Advertisement

Mining the Microbial Community for Redefining the Bioprocesses in the Future

  • Hemant J. PurohitEmail author
  • Anshuman A. Khardenavis
  • Atul N. Vaidya
  • Vipin Chandra Kalia
Chapter

Abstract

Biological systems operate efficiently under defined set of conditions to ensure their survival. In order to ensure maximum benefit to human beings, bioprocess optimization is necessary. At present, the emphasis is on exploiting natural resources without causing any damage to the environment and ecosystem. Naturally occurring biological systems are quite efficient; however, in comparison to chemical processes, they are slow and vulnerable. Hence, the focus of research is on optimization of these bioprocesses, with emphasis on efficient microbial communities by understanding biological pathways and their specific requirements. This needs development of efficient and innovative reactor systems accompanied by efficient downstream processing.

Keywords

Bioprocess Bioreactors Downstream Microbes Pathways Upscaling 

Notes

Acknowledgement

The authors are thankful to Director, CSIR-National Environmental Engineering Research Institute and Director, CSIR-Institute of Genomics and Integrative Biology for providing necessary facilities for this work [CSIR-NEERI/KRC/2017/JULY/EBGD/13].

References

  1. Allesch A, Brunner PH (2014) Assessment methods for solid waste management: a literature review. Waste Manag Res 32:461–473. https://doi.org/10.1177/0734242X14535653 CrossRefPubMedGoogle Scholar
  2. Ambardar S, Gupta R, Trakroo D, Lal R, Vakhlu J (2016) High throughput sequencing: an overview of sequencing chemistry. Indian J Microbiol 56:394–404. https://doi.org/10.1007/s12088-016-0606-4 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antoniewicz MR (2015) Parallel labeling experiments for pathway elucidation and 13 C metabolic flux analysis. Curr Opin Biotechnol 36:91–97. https://doi.org/10.1016/j.copbio.2015.08.014 CrossRefPubMedGoogle Scholar
  4. Arasu MV, Al-Dhabi NA, Rejiniemon TS, Lee KD, Huxley VAJ, Kim DH, Duraipandiyan V, Karuppiah P, Choi KC (2015) Identification and characterization of Lactobacillus brevis P68 with antifungal, antioxidant and probiotic functional properties. Indian J Microbiol 55:19–28. https://doi.org/10.1007/s12088-014-0495-3 CrossRefGoogle Scholar
  5. Arya V, Philip L, Bhallamudi SM (2016) Performance of suspended and attached growth bioreactors for the removal of cationic and anionic pharmaceuticals. Chem Eng J 15(284):1295–1307. https://doi.org/10.1016/j.cej.2015.09.070 CrossRefGoogle Scholar
  6. Azman AS, Othman I, Fang CM, Chan KG, Goh BH, Lee LH (2017) Antibacterial, anticancer and neuroprotective activities of rare Actinobacteria from mangrove forest soils. Indian J Microbiol 56:177–187. https://doi.org/10.1007/s12088-016-0627-z CrossRefGoogle Scholar
  7. Balakrishnan D, Bibiana AS, Vijayakumar A, Santhosh RS, Dhevendaran K, Nithyanand P (2015) Antioxidant activity of bacteria associated with the marine sponge Tedania anhelans. Indian J Microbiol 55:13–18. https://doi.org/10.1007/s12088-014-0490-8 CrossRefGoogle Scholar
  8. Bandyopadhyay P, Mishra S, Sarkar B, Swain SK, Pal A, Tripathy PP, Ojha SK (2015) Dietary Saccharomyces cerevisiae boosts growth and immunity of IMC Labeo rohita (Ham.) juveniles. Indian J Microbiol 55:81–87. https://doi.org/10.1007/s12088-014-0500-x CrossRefGoogle Scholar
  9. Cassarini C, Bhattarai S, Gonzalez-Gil G, Rene ER, Vogt C, Musat N, Lens PN (2015) Anaerobic oxidation of methane using different sulphur compounds as electron acceptors in a bioreactor. In: Book of abstracts, June 29, p 47. doi:https://doi.org/10.13140/RG.2.1.1564.7842
  10. Comolli LR (2014) Intra-and inter-species interactions in microbial communities. Front Microbiol 5:629. https://doi.org/10.3389/fmicb.2014.00629 CrossRefPubMedPubMedCentralGoogle Scholar
  11. De Roy K, Marzorati M, Negroni A, Thas O, Balloi A, Fava F, Verstraete W, Daffonchio D, Boon N (2013) Environmental conditions and community evenness determine the outcome of biological invasion. Nat Commun 4:1383. https://doi.org/10.1038/ncomms2392 CrossRefPubMedGoogle Scholar
  12. Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56:247–264. https://doi.org/10.1007/s12088-016-0584-6 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ehrenworth AM, Peralta-Yahya P (2017) Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering. Nat Chem Biol 13:249–258. https://doi.org/10.1038/nchembio.2308 CrossRefPubMedGoogle Scholar
  14. Fredrickson JK (2015) Ecological communities by design. Science 348:1425–1427. https://doi.org/10.1126/science.aab0946 CrossRefPubMedGoogle Scholar
  15. Ghosh S, Qureshi A, Purohit HJ (2017) Enhanced expression of catechol 1,2 dioxygenase gene in biofilm forming Pseudomonas mendocina EGD-AQ5 under increasing benzoate stress. Int Biodeterior Biodegrad 118:57–65. https://doi.org/10.1016/j.ibiod.2017.01.019 CrossRefGoogle Scholar
  16. Go T-H, Cho K-S, Lee S-M, Lee O-M, Son H-J (2015) Simultaneous production of antifungal and keratinolytic activities by feather-degrading Bacillus subtilis S8. Indian J Microbiol 55:66–73. https://doi.org/10.1007/s12088-014-0502-8 CrossRefGoogle Scholar
  17. Goh S, Zhang J, Liu Y, Fane AG (2013) Fouling and wetting in membrane distillation (MD) and MD-bioreactor (MDBR) for wastewater reclamation. Desalination 15(323):39–47. https://doi.org/10.1016/j.desal.2012.12.001 CrossRefGoogle Scholar
  18. Gordonov T, Kim E, Cheng Y, Ben-Yoav H, Ghodssi R, Rubloff G, Yin JJ, Payne GF, Bentley WE (2014) Electronic modulation of biochemical signal generation. Nat Nanotechnol 9:605–610. https://doi.org/10.1038/nnano.2014.151 CrossRefPubMedGoogle Scholar
  19. Gulhane M, Khardenavis AA, Karia S, Pandit P, Kanade GS, Lokhande S, Vaidya A, Purohit HJ (2016) Biomethanation of vegetable market waste in an anaerobic reactor: effect of effluent recirculation and carbon mass balance analysis. Bioresour Technol 215:100–109. https://doi.org/10.1016/j.biortech.2016.04.039 CrossRefGoogle Scholar
  20. Gulhane M, Pandit P, Khardenavis A, Singh D, Purohit H (2017) Study of microbial community plasticity for anaerobic digestion of vegetable waste in Anaerobic Baffled Reactor. Renew Energy 101:59–66. https://doi.org/10.1016/j.renene.2016.08.021 CrossRefGoogle Scholar
  21. He G, Wang X, Liao G, Huang S, Wu J (2016) Isolation, identification and characterization of two aluminum-tolerant fungi from acidic red soil. Indian J Microbiol 56:344–352. https://doi.org/10.1007/s12088-016-0586-4 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hernández-Saldaña OF, Valencia-Posadas M, de la Fuente-Salcido NM, Bideshi DK, Barboza-Corona JE (2016) Bacteriocinogenic bacteria isolated from raw goat milk and goat cheese produced in the Center of México. Indian J Microbiol 56:301–308. https://doi.org/10.1007/s12088-016-0587-3 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jadeja NB, More RP, Purohit HJ, Kapley A (2014) Metagenomic analysis of oxygenases from activated sludge. Bioresour Technol 165:250–256. https://doi.org/10.1016/j.biortech.2014.02.045 CrossRefPubMedGoogle Scholar
  24. Jakubiak M, Gdowska K (2013) Innovative environmental technology applications of laser light stimulation. Енергетика і автоматика 3:14–21Google Scholar
  25. Jung GY, Stephanopoulos G (2004) A functional protein chip for pathway optimization and in vitro metabolic engineering. Science 304:428–431. https://doi.org/10.1126/science.1096920 CrossRefPubMedGoogle Scholar
  26. Jungbauer A (2013) Continuous downstream processing of biopharmaceuticals. Trends Biotechnol 31:479–492. https://doi.org/10.1016/j.tibtech.2013.05.011 CrossRefPubMedGoogle Scholar
  27. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. https://doi.org/10.3109/1040841X.2010.532479 CrossRefPubMedGoogle Scholar
  28. Kalia VC, Prakash J, Koul S (2016) Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol 56:113–125. https://doi.org/10.1007/s12088-016-0583-7 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kapley A, Thierry B, Purohit HJ (2007) Eubacterial diversity of activated biomass from a CETP. Res Microbiol 158:494–500. https://doi.org/10.1016/j.resmic.2007.04.004 CrossRefPubMedGoogle Scholar
  30. Kapley A, Tanksale H, Sagarkar S, Prasad AR, Rathod AK, Sharma N, Qureshi A, Purohit HJ (2015) Antimicrobial activity of Alcaligenes sp. HPC 1271 against multidrug resistant bacteria. Funct Integr. Gen 16:57–65. https://doi.org/10.1007/s10142-015-0466-8 CrossRefGoogle Scholar
  31. Khardenavis AA, Kapley A, Purohit HJ (2008) Phenol-mediated improved performance of active biomass for treatment of distillery wastewater. Int Biodeterior Biodegrad 62:38–45. https://doi.org/10.1016/j.ibiod.2007.06.016 CrossRefGoogle Scholar
  32. King ZA, Lloyd CJ, Feist AM, Palsson BO (2015) Next-generation genome-scale models for metabolic engineering. Curr Opin Biotechnol 35:23–29. https://doi.org/10.1016/j.copbio.2014.12.016 CrossRefPubMedGoogle Scholar
  33. Kumar RR, Prasad S (2011) Metabolic engineering of bacteria. Indian J Microbiol 51:403–409. https://doi.org/10.1007/s12088-011-0172-8 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267. https://doi.org/10.1007/s12088-014-0467-7 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Long MR, Ong WK, Reed JL (2015) Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol 34:135–141. https://doi.org/10.1016/j.copbio.2014.12.019 CrossRefPubMedGoogle Scholar
  36. Mahler G (2014) Metabolic engineering: enzyme control on a chip. Nat Nanotechnol 9:571–572. https://doi.org/10.1038/nnano.2014.160 CrossRefPubMedGoogle Scholar
  37. More PR, Mitra S, Raju SC, Kapley A, Purohit HJ (2014) Mining and assessmentof catabolic pathways in the metagenome of a common effluent treatment plant to induce the degradative capacity of biomass. Bioresour Technol 153:137–146. https://doi.org/10.1016/j.biortech.2013.11.065 CrossRefPubMedGoogle Scholar
  38. Pandit PD, Gulhane MK, Khardenavis AA, Purohit HJ (2016) Mining of hemicellulose and lignin degrading genes from differentially enriched methane producing microbial community. Bioresour Technol 216:923–930. https://doi.org/10.1016/j.biortech.2016.06.021 CrossRefGoogle Scholar
  39. Park J-M, Radhakrishnan R, Kang S-M, Lee I-J (2015) IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: a special reference with lettuce growth inhibition. Indian J Microbiol 55:207–211. https://doi.org/10.1007/s12088-015-0515-y CrossRefPubMedPubMedCentralGoogle Scholar
  40. Parmar NR, Pandit PD, Purohit HJ, Nirmal Kumar JI, Joshi CG (2017) Influence of diet composition on cattle rumen methanogenesis: a comparative metagenomic analysis in Indian and exotic cattle. Indian J Microbiol 57:226–234. https://doi.org/10.1007/s12088-016-0635-z CrossRefPubMedPubMedCentralGoogle Scholar
  41. Patel SK, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Indian J Microbiol 57:171–176. https://doi.org/10.1007/s12088-017-0643-7 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Peña-Yam LP, Esaú Ruíz-Sánchez E, Barboza-Corona JE, Reyes-Ramírez A (2016) Isolation of Mexican Bacillus species and their effects in promoting growth of chili pepper (Capsicum annuum L. cv Jalapeño). Indian J Microbiol 56:375–378. https://doi.org/10.1007/s12088-016-0582-8 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Puranik S, Purohit HJ (2015) Dynamic interactive events in gene regulation using E. coli dehydrogenase as a model. Funct Integr Genomics 15:175–188. https://doi.org/10.1007/s10142-014-0418-8 CrossRefPubMedGoogle Scholar
  44. Purohit HJ, Kapley A, Khardenavis A, Qureshi A, Dafale NA (2016) Insights in waste management bioprocesses using genomic tools. In: Sariaslani S, Gadd GM (eds) Advances in Applied Microbiology, vol 97, pp 121–170. https://doi.org/10.1016/bs.aambs.2016.09.002 CrossRefGoogle Scholar
  45. Raitskin O, Patron NJ (2016) Multi-gene engineering in plants with RNA-guided Cas9 nuclease. Curr Opin Biotechnol 37:69–75. https://doi.org/10.1016/j.copbio.2015.11.008 CrossRefPubMedGoogle Scholar
  46. Rao STH, Papathoti NK, Gundeboina R, Mohamed YK, Mudhole GR, Bee H (2017) Hexavalent chromium reduction from pollutant samples by Achromobacter xylosoxidans SHB 204 and its kinetics study. Indian J Microbiol 57:292–298. https://doi.org/10.1007/s12088-017-0654-4 CrossRefGoogle Scholar
  47. Ray S, Kalia VC (2017) Microbial cometabolism and polyhydroxyalkanoate co-polymers. Indian J Microbiol 57:39–47. https://doi.org/10.1007/s12088-016-0622-4 CrossRefGoogle Scholar
  48. Robles Martinez A, Latrille E, Ruano MV, Steyer JP (2015) A robust fuzzy-logic-based controller for bio-methane production in anaerobic fixedfilm reactors. World Congress on Anaerobic Digestion (AD14), Viña del Mar, CHL, 2015-11-15-2015-11-18, 2015Google Scholar
  49. Sanchart C, Rattanaporn O, Haltrich D, Phukpattaranont P, Maneerat S (2017) Lactobacillus futsaii CS3, a new GABA-producing strain isolated from Thai fermented shrimp (Kung–Som). Indian J Microbiol 57:211–217. https://doi.org/10.1007/s12088-016-0632-2 CrossRefPubMedGoogle Scholar
  50. Santero E, Floriano B, Govantes F (2016) Harnessing the power of microbial metabolism. Curr Opin Microbiol 31:63–69. https://doi.org/10.1016/j.mib.2016.03.003 CrossRefPubMedGoogle Scholar
  51. Sarma SJ, Tay JH, Chu A (2017) Finding knowledge gaps in aerobic granulation technology. Trends Biotechnol 35:66–78. https://doi.org/10.1016/j.tibtech.2016.07.003 CrossRefPubMedGoogle Scholar
  52. Sharma A, Lal R (2017) Survey of (meta)genomic approaches for understanding microbial community dynamics. Indian J Microbiol 57:23–38. https://doi.org/10.1007/s12088-016-0629-x CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sharma JK, Gautam RK, Misra RR, Kashyap SM, Singh SK, Juwarkar AA (2014) Degradation of di-through hepta-chlorobiphenyls in clophen oil using microorganisms isolated from long term PCBs contaminated soil. Indian J Microbiol 54:337–342. https://doi.org/10.1007/s12088-014-0459-7 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Shim JE, Lee T, Lee I (2017) From sequencing data to gene functions: co-functional network approaches. Anim Cells Syst 21:77–83. https://doi.org/10.1080/19768354.2017.1284156 CrossRefGoogle Scholar
  55. Thodey K, Galanie S, Smolke CD (2014) A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 10:837–844. https://doi.org/10.1038/nchembio.1613 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tikariha H, Pal RR, Qureshi A, Kapley A, Purohit HJ (2016) In silico analysis for prediction of degradative capacity of Pseudomonas putida SF1. Gene 591:382–392. https://doi.org/10.1016/j.gene.2016.06.028 CrossRefPubMedGoogle Scholar
  57. Tursunov O, Dobrowolski JW (2015) A brief review of application of laser biotechnology as an efficient mechanism for the increase of biomass for bio-energy production via clean thermo-technologies. Am J Renew Sust Energ 1:66–71Google Scholar
  58. Yadav TC, Khardenavis AA, Kapley A (2014) Shifts in microbial community in response to dissolved oxygen levels in activated sludge. Bioresour Technol 165:257–264. https://doi.org/10.1016/j.biortech.2014.03.007 CrossRefPubMedGoogle Scholar
  59. Yadav TC, Pal RR, Shastri S, Jadeja NB, Kapley A (2015) Comparative metagenomics demonstrating different degradative capacity of activated biomass treating hydrocarbon contaminated wastewater. Bioresour Technol 188:24–32. https://doi.org/10.1016/j.biortech.2015.01.141 CrossRefPubMedGoogle Scholar
  60. Yin X, Ma L, Pei X, Du P, Li C, Xie T, Yu L, Yu L, Wang Q (2015) Creation of functionally diverse chimerical α-glucosidase enzymes by swapping homologous gene fragments retrieved from soil DNA. Indian J Microbiol 55:114–117. https://doi.org/10.1007/s12088-014-0493-5 CrossRefGoogle Scholar
  61. Zhang Z, Wang Y, Hu J, Wu Q, Zhang Q (2015) Influence of mixing method and hydraulic retention time on hydrogen production through photofermentation with mixed strains. Int J Hydrog Energy 40:6521–6529. https://doi.org/10.1016/j.ijhydene.2015.03.118 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Hemant J. Purohit
    • 1
    Email author
  • Anshuman A. Khardenavis
    • 1
  • Atul N. Vaidya
    • 2
  • Vipin Chandra Kalia
    • 3
  1. 1.Environmental Biotechnology and Genomics DivisionCSIR – National Environmental Engineering and Research Institute (CSIR-NEERI)NagpurIndia
  2. 2.Solid and Hazardous Waste Management DivisionCSIR – National Environmental Engineering and Research Institute (CSIR-NEERI)NagpurIndia
  3. 3.Microbial Biotechnology and GenomicsCSIR – Institute of Genomics and Integrative BiologyNew DelhiIndia

Personalised recommendations