelator. RSC Adv 2:2270CrossRefGoogle Scholar
  96. 96.
    Blanco E, Esquivias L, Litrán R, Piñero M, Ramírez-del-Solar M, de la Rosa-Fox N (1999) Sonogels and derived materials. Appl Organometal Chem 13:399CrossRefGoogle Scholar
  97. 97.
    Bardelang D (2009) Ultrasound induced gelation: a paradigm shift. Soft Matter 5:1969CrossRefGoogle Scholar
  98. 98.
    Cai X, Wu Y, Wang L, Yan N, Liu J, Fang X, Fang Y (2013) Mechano-responsive calix[4]arene-based molecular gels: agitation induced gelation and hardening. Soft Matter 9:5807CrossRefGoogle Scholar
  99. 99.
    Anderson KM, Day GM, Paterson MJ, Byrne P, Clarke N, Steed JW (2008) Structure calculation of an elastic hydrogel from sonication of rigid small molecule components. Angew Chem Int Ed 47:1058CrossRefGoogle Scholar
  100. 100.
    Yu X, Cao X, Chen L, Lan H, Liu B, Yi T (2012) Thixotropic and self-healing triggered reversible rheology switching in a peptide-based organogel with a cross-linked nano-ring pattern. Soft Matter 8:3329CrossRefGoogle Scholar
  101. 101.
    Wang R-Y, Liu X-Y, Li J-L (2009) Engineering molecular self-assembled fibrillar networks by ultrasound. Cryst Growth Des 9:3286CrossRefGoogle Scholar
  102. 102.
    Cao Y, Tang LM, Wang YJ, Zhang BY, Jia LK (2008) Influence of ultrasound treatment on assembling structures and properties of supramolecular hydrogels formed from 1,3,5-benzenetricarboxylic acid and 4-hydroxypyridine. Chem Lett 37:554CrossRefGoogle Scholar
  103. 103.
    van Herpt JT, Stuart MC, Browne WR, Feringa BL (2013) Mechanically induced gel formation. Langmuir 29:8763CrossRefGoogle Scholar
  104. 104.
    Yu X, Liu Q, Wu J, Zhang M, Cao X, Zhang S, Wang Q, Chen L, Yi T (2010) Sonication-triggered instantaneous gel-to-gel transformation. Chem Eur J 16:9099CrossRefGoogle Scholar
  105. 105.
    Naota T, Koori H (2005) Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. J Am Chem Soc 127:9324CrossRefGoogle Scholar
  106. 106.
    Yaobing Wang CZ, Fu H, Li X, Sheng X, Zhao Y, Xiao D, Ma Y, Ma JS, Yao Jiannian (2008) Switch from intra- to intermolecular H-bonds by ultrasound: induced gelation and distinct nanoscale morphologies. Langmuir 24:7635CrossRefGoogle Scholar
  107. 107.
    Liu K, Meng L, Mo S, Zhang M, Mao Y, Cao X, Huang C, Yi T (2013) Colour change and luminescence enhancement in a cholesterol-based terpyridyl platinum metallogel via sonication. J Mater Chem C 1:1753CrossRefGoogle Scholar
  108. 108.
    Chen Q, Zhang D, Zhang G, Yang X, Feng Y, Fan Q, Zhu D (2010) Multicolor tunable emission from organogels containing tetraphenylethene, perylenediimide, and spiropyran derivatives. Adv Funct Mater 20:3244CrossRefGoogle Scholar
  109. 109.
    Mahesh S, Thirumalai R, Yagai S, Kitamura A, Ajayaghosh A (2009) Role of complementary H-bonding interaction of a cyanurate in the self-assembly and gelation of melamine linked tri(p-phenyleneethynylene)s. Chem Commun 5984Google Scholar
  110. 110.
    Li JL, Liu XY (2010) Architecture of supramolecular soft functional materials: from understanding to micro-/nanoscale engineering. Adv Funct Mater 20:3196CrossRefGoogle Scholar
  111. 111.
    Bardelang D, Zaman MB, Moudrakovski IL, Pawsey S, Margeson JC, Wang D, Wu X, Ripmeester JA, Ratcliffe CI, Yu K (2008) Interfacing supramolecular gels and quantum dots with ultrasound: smart photoluminescent dipeptide gels. Adv Mater 20:4517CrossRefGoogle Scholar
  112. 112.
    Gaponik N, Wolf A, Marx R, Lesnyak V, Schilling K, Eychmüller A (2008) Three-dimensional self-assembly of thiol-capped CdTe nanocrystals: gels and aerogels as building blocks for nanotechnology. Adv Mater 20:4257CrossRefGoogle Scholar
  113. 113.
    Wu J, Tian Q, Hu H, Xia Q, Zou Y, Li F, Yi T, Huang C (2009) Self-assembly of peptide-based multi-colour gels triggered by up-conversion rare earth nanoparticles. Chem Commun 4100Google Scholar
  114. 114.
    Brochu AB, Craig SL, Reichert WM (2011) Self-healing biomaterials. J Biomed Mater Res A 96:492CrossRefGoogle Scholar
  115. 115.
    Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22:5424CrossRefGoogle Scholar
  116. 116.
    Huang X, Raghavan SR, Terech P, Weiss RG (2006) Distinct kinetic pathways generate organogel networks with contrasting fractality and thixotropic properties. J Am Chem Soc 128:15341CrossRefGoogle Scholar
  117. 117.
    Vemula PK, John G (2008) Crops: a green approach toward self-assembled soft materials. Acc Chem Res 41:769CrossRefGoogle Scholar
  118. 118.
    Bhattacharya S, Krishnan Ghosh Y (2001) First report of phase selective gelation of oil from oil/water mixtures. Possible implications toward containing oil spills. Chem Commun 185Google Scholar
  119. 119.
    Abe S, Endo M, Sato M, Awano K (1996) Solid-liquid extraction of metal ions with thixotropic gels. Anal Commun 33:137CrossRefGoogle Scholar
  120. 120.
    Yan J, Liu J, Lei H, Kang Y, Zhao C, Fang Y (2015) Ferrocene-containing thixotropic molecular gels: creation and a novel strategy for water purification. J Colloid Interface Sci 448:374CrossRefGoogle Scholar
  121. 121.
    Carretti E, Bonini M, Dei L, Berrie BH, Angelova LV, Baglioni P, Weiss RG (2010) New frontiers in materials science for art conservation: responsive gels and beyond. Acc Chem Res 43:751CrossRefGoogle Scholar
  122. 122.
    Sun K, Oh H, Emerson JF, Raghavan SR (2012) A new method for centrifugal separation of blood components: creating a rigid barrier between density-stratified layers using a UV-curable thixotropic gel. J Mater Chem 22:2378CrossRefGoogle Scholar
  123. 123.
    Rodriguez-Llansola F, Escuder B, Miravet JF, Hermida-Merino D, Hamley IW, Cardin CJ, Hayes W (2010) Selective and highly efficient dye scavenging by a pH-responsive molecular hydrogelator. Chem Commun 46:7960CrossRefGoogle Scholar
  124. 124.
    Miravet JF, Escuder B (2005) Pyridine-functionalised ambidextrous gelators: towards catalytic gels. Chem Commun 5796Google Scholar
  125. 125.
    Adams DJ, Butler MF, Frith WJ, Kirkland M, Mullen L, Sanderson P (2009) A new method for maintaining homogeneity during liquid–hydrogel transitions using low molecular weight hydrogelators. Soft Matter 5:1856CrossRefGoogle Scholar
  126. 126.
    Samanta K, Ehlers M, Schmuck C (2016) Two-component self-assembly: hierarchical formation of pH-switchable supramolecular networks by π-π induced aggregation of ion pairs. Chem Eur J 22:15242CrossRefGoogle Scholar
  127. 127.
    Tena-Solsona M, Alonso-de Castro S, Miravet JF, Escuder B (2014) Co-assembly of tetrapeptides into complex pH-responsive molecular hydrogel networks. J Mater Chem B 2:6192CrossRefGoogle Scholar
  128. 128.
    Jeppesen JO, Nielsen MB, Becher J (2004) Tetrathiafulvalene cyclophanes and cage molecules. Chem Rev 104:5115CrossRefGoogle Scholar
  129. 129.
    Canevet D, Salle M, Zhang G, Zhang D, Zhu D (2009) Tetrathiafulvalene (TTF) derivatives: key building-blocks for switchable processes. Chem Commun 2245Google Scholar
  130. 130.
    Wang C, Zhang D, Zhu D (2005) A low-molecular-mass gelator with an electroactive tetrathiafulvalene group: tuning the gel formation by charge-transfer interaction and oxidation. J Am Chem Soc 127:16372CrossRefGoogle Scholar
  131. 131.
