Advertisement

Modelling for Anaerobic Process

  • J. Rajesh BanuEmail author
  • S. Kavitha
  • K. Tamilarasan
Chapter

Abstract

Anaerobic biodegradation is an exceptional performance for generation of energy-rich biogas from different types of waste biomass. Experimental techniques were usually employed for upgrading AD processes; however, it requires building of costly trial methods and protracted experimentation. Preferably, modelling is believed to explain the various phases of biological mechanisms that include dynamic studies and rheological mechanics in various digesters that explain the environmental and functional circumstances and state. As a result of its complicated pathway and reaction mechanism, the optimising parameters of the overall process and further system improvement of this technique has to be predicted through development of numerical models for designing and prediction. In the recent times, various numerical models have developed and improved to evaluate system complication. This chapter reviews and covers the benefits and needs for anaerobic process modelling and highlights the recent developments in designing criteria. The main important predicted and organized forms are elaborated, and its efficiency was significantly discussed. The significance of the accessibility of complex models and simulation as well as prediction studies explaining its suitability in running the anaerobic digesters and consideration about instability of AD processes are explained in detail. In addition, prediction studies of digester performance and functioning state are elaborated.

Keywords

Anaerobic Biodegradation Designing Digesters Biofuels Modelling 

Notes

Acknowledgement

The authors are appreciative to the DST, India, for affording economic support for this project (SR/FTP/ETA-0021/2010) in aid of Young Scientist Scheme.

References

  1. Adiga S, Ramya R, Shankar BB, Patil JH, Geetha CR (2012) Kinetics of anaerobic digestion of water hyacinth, poultry litter, cow manure and primary sludge: a comparative study. In: Proceeding of the 2nd international conference on biotechnology and environment management. https://doi.org/https://doi.org/10.7763/IPCBEE.2012
  2. Angelidaki I, Ellegaard L, Ahring BK (1993a) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol Bioeng 42:159–166. https://doi.org/10.1002/bit.260420203 CrossRefPubMedGoogle Scholar
  3. Angelidaki I, Ellegaard L, Ahring BK (1993b) A comprehensive model for anaerobic bioconversion of complex substrates to biogas. Biotechnol Bioeng 63:363–372. https://doi.org/10.1002/(SICI)1097-0290(19990505)63:33.0.CO;2-Z CrossRefGoogle Scholar
  4. Angelidaki I, Ellegaard L, Ahring BK (1999) A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnol Bioeng 63:363–372CrossRefGoogle Scholar
  5. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos J, Guwy A (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 259:927–934. https://doi.org/10.2166/wst.2009.040 CrossRefGoogle Scholar
  6. Antonopoulou G, Alexandropoulou M, Lytras C, Lyberatos G (2015) Modeling of anaerobic digestion of food industry wastes in different bioreactor types. Waste Biomass Valor 6:335–341. https://doi.org/10.1007/s12649-015-9362-7 CrossRefGoogle Scholar
  7. Appels L, Baeyens J, Degreve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste activated sludge. Prog Energy Combust Sci 34:755–781. https://doi.org/10.1016/j.pecs.2008.06.002 CrossRefGoogle Scholar
  8. Arumugam T, Parthiban L, Rangasamy P (2015) Two-phase anaerobic digestion model of tannery solid waste: experimental investigation and modeling with ANFIS. Arab J Sci Eng 40:279–288. https://doi.org/10.1007/s13369-014-1408-9 CrossRefGoogle Scholar
  9. Banu RJ, Kaliappan S (2007) Treatment of tannery wastewater using hybrid upflow anaerobic sludge blanket reactor. J Environ Eng Sci 6:415–421. doi:10.1139/s06-063CrossRefGoogle Scholar
  10. Banu RJ, Kaliappan S, Beck D (2006) High rate anaerobic treatment of sago wastewater using HUASB with PUF as carrier. Int J Environ Sci Technol 3:69–77. https://doi.org/10.1007/BF03325909 CrossRefGoogle Scholar
  11. Banu RJ, Kaliappan S, Yeom IT (2007a) Treatment of domestic wastewater using upflow anaerobic sludge blanket reactor. Int J Environ Sci Technol 4:363–370. https://doi.org/10.1007/BF03326295 CrossRefGoogle Scholar
  12. Banu RJ, Kaliappan S, Yeom IT (2007b) Two-stage anaerobic treatment of dairy wastewater using HUASB with PUF and PVC carrier. Biotechnol Bioprocess Eng 12:257–264. https://doi.org/10.1007/BF02931101 CrossRefGoogle Scholar
  13. Banu RJ, Arulazhagan P, Adish Kumar S, Kaliappan S, Lakshmi AM (2015) Anaerobic co-digestion of chemical- and ozone-pretreated sludge in hybrid upflow anaerobic sludge blanket reactor. Desalin Water Treat 54:3269–3278. https://doi.org/10.1080/1944399.2014.912156 CrossRefGoogle Scholar
  14. Banu RJ, Ushani U, Merrylin J, Kaliappan S (2016) Evaluation of operational parameters for biodegradation of bacterially disintegrated sludge. Desalin Water Treat 57:25018–25027. https://doi.org/10.1080/19443994.2016.1150888 CrossRefGoogle Scholar
  15. Batstone DJ (2006) Mathematical modelling of anaerobic reactors treating domestic waste water: rational criteria for model use. Rev Environ Sci Biotechnol 5:57–71. https://doi.org/10.1007/s11157-005-7191-z CrossRefGoogle Scholar
  16. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002a) The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol 45:65–73. https://doi.org/10.1.1.466.9027CrossRefGoogle Scholar
  17. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002b) Anaerobic digestion model no. 1 (ADM1). In: Scientific and technical report No 13 IWA task group for mathematical modelling of anaerobic digestion processes (ed). IWA Publishing, London, p 80. ISBN:1900222787, 9781900222785Google Scholar
  18. Batstone DJ, Puyol D, Alsina XF, Rodriguez J (2015) Mathematical modelling of anaerobic digestion processes: applications and future needs. Rev Environ Sci Biotechnol 14:595–613. https://doi.org/10.1007/s11157-015-9376-4 CrossRefGoogle Scholar
  19. Behera SK, Meher SK, Park HS (2015) Artificial neural network model for predicting methane percentage in biogas recovered from a landfill upon injection of liquid organic waste. Clean Techn Environ Policy 17:443–453. https://doi.org/10.1007/s10098-014-0798-4 CrossRefGoogle Scholar
  20. Bernard O, HadjSadok Z, Dochain D, Genovesi A, Steyer J (2001) Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol Bioeng 75:424–438. https://doi.org/10.1002/bit.10036 CrossRefPubMedGoogle Scholar
  21. Blumensaat F, Keller J (2005) Modelling of two-stage anaerobic digestion using the IWA anaerobic digestion model no 1 (ADM1). Water Res 39:171–183. https://doi.org/10.1016/j.watres.2004.07.024 CrossRefPubMedGoogle Scholar
  22. Bornhoft A, Rauschenbach RH, Sundmacher K (2013) Steady-state analysis of the anaerobic digestion model no 1 (ADM1). Nonlinear Dynam 73:535–549. https://doi.org/10.1007/s1107-0127-0807-x CrossRefGoogle Scholar
  23. Bravo AD, Mailier J, Martin C, Rodriguez J, Lara CAA, Wouwer AV (2011) Model selection, identification and validation in anaerobic digestion: a review. Water Res 45:5347–5364. https://doi.org/10.1016/j.watres.2011.08.059 CrossRefGoogle Scholar
  24. Bryers JD (1985) Structured modelling of the anaerobic digestion of biomass particulates. Biotechnol Bioeng 27:638–649. https://doi.org/10.1002/bit.260270514 CrossRefPubMedGoogle Scholar
  25. Budiyono IN, Widiasa J, Sunarso S (2010) The kinetic of biogas production rate from cattle manure in batch mode. Int J Chem Biol Eng 3:39–44. doi:10.1.1.309.2870Google Scholar
  26. Cakmakci M (2007) Adaptive neuro-fuzzy modelling of anaerobic digestion of primary sedimentation sludge. Bioprocess Biosyst Eng 30:349–357. https://doi.org/10.1007/s00449-0032-0131-2 CrossRefPubMedGoogle Scholar
  27. Chen Z, HU D, Zhang Z, Ren N, Zhu H (2009) Modelling of two- phase anaerobic process treating traditional Chinese medicine wastewater with the IWA anaerobic digestion mod model no 1. Bioresour Technol 100:4623–4631. https://doi.org/10.1016/j.biotech.2009.04.066 CrossRefPubMedGoogle Scholar
  28. Costello DJ, Greenfield PF, Lee PL (1991) Dynamic modelling of a single-stage high-rate anaerobic reactor – I. Model derivation. Water Res 25:847–858. https://doi.org/10.1016/004313543690166-N CrossRefGoogle Scholar
  29. Donoso-Bravo A, Perez-Elvira S, Fdz-Polanco F (2010) Application of simplified models for anaerobic biodegradability tests. Evaluation of pretreatment processes. Chem Eng J 160:607–614. https://doi.org/10.1016/j.cej.2010.03.082 CrossRefGoogle Scholar
  30. Ebenezer VA, Arulazhagan P, Adish Kumar S, Yeom IT, Rajesh Banu J (2015a) Effect of deflocculation on the efficiency of low-energy microwave pretreatment and anaerobic biodegradation of waste activated sludge. Appl Energy 145:104–110. https://doi.org/10.1016/j.apenergy.2015.01.133 CrossRefGoogle Scholar
  31. Ebenezer VA, Kaliappan S, Adish Kumar S, Yeom IT, Rajesh Banu J (2015b) Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge. Bioresour Technol 185:194–201. https://doi.org/10.1016/j.biortech.2015.02.102 CrossRefPubMedGoogle Scholar
  32. Esakki Raj S, Rajesh Banu J, Kaliappan S, Yeom IT, Adish Kumar S (2013) Effects of side-stream, low temperature phosphorus recovery on the performance of anaerobic/anoxic/oxic systems integrated with sludge pretreatment. Bioresour Technol 140:376–384. https://doi.org/10.1016/j.biortech.2013.04.061 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Eswari P, Kavitha S, Kaliappan S, Yeom IT, Rajesh Banu J (2016) Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2 pretreatment in acidic conditions. Environ Sci Pollut Res 23:13467–13479. https://doi.org/10.1007/s11356-016-6543-2 CrossRefGoogle Scholar
  34. Fedorovich V, Lens P, Kalyuzhnyi S (2003) Extension of anaerobic digestion model no. 1 with processes of sulfate reduction. Appl Biochem Biotechnol 109:33–45. https://doi.org/10.1385/ABAB:109:1-3:33 CrossRefPubMedGoogle Scholar
  35. Feng Y, Behrendt J, Wendland C, Otterpohl R (2006) Parameter analysis of the IWA anaerobic digestion model no. 1 for the anaerobic digestion of black water with kitchen refuse. Water Sci Technol 54:139–147. https://doi.org/10.2166/wst.2006.535 CrossRefPubMedGoogle Scholar
  36. Ganidi N, Tyrrel S, Cartmell E (2009) Anaerobic digestion foaming causes – a review. Bioresour Technol 100:5546–5554. https://doi.org/10.1016/j.biortech.2009.06.024 CrossRefPubMedGoogle Scholar
  37. Gavala HN, Angelidaki I, Ahring BK (2003) Kinetics and modeling of anaerobic digestion process. In: Biomethanation I. Springer, Berlin, pp 57–93. ISBN: 978-3-540-45839-5. https://doi.org/10.1007/3-540-45839-5_3 Google Scholar
  38. Gayathri T, Kavitha S, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2015) Effect of citric acid induced deflocculation on the ultrasonic pretreatment efficiency of dairy waste activated sludge. Ultrason Sonochem 22:333–340. https://doi.org/10.1016/j.ultsonch.2014.048017 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Godvin Sharmila V, Kavitha S, Rajashankar K, Yeom IT, Rajesh Banu J (2015) Effects of titanium dioxide mediated dairy waste activated sludge deflocculation on the efficiency of bacterial disintegration and cost of sludge management. Bioresour Technol 197:64–71. https://doi.org/10.1016/j.biortech.2015.08.038 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gopi KS, Merrylin J, Kaliappan S, Adish Kumar S, Yeom IT, Rajesh Banu J (2012) Effect of cation binding agents on sludge solubilisation potential of bacteria. Biotechnol Bioprocess Eng 17:346–352. https://doi.org/10.1007/s12257-011-0465-0 CrossRefGoogle Scholar
  41. Gopi KS, Arulazhagan P, Kavitha S, Adish Kumar S, Rajesh Banu J (2015) Evaluation of operational parameters for semi-continuous anaerobic digester treating pretreated waste activated sludge. Desalin Water Treat 4:1–8. https://doi.org/10.1080/19443996.2015.1029553 CrossRefGoogle Scholar
  42. Grant WD, Lawrence TM (2014) A simplified method for the design and sizing of anaerobic digestion systems for smaller farms. Environ Dev Sustain 16:345–360. https://doi.org/10.1007/s10668-013-9480-y CrossRefGoogle Scholar
  43. Hill DT (1982) A comprehensive dynamic model for animal waste methanogenesis. Trans ASAE 25:1374–1380. https://doi.org/10.13031/2013.33730 CrossRefGoogle Scholar
  44. Holubar P, Zani L, Hagar M, Froschl W, Radak Z (2000) Modeling of anaerobic digestion using self-organizing maps and artificial neural networks. Water Sci Technol 41:149–156. doi:41/12/149CrossRefGoogle Scholar
  45. Jenne R, Banadda E, Gins G, Deurinck J, Smets I, Geeraerd A (2006) Use of image analysis for sludge characterization studying the relation between floc shape and sludge settleability. Water Sci Technol 54:167–174. https://doi.org/10.2166/wst.2006.384 CrossRefPubMedGoogle Scholar
  46. Kacprzak A, Krzystek L, Pazdzior K, Ledakowicz S (2012) Investigation of kinetics of anaerobic digestion of canary grass. Chem Pap 66:550–555. https://doi.org/10.2478/s11696-012-0136-4 CrossRefGoogle Scholar
  47. Kafle GK, Kim SH, Sung KI (2012) Ensiling of fish industry waste for biogas production: a lab scale evaluation of Biochemical Methane Potential (BMP) and kinetics. Bioresour Technol 127:326–336. https://doi.org/10.1016/j.biortech.2012.09.032 CrossRefPubMedGoogle Scholar
  48. Kavitha S, Adish Kumar S, Yogalakshmi KN, Kaliappan S, Rajesh Banu J (2013) Effect of enzyme secreting bacterial pretreatment on enhancement of aerobic digestion potential of waste activated sludge interceded through EDTA. Bioresour Technol 150:210–219. https://doi.org/10.1016/j.biortech.2013.10.021 CrossRefPubMedGoogle Scholar
  49. Kavitha S, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2014a) Improving the amenability of municipal waste activated sludge for biological pretreatment by phase-separated sludge disintegration. Bioresour Technol 169:700–706. https://doi.org/10.1016/j.biortech.2014.07.065 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kavitha S, Jayashree C, Adish Kumar S, Kaliappan S, Rajesh Banu J (2014b) Enhancing the functional and economical efficiency of a novel combined thermo chemical disperser disintegration of waste activated sludge for biogas production. Bioresour Technol 173:32–41. https://doi.org/10.1016/j.biortech.2014.09.078 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kavitha S, Jayashree C, Adish Kumar S, Yeom IT, Rajesh Banu J (2014c) The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment. Bioresour Technol 168:159–166. https://doi.org/10.1016/j.biortech.201464118 CrossRefPubMedGoogle Scholar
  52. Kavitha S, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2015a) Achieving profitable biological sludge disintegration through phase separation and predicting its anaerobic biodegradability by non linear regression model. Chem Eng J 279:478–487. https://doi.org/10.1016/j.cej.2015.05.051 CrossRefGoogle Scholar
  53. Kavitha S, Kaliappan S, Adish Kumar S, Yeom IT, Rajesh Banu J (2015b) Effect of NaCl induced floc disruption on biological disintegration of sludge for enhanced biogas production. Bioresour Technol 192:807–811. https://doi.org/10.1016/j.biortech.2015.05.071 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kavitha S, Saranya T, Kaliappan S, Adish Kumar S, Yeom IT, Rajesh Banu J (2015c) Accelerating the sludge disintegration potential of a novel bacterial strain Planococcus jake 01 by CaCl induced deflocculation. Bioresour Technol 175:396–405. https://doi.org/10.1016/j.biortech.2014.10.122 CrossRefGoogle Scholar
  55. Kavitha S, Yukesh Kannah R, Yeom IT, Uan DK, Rajesh Banu J (2015d) Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production. Bioresour Technol 197:383–392. https://doi.org/10.1016/j.biortech.2015.08.131 CrossRefPubMedGoogle Scholar
  56. Kavitha S, Catherine Stella PB, Kaliappan S, Yeom IT, Rajesh Banu J (2016a) Enhancement of anaerobic degradation of sludge biomass through surfactant-assisted bacterial hydrolysis. Process Saf Environ Prot 99:207–215. https://doi.org/10.1016/j.psep.2015.11.009 CrossRefGoogle Scholar
  57. Kavitha S, Jessin Brindha GM, Sally Gloriana A, Rajashankar K, Yeom IT, Rajesh Banu J (2016b) Enhancement of aerobic biodegradability potential of municipal waste activated sludge by ultrasonic aided bacterial disintegration. Bioresour Technol 200:161–169. https://doi.org/10.1016/j.biortech.2015.10.026 CrossRefPubMedGoogle Scholar
  58. Kavitha S, Rajesh Banu J, Ivin Shaju CD, Kaliappan S, Yeom IT (2016c) Fenton mediated ultrasonic disintegration of sludge biomass: biodegradability studies, energetic assessment, and its economic viability. Bioresour Technol 221:1–8. https://doi.org/10.1016/j.biortech.2016.09.012 CrossRefPubMedGoogle Scholar
  59. Kavitha S, Rajesh Banu J, Subitha G, Ushani U, Yeom IT (2016d) Impact of thermo-chemo-sonic pretreatment in solubilizing waste activated sludge for biogas production: energetic analysis and economic assessment. Bioresour Technol 219:479–486. https://doi.org/10.1016/j.biortech.2016.07.115 CrossRefGoogle Scholar
  60. Kavitha S, Rajesh Banu J, Vinoth Kumar J, Rajkumar M (2016e) Improving the biogas production performance of municipal waste activated sludge via disperser induced microwave disintegration. Bioresour Technol 217:21–27. https://doi.org/10.1016/j.biortech.2016.02.034 CrossRefGoogle Scholar
  61. Kavitha S, Saji Pray S, Yogalakshmi KN, Adish Kumar S, Yeom IT, Banu R (2016f) Effect of chemo-mechanical disintegration on sludge anaerobic digestion for enhanced biogas production. Environ Sci Pollut Res 23:2402–2414. https://doi.org/10.1007/s11356-015-5461-z CrossRefGoogle Scholar
  62. Kythreotou N, Florides G, Tassou SA (2014) A review of simple to scientific models for anaerobic digestion. Renew Energy 71:701–714. https://doi.org/10.1016/j.renene.2014.05.055 CrossRefGoogle Scholar
  63. Lauwers J, Appels L, Thompson IP, Degreve J, Van Impe JF, Dewil R (2013) Mathematical modelling of anaerobic digestion of biomass and waste: power and limitations. Prog Energy Combust Sci 39:383–402. https://doi.org/10.1016/j.pecs.2013.03.0 CrossRefGoogle Scholar
  64. Lubken M, Gehring T, Wichern M (2010) Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling. Appl Microbiol Biotechnol 85:1643–1652. https://doi.org/10.1007/s00253-009-2365-1 CrossRefPubMedGoogle Scholar
  65. Ma J, Frear C, Wang Z, Yu L, Zhao Q, Li X, Chen S (2013a) A simple methodology for rate limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour Technol 134:391–395. https://doi.org/10.1016/j.biortech.2013.02.014 CrossRefPubMedGoogle Scholar
  66. Ma J, Yu L, Frear C, Zhao Q, Li X, Chen S (2013b) Kinetics of psychrophilic anaerobic sequencing batch reactor treating flushed dairy manure. Bioresour Technol 131:6–12. https://doi.org/10.1016/j.biortech.2012.11.147 CrossRefPubMedGoogle Scholar
  67. Mairet F, Bernard O, Masci P, Lacour T, Sciandra A (2011) Modelling neutral lipid production by the microalga Isochrysis affinis galbana under nitrogen limitation. Bioresour Technol 102:142–149. https://doi.org/10.1016/j.biortech.2010.06.138 CrossRefPubMedGoogle Scholar
  68. Mejdoub H, Ksibi H (2015) Regulation of biogas production through waste water anaerobic digestion process: modeling and parameters optimization. Waste Biomass Valor 6:29–35. https://doi.org/10.1007/s12649-014-9324-5 CrossRefGoogle Scholar
  69. Merrylin J, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2013a) Biological pretreatment of non-flocculated sludge augments the biogas production in the anaerobic digestion of the pretreated waste activated sludge. Environ Technol 34:13–14. https://doi.org/10.1080/09593330.2013.810294 CrossRefGoogle Scholar
  70. Merrylin J, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2013b) Effect of extracellular polymeric substances (EPS) on sludge reduction potential of Bacillus licheniformis. Int J Environ Sci Technol 8:85–92. https://doi.org/10.1007/s13762-012-0141-8 CrossRefGoogle Scholar
  71. Merrylin J, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2014a) Effect of EPS removal on the sludge reduction potential of B. licheniformis on its optimized pH conditions. Water Environ J 28:95–103. https://doi.org/10.1111/wej.12014 CrossRefGoogle Scholar
  72. Merrylin J, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2014b) Enhancing aerobic digestion potential of municipal waste activated sludge through removal of EPS. Environ Sci Pollut Res 21:1112–1123. https://doi.org/10.1007/s11356-013-1976-3 CrossRefGoogle Scholar
  73. Metcalf EI (2003) Wastewater engineering: treatment disposal and reuse. McGraw-Hill, New York. 1848p. https://doi.org/10.1036/0070418780
  74. Nielsen J, Villadsen J (2008) Bioreactors: description and modelling. In: Rehm HJ, Reed G (eds) Biotechnology: bioprocessing, Wiley-VCH Verlag Gmb H, Weinheim. ISBN: 9783527283132. https://doi.org/https://doi.org/10.1002/9783527620845.ch5 CrossRefGoogle Scholar
  75. Palanichamy J, Palani S (2014) Simulation of anaerobic digestion processes using stochastic algorithm. J Environ Health Sci Eng 12:121. https://doi.org/10.1186/s40201-014-0121-7 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Patil JH, Raj MA, Muralidhara PL, Desai SM, Mahadeva Raju GK (2012) Kinetics of anaerobic digestion of water hyacinth using poultry litter as inoculum. Int J Environ Sci Dev 3:94–98. https://doi.org/10.7763/ijesd.2012.V3.195 CrossRefGoogle Scholar
  77. Perendeci A, Arslan S, Çelebic SS, Tanyolaç A (2008) Prediction of effluent quality of an anaerobic treatment plant under unsteady state through ANFIS modeling with on-line input variables. Chem Eng J 145:78–85. https://doi.org/10.1016/j.cej.2008.03.008 CrossRefGoogle Scholar
  78. Poornima DT, Ebenezer VA, Adish Kumar S, Kaliappan S, Rajesh Banu J (2014) Effect of deflocculation on the efficiency of disperser induced dairy waste activated sludge disintegration and treatment cost. Bioresour Technol 167:151–158. https://doi.org/10.1016/j.biortech.2014.06.004 CrossRefGoogle Scholar
  79. Qdais HA, Hani KB, Shatnawi N (2010) Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour Conserv Recycl 54:359–363. https://doi.org/10.1016/j.resconrec.2009.08.012 CrossRefGoogle Scholar
  80. Shen S, Premie GC, Guwy A, Dinsdale R (2007) Bifurcation and stability analysis of an anaerobic digestion model. Nonlinear Dynam 48:391–408. https://doi.org/10.1007/s11071-006-9093-1 CrossRefGoogle Scholar
  81. Siegrist H, Vogt D, Garcia-Heras JL, Gujer W (2002) Mathematical model for meso- and thermophilic anaerobic sewage sludge digestion. Environ Sci Technol 36:1113–1123. https://doi.org/10.1021/es010139p CrossRefPubMedGoogle Scholar
  82. Sowmya GP, Kavitha S, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2015) Effect of sonically induced deflocculation on the efficiency of ozone mediated partial sludge disintegration for improved production of biogas. Ultrason Sonochem 26:241–248. https://doi.org/10.1016/j.ultsonch.2015.01.015 CrossRefGoogle Scholar
  83. Sun C, Cao W, Liu R (2015) Kinetics of methane production from swine manure and buffalo manure. Appl Biochem Biotechnol 177:985–995. https://doi.org/10.1007/s12010-015-1792-y CrossRefPubMedGoogle Scholar
  84. Suresh Karthik Kumar M, Krishna Kumar T, Arulazhagan P, Adish Kumar S, Yeom IT, Rajesh Banu J (2015) Effect of alkaline and ozone pretreatment on sludge reduction potential of membrane bioreactor treating high-strength domestic wastewater. Desalin Water Treat 55:1127–1185. https://doi.org/10.1080/19443994.2014.923335 CrossRefGoogle Scholar
  85. Taricska JR, Long DA, Paul Chen J, Hung YT, Zou SW (2007) Anaerobic digestion. In: Biosolids treatment processes. Humana Press, Totowa, pp 135–176. ISBN- 978-1-59259-996-7. https://doi.org/https://doi.org/10.1007/978-1-59259-996-7_5
  86. Terashima M, Goel R, Komatsu K, Yasui H, Takahashi H, Li YY, Noike T (2009) CFD simulation of mixing in anaerobic digesters. Bioresour Technol 100:2228–2233. https://doi.org/10.1016/j.biortech.2008.07.069 CrossRefPubMedGoogle Scholar
  87. Uan DK, Rajesh Banu J, Chung IJ, Yeom IT (2009) Effect of thermochemical sludge pretreatment on sludge reduction and on performances of anoxic-aerobic membrane bioreactor treating low strength domestic wastewater. J Chem Technol Biotechnol 84:1350–1355. https://doi.org/10.1002/jctb.2189 CrossRefGoogle Scholar
  88. Uan DK, Banu RJ, Son DH, Yeom IT (2012) Influence of ferrous sulfate on thermochemical sludge disintegration and on performances of wastewater treatment in a new process: anoxic–oxic membrane bioreactor coupled with sludge disintegration step. Biochem Eng J 66:20–26. https://doi.org/10.1016/j.bej.2012.04.013 CrossRefGoogle Scholar
  89. Uan DK, Banu RJ, Kaliappan S, Yeom IT (2013a) Influence of the thermochemical sludge pretreatment on the nitrification of A/O reactor with the removal of phosphorus by simultaneous precipitation. Biotechnol Bioprocess Eng 18:313–320. https://doi.org/10.1007/s12257-012-0492-5 CrossRefGoogle Scholar
  90. Uan DK, Yeom IT, Arulazhagan P, Rajesh Banu J (2013b) Effects of sludge pretreatment on sludge reduction in a lab-scale anaerobic/anoxic/oxic system treating domestic wastewater. Int J Environ Sci Technol 10:495–502. https://doi.org/10.1007/s13762-012-0120-0 CrossRefGoogle Scholar
  91. Uma RR, Adish Kumar S, Kaliappan S, Rajesh Banu J (2012a) Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge. Bioresour Technol 126:107–116. https://doi.org/10.1016/j.biortech.2012.09 CrossRefGoogle Scholar
  92. Uma RR, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2012b) Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresour Technol 103:415–424. https://doi.org/10.1016/j.biortech.2011.09.124 CrossRefGoogle Scholar
  93. Uma RR, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2013a) Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge. Waste Manag 33:1119–1127. https://doi.org/10.1016/j.wasman.2013.01.016 CrossRefGoogle Scholar
  94. Uma RR, Adish Kumar S, Kaliappan S, Yeom IT, Rajesh Banu J (2013b) Enhancing the anaerobic digestion potential of dairy waste activated sludge by two step sono-alkalization pretreatment. Ultrason Sonochem 21:1065–1074. https://doi.org/10.1016/j.ultsonch.2013.11.007 CrossRefGoogle Scholar
  95. Vavilin VA, Lokshina LY, Flotats X, Angelidaki I (2007) Anaerobic digestion of solid material: multidimensional modeling of continuous flow reactor with non uniform influent concentration distributions. Biotechnol Bioeng 97:354–366. https://doi.org/10.1002/bit.21239 CrossRefPubMedGoogle Scholar
  96. Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28:939–951. https://doi.org/10.1016/j.wasman.2007.03.028 CrossRefPubMedGoogle Scholar
  97. Veera Lakshmi M, Merrylin J, Kavitha S, Adish Kumar S, Yeom IT, Rajesh Banu J (2014) Solubilisation of municipal sewage waste activated sludge by novel lytic bacterial strains. Environ Sci Pollut Res 21:2733–2743. https://doi.org/10.1007/s11356-013-2228-2 CrossRefGoogle Scholar
  98. Vlyssides A, Barampouti EM, Mai S (2007) An alternative approach of UASB dynamic modeling. AICHE J 53:3269–3276. https://doi.org/10.1002/aic.11342 CrossRefGoogle Scholar
  99. Wang H, Kalchev B, Tian Y, Simeonov I, Christov N (2013) Modelling and composed recursive model free control for the anaerobic digestion process. In: Advances in intelligent control systems and computer science. Springer, Berlin, pp 265–278. ISBN- 978-3-642-32548-9, https://doi.org/10.1007/978-3-642-32548-9_19 Google Scholar
  100. Wu B (2012a) CFD simulation of mixing for high-solids anaerobic digestion. Biotechnol Bioeng 109:2116–2126. https://doi.org/10.1002/bit.24482 CrossRefPubMedGoogle Scholar
  101. Wu B (2012b) Integration of mixing, heat transfer, and biochemical reaction kinetics in anaerobic methane fermentation. Biotechnol Bioeng 109:2864–2874. https://doi.org/10.1002/bit.24551 CrossRefPubMedGoogle Scholar
  102. Yu L, Ma J, Chen S (2011) Numerical simulation of mechanical mixing in high solid anaerobic digester. Bioresour Technol 102:1012–1018. https://doi.org/10.1016/j.biortech.2010.09.079 CrossRefPubMedGoogle Scholar
  103. Yu L, Christian PW, Jingwei MA, Shulin C (2013) Mathematical modeling in anaerobic digestion (AD). Bioremed Biodeg 4:1–12. https://doi.org/10.4172/2155-6199.S4-003 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringRegional Centre of Anna UniversityTirunelveliIndia

Personalised recommendations