Skip to main content

A Qualitative Hemodynamic Analysis on Human Cerebrovascular Phantom

  • Conference paper
  • First Online:
  • 1075 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 564))

Abstract

Patient specific hemodynamic analysis is one of the major factors to determine one’s cerebrovascular health. Irregularities in hemodynamic pressure, velocity, and wall shear stress may lead to several cerebrovascular diseases. In this present work, we present a detailed hemodynamic analysis on two cerebrovascular phantoms, an anterior communicating artery, and a complete arterial tree including the circle of Willis. We have shown the step-by-step procedure involved in converting the surface mesh to a solid, which is needed for flow analysis using ANSYS Fluent. Then, we have analyzed the hemodynamic parameters like velocity and wall shear stress through flow analysis using various computational fluid dynamics techniques. The developed method is useful for future research on hemodynamic analysis using 3-D digital flows.

This is a preview of subscription content, log in via an institution.

References

  1. Gonzalez, C.F., Cho, Y.I., Ortega, H.V., Moret, J.: Intracranial aneurysms: Flow analysis of their origin and progression. Am. J. Neuroradiol. 13(1), 181–188 (1992)

    Google Scholar 

  2. Vankan, W.J., Huyghe, J.M., Janssen, J.D., Huson, A., Hacking, W.J.G., Schreiner, W.: Finite element analysis of blood flow through biological tissue. Int. J. Eng. Sci. 35(4), 375–385 (1997)

    Google Scholar 

  3. Basu, S., Plewczynski, D., Saha, S., Roszkowska, M., Magnowska, M., Baczynska, E., Wlodarczyk, J.: 2dSpAn: semiautomated 2-d segmentation, classification and analysis of hippocampal dendritic spine plasticity. Bioinformatics 172 (2016)

    Google Scholar 

  4. Banerjee, A., Dey, S., Parui, S., Nasipuri, M., Basu, S.: Design of 3-D phantoms for human carotid vasculature. In: Proceeding—2013 3rd International Conference on Advances in Computing and Communications ICACC 347–350 (2013)

    Google Scholar 

  5. Banerjee, A., Dey, S., Parui, S., Nasipuri, M., Basu, S.: Synthetic reconstruction of human carotid vasculature using a 2-D/3-D interface. In International Conference on Advances in Computing, Communications and Informatics (ICACCI) 60–65 (2013)

    Google Scholar 

  6. Saha, P.K., Wehrli, F.W., Gomberg, B.R.: Fuzzy distance transform: theory, algorithms, and applications. Comput. Vis. Image Underst. 86(3), 171–190 (2002)

    Article  MATH  Google Scholar 

  7. Saha, P.K., Udupa, J.K., Odhner, D.: Scale-based fuzzy Connected Image Segmentation: Theory, Algorithms, and Validation. Comput. Vis. Image Underst. 77(2), 145–174 (2000)

    Article  Google Scholar 

  8. Basu, S., Hoffman, E., Saha, P.K.: Multi-scale opening–a new morphological operator. In Image Analysis and Processing—ICIAP, Springer, pp. 417–427 (2015)

    Google Scholar 

  9. Saha, P.K., Strand, R., Borgefors, G.: Digital topology and geometry in medical imaging: a survey. IEEE Trans. Med. Imaging 34(9), 1940–1964 (2015)

    Article  Google Scholar 

  10. Basu, S., Raghavan, M.L., Hoffman, E.A., Saha, P.K.: Multi-scale opening of conjoined structures with shared intensities: methods and applications. In International Conference on Intelligent Computation and Bio-Medical Instrumentation (ICBMI), pp. 128–131 (2011)

    Google Scholar 

  11. Saha, P., Basu, S., Hoffman, E.: Multi-scale opening of conjoined fuzzy objects: theory and applications. IEEE Trans. Fuzzy Syst. (2015) (in press)

    Google Scholar 

  12. Guha, I., Das, N., Rakshit, P., Nasipuri, M., Saha, P.K.: Design of cerebrovascular phantoms using fuzzy distance transform based geodesic paths. In 4th International Conference on Advanced Computing, Networking, and Informatics (ICACNI) (2016) (in press)

    Google Scholar 

  13. Zarins, C.K., Giddens, D.P., Bharadvaj, B.K., Sottiurai, V.S., Mabon, R.F., Gladov, S., Glagov, S.: Carotid bifurcation atherosclerosis: quantative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53(4), 502–514 (1983)

    Article  Google Scholar 

  14. Fillinger, M.F., Marra, S.P., Raghavan, M.L., Kennedy, F.E.: Prediction of rupture risk in abdominal aortic aneurysm during observation: Wall stress versus diameter. J. Vasc. Surg. 37(4), 724–732 (2003)

    Article  Google Scholar 

  15. Raghavan, M.L., Vorp, D.A.: Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4), 475–482 (2000)

    Google Scholar 

  16. Chien, A., Tateshima, S., Castro, M., Sayre, J., Cebral, J., Viñuela, F.: Patient-specific flow analysis of brain aneurysms at a single location: comparison of hemodynamic characteristics in small aneurysms. Med. Biol. Eng. Comput. 46(11), 1113–1120 (2008)

    Article  Google Scholar 

  17. Vorp, D.A., Raghavan, M.L., Webster, M.W.: Mechanical wall stress in abdominal aortic aneurysm: Influence of diameter and asymmetry. J. Vasc. Surg. 27(4), 632–639 (1998)

    Article  Google Scholar 

  18. “MeshLab.” http://www.3d-coform.eu/index.php/tools/meshlab

  19. “Rhino—Downloads.” https://www.rhino3d.com/download. Accessed 12 Aug 2016

  20. “ANSYS—Simulation Driven Product Development.” http://www.ansys.com/

Download references

Acknowledgements

This work is supported by the DST PURSE-II, Government of India, project of CSE Department of Jadavpur University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranati Rakshit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rakshit, P., Das, N., Nasipuri, M., Basu, S. (2018). A Qualitative Hemodynamic Analysis on Human Cerebrovascular Phantom. In: Saeed, K., Chaki, N., Pati, B., Bakshi, S., Mohapatra, D. (eds) Progress in Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 564. Springer, Singapore. https://doi.org/10.1007/978-981-10-6875-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6875-1_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6874-4

  • Online ISBN: 978-981-10-6875-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics