Optimization and Applicability of Bioprocesses pp 249-265 | Cite as
Biohydrogen Production: An Outlook of Fermentative Processes and Integration Strategies
- 1 Mentions
- 659 Downloads
Abstract
The emanations upon combustion of petroleum fuels cause grave pessimistic impact on surrounding ambiance and global climate change. Therefore, the contemporary stance of scientific fraternity is to generate energy and mercantile products through biological methods with waste as a resource. Biohydrogen production from wastewater seems to be a promising green option for sustainable renewable energy. The process is feasible from practical point of view and can be operated under ambient conditions. It has been attracting attention due to its applicability to different types of wastewaters, and the production costs of biohydrogen can compete economically with other traditional methods. However, the crucial challenges like enhancing rate and yield for sustainable biohydrogen production still persist. During fermentation process, the undissociated volatile fatty acids (VFAs) and alcohols accumulate in the system leading to inhibition and redundancy in substrate degradation. Employing integration strategies with other bioprocesses like photo-fermentation or bio-electrochemical systems is the sanguine option to make the process frugally possible.
Keywords
Biohydrogen Fermentation Renewable Energy PhotosyntheticNotes
Acknowledgements
Funding received from the Ministry of New and Renewable Energy (MNRE), Government of India and Council for Scientific and Industrial Research (CSIR) in the form of research grants as MNRE Project No. 103/131/2008-NT, XII 5-year network project (SETCA (CSC-0113), respectively. GNN and OS acknowledge the CSIR for providing Senior Research Fellowship.
References
- Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78. https://doi.org/10.1016/j.tibtech.2010.11.006 CrossRefPubMedGoogle Scholar
- Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimo VV, Ramakrishna S, Los DA, Mimurod M, Nishiharae H, Carpentier R (2010) Photosynthetic hydrogen production. J Photochem Photobiol C: Photochem Rev 11:101–113. https://doi.org/10.1016/j.jphotochemrev.2010.07.002 CrossRefGoogle Scholar
- Ambler JR, Logan BE (2011) Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production. Int J Hydrog Energy 36:160–166. https://doi.org/10.1016/j.ijhydene.2010.09.044 CrossRefGoogle Scholar
- Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485. https://doi.org/10.1016/j.tibtech.2004.07.001 CrossRefPubMedGoogle Scholar
- Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geißen S-U (2015) Strategies for improvement of biohydrogen production from organicrich wastewater: a review. Biomass Bioenergy 75:101–118. https://doi.org/10.1016/j.biombioe.2015.02.011 CrossRefGoogle Scholar
- Arunasri K, Modestra JA, Yeruva DK, Krishna KV, Venkata Mohan S (2016) Polarized potential and electrode materials implication on electrofermentative di-hydrogen production: microbial assemblages and hydrogenase gene copy variation. Bioresour Technol 200:691–698. https://doi.org/10.1016/j.biortech.2015.10.091 CrossRefPubMedGoogle Scholar
- Bhaskar T, Balagurumurthy B, Singh R, Poddar MK (2013) Thermochemical route for biohydrogen production. In: Pandey A, Chang JS, Hallenbeck P, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 285–316. ISBN: 978-0-444-59555-3CrossRefGoogle Scholar
- Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan Bauer MT (eds) Anoxygenic photosynthetic bacteria. Springer, Dordrecht. ISBN: 978-0-7923-3681-5, pp 399–435. https://doi.org/10.1007/0-306-47954-0_20 CrossRefGoogle Scholar
- Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406. https://doi.org/10.1021/es8001822 CrossRefPubMedGoogle Scholar
- Cavinato C, Giuliano A, Bolzonella D, Pavan P, Cecchi F (2012) Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience. Int J Hydrog Energy 37:11549–11555. https://doi.org/10.1016/j.ijhydene.2012.03.065 CrossRefGoogle Scholar
- Chandra R, Venkata Mohan S (2011) Microalgal community and their growth conditions influence biohydrogen production during integration of dark-fermentation and photo-fermentation processes. Int J Hydrog Energy 36:12211–12219. https://doi.org/10.1016/j.ijhydene.2011.07.007 CrossRefGoogle Scholar