    Wang C, Chen Q, Sun F, Zhang D, Zhang G, Huang Y, Zhao R, Zhu D (2010) Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups: reversible tuning of the gel−sol transition by redox reactions and light irradiation. J Am Chem Soc 132:3092CrossRefGoogle Scholar
  132. 132.
    Liu J, He P, Yan J, Fang X, Peng J, Liu K, Fang Y (2008) An organometallic super-gelator with multiple-stimulus responsive properties. Adv Mater 20:2508CrossRefGoogle Scholar
  133. 133.
    Kawano S, Fujita N, Shinkai S (2005) Quater-, quinque-, and sexithiophene organogelators: unique thermochromism and heating-free sol-gel phase transition. Chem Eur J 11:4735CrossRefGoogle Scholar
  134. 134.
    Ikeda M, Tanida T, Yoshii T, Hamachi I (2011) Rational molecular design of stimulus-responsive supramolecular hydrogels based on dipeptides. Adv Mater 23:2819CrossRefGoogle Scholar
  135. 135.
    Steed JW (2010) Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry. Chem Soc Rev 39:3686CrossRefGoogle Scholar
  136. 136.
    Yamanaka M, Nakamura T, Nakagawa T, Itagaki H (2007) Reversible sol–gel transition of a tris–urea gelator that responds to chemical stimuli. Tetrahedron Lett 48:8990CrossRefGoogle Scholar
  137. 137.
    Džolić Z, Cametti M, Dalla Cort A, Mandolini L,Žinić M (2007) Fluoride-responsive organogelator based on oxalamide-derived anthraquinone. Chem Commun 3535Google Scholar
  138. 138.
    Kim H-J, Zin W-C, Lee M (2004) Anion-directed self-assembly of coordination polymer into tunable secondary structure. J Am Chem Soc 126:7009CrossRefGoogle Scholar
  139. 139.
    Sobczuk AA, Tamarua S, Shinkai S (2011) New strategy for controlling the oligothiophene aggregation mode utilizing the gel-to-sol phase transition induced by crown-alkali metal interactions. Chem Commun 47:3093CrossRefGoogle Scholar
  140. 140.
    Brignell SV, Smith DK (2007) Crown ether functionalised dendrons—controlled binding and release of dopamine in both solution and gel-phases. New J Chem 31:1243CrossRefGoogle Scholar
  141. 141.
    Edwards W, Smith DK (2012) Cation-responsive silver-selective organogel-exploiting silver-alkene interactions in the gel-phase. Chem Commun 48:2767CrossRefGoogle Scholar
  142. 142.
    Jin Q, Zhang L, Zhu X, Duan P, Liu M (2012) Amphiphilic Schiff base organogels: metal-ion-mediated chiral twists and chiral recognition. Chem Eur J 18:4916CrossRefGoogle Scholar
  143. 143.
    Mukhopadhyay P, Iwashita Y, Shirakawa M, Kawano S, Fujita N, Shinkai S (2006) Spontaneous colorimetric sensing of the positional isomers of dihydroxynaphthalene in a 1D organogel matrix. Angew Chem Int Ed 45:1592CrossRefGoogle Scholar
  144. 144.
    Tazawa T, Yagai S, Kikkawa Y, Karatsu T, Kitamura A, Ajayaghosh A (2010) A complementary guest induced morphology transition in a two-component multiple H-bonding self-assembly. Chem Commun 46:1076CrossRefGoogle Scholar
  145. 145.
    Deng W, Yamaguchi H, Takashima Y, Harada A (2007) A chemical-responsive supramolecular hydrogel from modified cyclodextrins. Angew Chem Int Ed 46:5144CrossRefGoogle Scholar
  146. 146.
    Chen X, Huang Z, Chen SY, Li K, Yu X-Q, Pu L (2010) Enantioselective gel collapsing: a new means of visual chiral sensing. J Am Chem Soc 132:7297CrossRefGoogle Scholar
  147. 147.
    Tu T, Fang W, Bao X, Li X, Dotz KH (2011) Visual chiral recognition through enantioselective metallogel collapsing: synthesis, characterization, and application of platinum-steroid low-molecular-mass gelators. Angew Chem Int Ed 50:6601CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  2. 2.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina
  3. 3.School of Chemistry and Chemical EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations