Optimization and Applicability of Bioprocesses pp 349-382 | Cite as
Bioprocess Network for Solid Waste Management
- 630 Downloads
Abstract
The anaerobic digestion process is a well-known and still growing technology. It has been implemented in full scale in several waste and wastewater treatment plants.
The key issue is the treatment, stabilization, and waste reduction in order to obtain benefits, especially energy and bioproducts. Efficient separate collection, first of all, is the key for anaerobic digestion success. Separate collection is the prerequisite to have waste streams of good quality at the source for further treatments, and it can be implemented at reasonable costs. We have to change the paradigm in plant pretreatment configuration, thus passing from complicated pretreatment lines to simplified systems. Moreover, urban waste treatment processes should be considered as real productive industries. The future vision of biowaste management leads to consider it as a raw material to produce not only energy but also products (e.g., bioplastics). The new aerobic/anaerobic biorefinery comes from the integration of the cycles that take advantage of the wastewater treatment and the urban organic waste management as a valuable source for the production of products and energy resources. The integrated approach for waste stream treatment gives considerable advantages, which lead this option in the field of the “smart” opportunities for the urban service management.
Keywords
Anaerobic digestion Organic waste Sewage sludge Pre-treatment Biogas upgrading Hydrogen Volatile fatty acids Multivariate analysis Process controlNotes
Acknowledgments
The authors wish to thank the European Union, 7° Framework program 2007–2013, Valorgas Project (ENERGY.2009.3.2.2, Valorization of food waste to biogas), PRIN-MIUR 2007, and LIFE+ ENVIRONMENT POLICY AND GOVERNMENT project “Development and implementation of a demonstration system on Integrated Solid Waste Management for Tinos in line with the Waste Framework Directive” (LIFE10 ENV/GR/000610). Part of the work was carried out by the financial support of the project PRIN 2012 WISE “Advanced process to sustainable useful innovative products from organic waste.”
References
- Adamson KA (2004) Hydrogen from renewable resources—the hundred year commitment. Energ Policy 32:1231–1242. https://doi.org/10.1016/S0301-4215(03)00094-6 CrossRefGoogle Scholar
- Angenent LT, Karim K, Al Dahhan MH, Wrenn BA, Domìguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485. https://doi.org/10.1016/j.tibtech.2004.07.001 CrossRefGoogle Scholar
- Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99(1):110–119CrossRefGoogle Scholar
- Astals S, Batstone DJ, Mata-Alvarez J, Jensen PD (2014) Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresour Technol 169:421–427. https://doi.org/10.1016/j.biortech.2014.07.024 CrossRefPubMedGoogle Scholar
- Battistoni P, Pavan P, Cecchi F, Mata-Alvarez J, Majone M (1998) Integration of civil wastewater and municipal solid waste treatments. The effect on biological nutrient removal processes. In: Proceedings of the European conference on new advances in biological nitrogen and phosphorus removal for municipal or industrial wastewaters, 12–14 October 1998, Narbonne, France, pp 129–137Google Scholar
- Bernstad A, la Cour Jansen J (2011) A life cycle approach to the management of household food waste–a Swedish full-scale case study. Waste Manag 31:1879–1896. https://doi.org/10.1016/j.wasman.2011.02.026 CrossRefPubMedGoogle Scholar
- Bolzonella D, Innocenti L, Pavan P, Cecchi F (2001) Denitrification potential enhancement by addition of the anaerobic fermented of the organic fraction of municipal solid waste. Water Sci Technol 44(1):187–194CrossRefGoogle Scholar
- Bolzonella D, Fatone F, Pavan P, Cecchi F (2005) Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds. Ind Eng Chem Res 44:3412–3418. https://doi.org/10.1021/ie048937m CrossRefGoogle Scholar
- Bolzonella D, Battistoni P, Susini C, Cecchi F (2006) Anaerobic codigestion of waste activated sludge and OFMSW: the experiences of Viareggio and Treviso plants (Italy). Water Sci Technol 53:203–211. https://doi.org/10.2166/wst.2006.251 CrossRefPubMedGoogle Scholar
- Braun K, Gottschalk G (1981) Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and clostridium aceticum. Arch Microbiol 128(3):294–298CrossRefGoogle Scholar
- Cavinato C, Bolzanella D, Fatone F, Cecchi F, Pavan P (2011) Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour Technol 102:8605–8611. https://doi.org/10.1016/j.biortech.2011.03.084 CrossRefPubMedGoogle Scholar
- Cavinato C, Giuliano A, Bolzonella D, Pavan P, Cecchi F (2012) Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience. Int J Hydrogen Energ 37:11549–11555. https://doi.org/10.1016/j.ijhydene.2012.03.065 CrossRefGoogle Scholar
- Cavinato C, Giuliano A, Bolzonella D, Pavan P, Cecchi F (2012) Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience. Int J Hydrogen Energy 37:11549–11555.CrossRefGoogle Scholar
- Cardon BP, Barker HA (1947) Amino acid fermentations by clostridium propionicum and Diplococcus glycinophilus. Arch Biochem 12:165PubMedGoogle Scholar
- Cecchi F, Cavinato C (2015) Anaerobic digestion of bio-waste: a mini-review focusing on territorial and environmental aspects. Waste Manag Res 33:429–438. https://doi.org/10.1177/0734242X14568610 CrossRefPubMedGoogle Scholar
- Cecchi F, Traverso PG, Perin G, Vallini G (1988) Comparison of co-digestion performance of two differently collected organic fractions of municipal solid waste with sewage sludges. Environ Technol Lett 9:391–400. https://doi.org/10.1080/09593338809384582 CrossRefGoogle Scholar
- Cecchi F, Pavan P, Mata-Alvarez J (1997) Kinetic study of the thermophilic anaerobic digestion of the fresh and precomposted mechanically selected organic fraction of MSW. J Environ Sci Health A 32:195–213. https://doi.org/10.1080/10934529709376536 CrossRefGoogle Scholar
- Cecchi F, Battistoni P, Pavan, Bolzonella D, Innocenti L (2005) Digestioneanaero-bicadellafrazioneorganica dei rifiutisolidi. Aspettifondamentali, progettuali, gestionali, diimpattoambientaleedintegrazioneconladepurazionedelleacquereflue. Edizioni APAT: Agenzia per laProtezionedell’Ambiente e per i ServiziTecnici. Manuali e lineeguida 13/2005, RomaGoogle Scholar
- Chinellato G, Cavinato C, Bolzonella D, Heaven S, Banks CJ (2013) Biohydrogen production from food waste in batch and semi-continuous conditions: evaluation of a two-phase approach with digestate recirculation for pH control. Int J Hydrogen Energ 38:4351–4360. https://doi.org/10.1016/j.ijhydene.2013.01.078 CrossRefGoogle Scholar
- Chong ML, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J HydrogenEnerg 34:3277–3287. https://doi.org/10.1016/j.ijhydene.2009.02.010 CrossRefGoogle Scholar
- Chou CH, Wang CW, Huang CC, Lay JJ (2008) Pilot study on the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen. Int J Hydrogen Energ 33:1550–1558. https://doi.org/10.1016/j.ijhydene.2007.09.031 CrossRefGoogle Scholar
- Chu CF, Li YY, KQ X, Ebie Y, Inamori Y, Kong HN (2008) A pH-temperature-phased two-stage process for hydrogen and methane production from food waste. Int J Hydrogen Energ 33:4739–4746. https://doi.org/10.1016/j.ijhydene.2008.06.060 CrossRefGoogle Scholar
- Chu CF, Ebie YXKQ, Li YY, Inamori Y (2010) Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste. Int J Hydrogen Energ 35:8253–8261. https://doi.org/10.1016/j.ijhydene.2009.12.021 CrossRefGoogle Scholar
- Chua H, PHF Y, Ho LY (1997) Coupling of waste water treatment with storage polymer production. Appl Biochem Biotechnol 63:627–635. https://doi.org/10.1007/BF02920461 CrossRefPubMedGoogle Scholar
- De Baere L, Mattheeuws B (2015) State of the art of anaerobic digestion of municipal solid waste in Europe. In: Proceedings of the international conference on solid waste 2011 – moving towards sustainable resource management, p 416Google Scholar
- De Falco M, Basile A (eds) (2015) Enriched methane: the first step towards the hydrogen economy. Springer, ChamGoogle Scholar
- De la Rubia MA, Raposo F, Rincón B, Borja R (2009) Evaluation of the hydrolytic–acidogenic step of a two-stage mesophilic anaerobic digestion process of sunflower oil cake. Bioresour Technol 100:4133–4138. https://doi.org/10.1016/j.biortech.2009.04.001 CrossRefPubMedGoogle Scholar
- Dionisi D, Majone M, Papa V, Beccari M (2004) Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol Bioeng 85:569–579. https://doi.org/10.1002/bit.10910 CrossRefPubMedGoogle Scholar
- Elbeshbishy E, Nakhla G (2011) Comparative study of the effect of ultrasonication on the anaerobic biodegradability of food waste in single and two-stage systems. Bioresour Technol 102:6449–6457. https://doi.org/10.1016/j.biortech.2011.03.082 CrossRefPubMedGoogle Scholar
- EUROSTAT (n.d.) Eurostat 2011 [WWW Document]. http://ec.europa.eu/eurostat, http://ec.europa.eu/eurostat/web/products-datasets/-/ten00110Google Scholar
- EUROSTAT 2011–2012-2015a. http://ec.europa.eu/eurostat, http://ec.europa.eu/eurostat/web/products-datasets/−/ten00110
- Eurostat (2014) Generation of Waste. http://ec.europa.eu/eurostat/data/database
- Eurostat (2015) http://ec.europa.eu/eurostat
- Giuliano A, Zanetti L, Micolucci F, Cavinato C (2014) Thermophilic two-phase anaerobic digestion of source sorted organic fraction of municipal solid waste for bio-hythane production: effect of recirculation sludge on process stability and microbiology over a long-term pilot scale experience. Water Sci Technol 69:2200–2209. https://doi.org/10.2166/wst.2014.137 CrossRefPubMedGoogle Scholar
- Gomez X, Moran A, Cuetos MJ, Sanchez ME (2006) The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process. J Power Sources 157(2):727–732CrossRefGoogle Scholar
- Gottardo M, Cavinato C, Bolzonella D, Pavan P (2013) Dark fermentation optimization by anaerobic digested sludge recirculation: effects on hydrogen production. Chem Eng 32:997–1002. https://doi.org/10.3303/CET1332167 CrossRefGoogle Scholar
- Gottardo M, Micolucci F, Bolzonella D, Uellendahl H, Pavan P (2017) Pilot scale fermentation coupled with anaerobic digestion of food waste - effect of dynamic digestate recirculation. Renew Energy 114:455–463CrossRefGoogle Scholar
- Graham LA, Rideout G, Rosenblatt D, Hendren J (2008) Greenhouse gas emissions from heavy-duty vehicles. Atmos Environ 42:4665–4681. https://doi.org/10.1016/j.atmosenv.2008.01.049 CrossRefGoogle Scholar
- Hallenbeck P, Ghosh D, Skonieczny M, Yargeau V (2009) Microbiological and engineering aspects of biohydrogen production. Indian J Microbiol 49:48–59. https://doi.org/10.1007/s12088-009-0010-4 CrossRefPubMedPubMedCentralGoogle Scholar
- Han SK, Kim SH, Kim HW, Shin HS (2005) Pilot-scale two-stage process: a combination of acidogenic hydrogenesis and methanogenesis. Water Sci Technol 52:131–138CrossRefGoogle Scholar
- Hansen TL, Jansen JC, Davidsson A, Christensen TH (2007) Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery. Waste Manag 27:398–405. https://doi.org/10.1016/j.wasman.2006.02.014 CrossRefPubMedGoogle Scholar
- Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energ 27:1339–1347. https://doi.org/10.1016/S0360-3199(02)00090-3 CrossRefGoogle Scholar
- Hawkes F, Hussy I, Kyazze G, Dinsdale R, Hawkes D (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrogen Energ 32:172–184. https://doi.org/10.1016/j.ijhydene.2006.08.014 CrossRefGoogle Scholar
- ISPRA (2014a) Rapportorifiutiurbani. Edizione 2014. Rapporti 202/2014. ISPRA, 2014: RapportoRifiutiUrbani. ISBN 978-88-448-0680-4Google Scholar
- ISPRA (2014b) Italian emission inventory 1990–2012. Informative inventory report 2014. Rapporti 201/2014Google Scholar
- Kataoka N, Ayame S, Miya A, Ueno Y, Oshita N, Tsukahara K, Sawayama S, Yokota N (2005) Studies on hydrogen-methane fermentation process for treating garbage and waste paper. ADSW 2005 conference proceedings, 2, process engineeringGoogle Scholar
- Kongjan P, Angelidaki I (2010) Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Bioresour Technol 101:7789–7796. https://doi.org/10.1016/j.biortech.2010.05.024 CrossRefPubMedGoogle Scholar
- Kotay SM, Das D (2008) Biohydrogen as a renewable energy resource. Prospects and potentials. Int J Hydrogen Energ 33:258–263. https://doi.org/10.1016/j.ijhydene.2007.07.031 CrossRefGoogle Scholar
- Kraemer JT, Bagley DM (2007) Improving the yield from fermentative hydrogen production. Biotechnol Lett 29:685–695. https://doi.org/10.1007/s10529-006-9299-9 CrossRefPubMedGoogle Scholar
- Lee DY, Ebie Y, KQ X, Li YY, Inamori Y (2010) Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour Technol 101:S42–S47. https://doi.org/10.1016/j.ijhydene.2007.07.031 CrossRefPubMedGoogle Scholar
- Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99. https://doi.org/10.1016/j.cej.2013.09.002 CrossRefGoogle Scholar
- Leite WRM, Gottardo M, Pavan P, Belli Filho P, Bolzonella D (2016) Performance and energy aspects of single and two phase thermophilic anaerobic digestion of waste activated sludge. Renew Energy 86:1324–1331CrossRefGoogle Scholar
- Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energ 29:173–185. https://doi.org/10.1016/S0360-3199(03)00094-6 CrossRefGoogle Scholar
- Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40:2230–2236CrossRefGoogle Scholar
- Lu J, Ahring BK (2005) Effects of temperature and hydraulic retention time on thermophilic anaerobic pretreatment of sewage sludge. In: Proceedings anaerobic digestion of solid waste, Copenhagen, pp 159–164Google Scholar
- Luo G, Xie L, Zhou Q, Angelidaki I (2011) Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresour Technol 102:8700–8706. https://doi.org/10.1016/j.biortech.2011.02.012 CrossRefPubMedGoogle Scholar
- Malamis D, Moustakas K, Bourka A, Valta K, Papadaskalopoulou C, Panaretou V, Skiadi O, Sotiropoulos A (2015) Compositional analysis of biowaste from study sites in Greek municipalities. Waste Biomass Valoriz 6:637–646. https://doi.org/10.1007/s12649-015-9406-z CrossRefGoogle Scholar
- Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrogen Energ 34:7404–7416. https://doi.org/10.1016/j.ijhydene.2007.07.031 CrossRefGoogle Scholar
- Metcalf, Eddy (2006) Ingegneriadelleacquereflue. Trattamento e riuso. Mc Graw Hill, Milano. ISBN: 9788838661884Google Scholar
- Micolucci F, Gottardo M, Bolzonella D, Pavan P (2014) Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. Int J Hydrogen Energ 39:17563–17572. https://doi.org/10.1016/j.ijhydene.2014.08.136 CrossRefGoogle Scholar
- Micolucci F, Gottardo M, Cavinato C, Pavan P, Bolzonella D (2016) Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery. Waste Manag 48:227–235. https://doi.org/10.1016/j.wasman.2015.09.031 CrossRefGoogle Scholar
- Micolucci F, Gottardo M, Pavan P, Cavinato C, Bolzonella D (2017) Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste. Article in press. doi:https://doi.org/10.1016/j.jclepro.2017.10.080 CrossRefGoogle Scholar
- Nazlina HMYNH, Nor’Aini AR, Man HC, Yusoff MZM, Hassan MA (2011) Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. Int J Hydrogen Energ 36:9571–9580. https://doi.org/10.1016/j.ijhydene.2011.05.048 CrossRefGoogle Scholar
- Okamoto M, Miyahara T, Mizuno O, Noike T (2000) Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25–32. ISSN:02731223CrossRefGoogle Scholar
- Pavan P, Battistoni P, Cecchi F, Mata-Alvarez J (2000) Two-phase anaerobic digestion of source sorted OFMSW (organic fraction of municipal solid waste): performance and kinetic study. Water Sci Technol 41:111–118. ISSN:02731223CrossRefGoogle Scholar
- Reith JH, Wijffels RH, Barten H (2003) Bio-methane & bio-hydrogen, status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation, PettenGoogle Scholar
- Shin HS, Youn JH (2005) Conversion into hydrogen by thermophilic acidogenesis. Biodegradation 16:33–44. https://doi.org/10.1007/s10531-004-0377-9 CrossRefGoogle Scholar
- Sosnowski P, Klepacz-Smolka A, Kaczorek K, Ledakowicz S (2008) Kinetic investigations of methane co-fermentation of sewage sludge and organic fraction of municipal solid wastes. Bioresour Technol 99:5731–5737. https://doi.org/10.1016/j.biortech.2007.10.019 CrossRefPubMedGoogle Scholar
- Sreela-or C, Imai T, Plangklang P, Reungsang A (2011) Optimization of key factors affecting hydrogen production from food waste by anaerobic mixed cultures. Int J Hydrogen Energ 36:14120–14133. https://doi.org/10.1016/j.ijhydene.2011.04.136 CrossRefGoogle Scholar
- Valdez-Vazquez I, Poggi-Varaldo HM (2009) Hydrogen production by fermentative consortia. Renew Sust Energ Rev 13:1000–1113. https://doi.org/10.1016/j.rser.2008.03.003 CrossRefGoogle Scholar
- Viturtia AM, Mata-Alvarez J, Sans C, Costa J, Cecchi F (1992) Chemicals production from wastes. Environ Technol 13:1033–1041. https://doi.org/10.1080/09593339209385240 CrossRefGoogle Scholar
- Wang X, Zhao YC (2009) A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int J Hydrogen Energ 34:245–254. https://doi.org/10.1016/j.ijhydene.2008.09.100 CrossRefGoogle Scholar
- Yoo CK, Lee JM, Lee IB, Vanrolleghem PA (2004) Dynamic monitoring system for full-scale wastewater treatment plants. Water Sci Technol 50:163–171. ISSN: 0273-1223CrossRefGoogle Scholar
- Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energ Rev 38:383–392. https://doi.org/10.1016/j.rser.2014.05.038 CrossRefGoogle Scholar
- Zhu H, Parker W, Conidi D, Basnar R, Seto P (2011) Eliminating methanogenic activity in hydrogen reactor to improve biogas production in a two-stage anaerobic digestion process co-digesting municipal food waste and sewage sludge. Bioresour Technol 102:7086–7092. https://doi.org/10.1016/j.biortech.2011.04.047 CrossRefPubMedGoogle Scholar