- Chandra R, Venkata Mohan S (2014) Enhanced bio-hydrogenesis by co-culturing photosynthetic bacteria with acidogenic process: augmented dark-photo fermentative hybrid system to regulate volatile fatty acid inhibition. Int J Hydrog Energy 39:7604–7615. https://doi.org/10.1016/j.ijhydene.2014.01.196 CrossRefGoogle Scholar
- Chandra R, Nikhil GN, Venkata Mohan S (2015) Single-stage operation of hybrid dark-photo fermentation to enhance biohydrogen production through regulation of system redox condition: evaluation with real-field wastewater. Int J Mol Sci 16:9540–9556. https://doi.org/10.3390/ijms16059540 CrossRefPubMedPubMedCentralGoogle Scholar
- Cheng S, Logan BE (2011) High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour Technol 102:3571–3574. https://doi.org/10.1016/j.biortech.2010.10.025 CrossRefPubMedGoogle Scholar
- Constant P, Hallenbeck PC (2013) Hydrogenase. In: Pandey A, Chang JS, Hallenbeck P, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 75–102. ISBN: 978-0-444-59555-3CrossRefGoogle Scholar
- Dahiya S, Sarkar O, Swamy Y, Venkata Mohan S (2015) Acidogenic fermentation of food waste for volatile fatty acid production with cogeneration of biohydrogen. Bioresour Technol 182:103–113. https://doi.org/10.1016/j.biortech.2015.01.007 CrossRefPubMedGoogle Scholar
- Dunn S (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrog Energy 27:235–264. https://doi.org/10.1016/S0360-3199(01)00131-8 CrossRefGoogle Scholar
- Eden (2010) Annual Report. Available from: www.edenenergy.com.au
- Elsharnouby O, Hafez H, Nakhla G, El Naggar MH (2013) A critical literature review on biohydrogen production by pure cultures. Int J Hydrog Energy 38:4945–4966. https://doi.org/10.1016/j.ijhydene.2013.02.032 CrossRefGoogle Scholar
- Escapa A, San Martin MI, Moran A (2014) Potential use of microbial electrolysis cells in domestic wastewater treatment plants for energy recovery. Front Energy Res 2:1–10. https://doi.org/10.3389/fenrg.2014.00019 CrossRefGoogle Scholar
- Fradinho J, Domingos J, Carvalho G, Oehmen A, Reis M (2013) Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae. Bioresour Technol 132:146–153. https://doi.org/10.1016/j.biortech.2013.01.050 CrossRefPubMedGoogle Scholar
- Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95. https://doi.org/10.1016/j.apenergy.2015.01.045 CrossRefGoogle Scholar
- Goud RK, Venkata Mohan S (2012a) Acidic and alkaline shock pretreatment to enrich acidogenic biohydrogen producing mixed culture: long term synergetic evaluation of microbial inventory, dehydrogenase activity and bio-electro kinetics. RSC Adv 2:6336–6353. https://doi.org/10.1039/C2RA20526B CrossRefGoogle Scholar
- Goud RK, Venkata Mohan S (2012b) Regulating biohydrogen production from wastewater by applying organic load-shock: change in the microbial community structure and bio-electrochemical behavior over long-term operation. Int J Hydrog Energy 37:17763–17777. https://doi.org/10.1016/j.ijhydene.2012.08.124 CrossRefGoogle Scholar
- Goud RK, Sarkar O, Chiranjeevi P, Venkata Mohan S (2014) Bioaugmentation of potent acidogenic isolates: a strategy for enhancing biohydrogen production at elevated organic load. Bioresour Technol 165:223–232. https://doi.org/10.1016/j.biortech.2014.03.049 CrossRefPubMedGoogle Scholar
- Goud RK, Arunasri K, Yeruva DK, Krishna KV, Dahiya S, Venkata Mohan S (2017) Impact of selectively enriched microbial communities on longterm fermentative biohydrogen production. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.03.147 CrossRefGoogle Scholar
- Greenbaum E (1988a) Energetic efficiency of hydrogen photoevolution by algal water splitting. Biophys J 54:365–368. https://doi.org/10.1016/S0006-3495(88)82968-0 CrossRefPubMedPubMedCentralGoogle Scholar
- Greenbaum E (1988b) Interfacial photoreactions at the photosynthetic membrane interface: an upper limit for the number of platinum atoms required to form a hydrogen-evolving platinum metal catalyst. J Phys Chem 92:4571–4574. https://doi.org/10.1021/j100327a001 CrossRefGoogle Scholar
- Guo XM, Trably E, Latrille E, Carrère H, Steyer J-P (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35:10660–10673. https://doi.org/10.1016/j.ijhydene.2010.03.008 CrossRefGoogle Scholar
- Hallenbeck PC (2013) Photofermentative biohydrogen production. In: Pandey A, Chang JS, Hallenbeck P, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 145–159. ISBN: 978-0-444-59555-3CrossRefGoogle Scholar
- Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193. https://doi.org/10.1016/S0360-3199(02)00131-3 CrossRefGoogle Scholar
- Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297. https://doi.org/10.1016/j.tibtech.2009.02.004 CrossRefPubMedGoogle Scholar
- Hamelers HV, Ter Heijne A, Sleutels TH, Jeremiasse AW, Strik DP, Buisman CJ (2010) New applications and performance of bioelectrochemical systems. Appl Microbiol Biotechnol 85:1673–1685. https://doi.org/10.1007/s00253-009-2357-1 CrossRefPubMedGoogle Scholar
- Jeremiasse AW, Hamelers HVM, Buisman CJN (2010) Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:39–43. https://doi.org/10.1016/j.bioelechem.2009.05.005 CrossRefPubMedGoogle Scholar
- Krassen H, Schwarze A, Friedrich B, Ataka K, Lenz O, Heberle J (2009) Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano 3:4055–4061. https://doi.org/10.1021/nn900748j CrossRefPubMedGoogle Scholar
- Lam MK, Lee KT (2013) Biohydrogen production from algae. In: Pandey A, Chang JS, Hallenbeck P, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 161–184. ISBN: 978-0-444-59555-3CrossRefGoogle Scholar
- Laurinavichene TV, Belokopytov BF, Laurinavichius KS, Khusnutdinova AN, Seibert M, Tsygankov AA (2012) Towards the integration of darkand photo-fermentative waste treatment. 4. Repeated batch sequential dark- and photofermentation using starch as substrate. Int J Hydrog Energy 37:8800–8810. https://doi.org/10.1016/j.ijhydene.2012.01.132 CrossRefGoogle Scholar
- Lenin Babu M, Sarma P, Venkata Mohan S (2013a) Microbial electrolysis of synthetic acids for biohydrogen production: influence of biocatalyst pretreatment and pH with the function of applied potential. J Microb Biochem Technol S 6:2. https://doi.org/10.4172/1948-5948.S6-003 CrossRefGoogle Scholar
- Lenin Babu M, Subhash GV, Sarma PN, Venkata Mohan S (2013b) Bio-electrolytic conversion of acidogenic effluents to biohydrogen: an integration strategy for higher substrate conversion and product recovery. Bioresour Technol 133:322–331. https://doi.org/10.1016/j.biortech.2013.01.029 CrossRefPubMedGoogle Scholar
- Liang D, Liu Y, Peng S, Lan F, Lu S, Xiang Y (2014) Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell. Front Environ Sci Eng 8:624–630. https://doi.org/10.1007/s11783-013-0584-2 CrossRefGoogle Scholar
- Lin C-Y, Lay C-H, Sen B, Chu C-Y, Kumar G, Chen C-C, Chang J-S (2012) Fermentative hydrogen production from wastewaters: a review and prognosis. Int J Hydrog Energy 37:15632–15642. https://doi.org/10.1016/j.ijhydene.2012.02.072 CrossRefGoogle Scholar
- Liu Z, Zhang C, Lu Y, Wu X, Wanf L, Wang L, Han B, Xing QH (2013b) States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresour Technol 135:292–303. https://doi.org/10.1016/j.biortech.2012.10.027 CrossRefPubMedGoogle Scholar
- Markets and Markets (2011) Hydrogen generation market-by merchant and captive type, distributed and centralized generation, application and technology-trends and global forecasts (2011–2016). Report code: EP1708. http://www.marketsandmarkets.com/Market-Reports/hydrogengeneration-market-494.html
- Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748. https://doi.org/10.1104/pp.010498 CrossRefGoogle Scholar
- Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136. https://doi.org/10.1104/pp.122.1.127 CrossRefPubMedPubMedCentralGoogle Scholar
- Modestra JA, Babu ML, Venkata Mohan S (2015) Electro-fermentation of real-field acidogenic spent wash effluents for additional biohydrogen production with simultaneous treatment in a microbial electrolysis cell. Sep Purif Technol 150:308–315. https://doi.org/10.1016/j.seppur.2015.05.043 CrossRefGoogle Scholar
- Mohanakrishna G, Venkata Mohan S (2013) Multiple process integrations for broad perspective analysis of fermentative H production from wastewater treatment: technical and environmental considerations. Appl Energy 107:244–254. https://doi.org/10.1016/j.apenergy.2013.01.085 CrossRefGoogle Scholar
- Mohanakrishna G, Venkata Mohan S, Sarma PN (2010) Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach. Int J Hydrog Energy 35:3440–3449. https://doi.org/10.1016/j.ijhydene.2010.01.084 CrossRefGoogle Scholar
- Monlau F, Kaparaju P, Trably E, Steyer J-P, Carrere H (2015) Alkaline pretreatment to enhance one-stage CH and two-stage H /CH production from sunflower stalks: mass, energy and economical balances. Chem Eng J 260:377–385. https://doi.org/10.1016/j.cej.2014.08.108 CrossRefGoogle Scholar
- Nam J-Y, Tokash JC, Logan BE (2011) Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential. Int J Hydrog Energy 36:10550–10556. https://doi.org/10.1016/j.ijhydene.2011.05.148 CrossRefGoogle Scholar
- Nikhil GN, Venkata Mohan S, Swamy YV (2014a) Behavior of acidogenesis during biohydrogen production with formate and glucose as carbon source: substrate associated dehydrogenase expression. Int J Hydrog Energy 39:7486–7495. https://doi.org/10.1016/j.ijhydene.2013.12.169 CrossRefGoogle Scholar
- Nikhil GN, Venkata Venkata Mohan S, Swamy YV (2014b) Systematic approach to assess biohydrogen potential of anaerobic sludge and soil rhizobia as biocatalysts: influence of crucial factors affecting acidogenic fermentation. Bioresour Technol 165:323–331. https://doi.org/10.1016/j.biortech.2014.02.097 CrossRefPubMedGoogle Scholar
- Nikhil GN, Subhash GV, Yeruva DK, Venkata Mohan S (2015a) Synergistic yield of dual energy forms through biocatalyzed electrofermentation of waste: stoichiometric analysis of electron and carbon distribution. Energy 88:281–291. https://doi.org/10.1016/j.energy.2015.05.043 CrossRefGoogle Scholar
- Nikhil GN, Venkata Mohan S, Swamy YV (2015b) Applied potentials regulate recovery of residual hydrogen from acid-rich effluents: influence of biocathodic buffer capacity over process performance. Bioresour Technol 188:65–72. https://doi.org/10.1016/j.biortech.2015.01.084 CrossRefPubMedGoogle Scholar
- Nissilä ME, Lay C-H, Puhakka JA (2014) Dark fermentative hydrogen production from lignocellulosic hydrolyzates – a review. Biomass Bioenergy 67:145–159. https://doi.org/10.1016/j.biombioe.2014.04.035 CrossRefGoogle Scholar
- Nouni M (2012) Hydrogen energy and fuel cell technology: recent developments and future prospects in India. Renew Energy. Akshay Urja 5:10–14Google Scholar
- Pasupuleti SB, Venkata Mohan S (2015a) Acidogenic hydrogen production from wastewater: process analysis with the function of influencing parameters. Int J Energy Res 39:1131–1141. https://doi.org/10.1002/er.3322 CrossRefGoogle Scholar
- Pasupuleti SB, Venkata Mohan S (2015b) Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash. Bioresour Technol 189:177–185. 10.1016/j.biortech.2015.03.128 CrossRefGoogle Scholar
- Patel SK, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. https://doi.org/10.1016/j.biombioe.2011.10.027 CrossRefGoogle Scholar
- Pisciotta JM, Zaybak Z, Call DF, Nam JY, Logan BE (2012) Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microbiol 78:5212–5219. https://doi.org/10.1128/AEM.00480-12 CrossRefPubMedPubMedCentralGoogle Scholar
- Rama Mohan S (2015) Structure and growth of research on biohydrogen generation using wastewater. Int J Hydrog Energy 40:16056–16069. https://doi.org/10.1016/j.ijhydene.2015.08.072 CrossRefGoogle Scholar
- Sambusiti C, Bellucci M, Zabaniotou A, Beneduce L, Monlau F (2015) Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renew Sustain Energy Rev 44:20–36. https://doi.org/10.1016/j.rser.2014.12.013 CrossRefGoogle Scholar
- Saratale GD, Saratale RG, Chang J-S (2013) Biohydrogen from renewable resources. In: Pandey A, Chang JS, Hallenbeck P, Larroche C (eds) Biohydrogen. Elsevier, Amsterdam, pp 185–221. ISBN: 978-0-444-59555-3CrossRefGoogle Scholar
- Sarkar O, Venkata Mohan S (2016) Deciphering acidogenic process towards biohydrogen, biohythane, and short chain fatty acids production: multi-output optimization strategy. Biofuel Res J 3:458–469. https://doi.org/10.18331/BRJ2016.3.3.5 CrossRefGoogle Scholar
- Sarkar O, Venkata Mohan S (2017) Pre-aeration of food waste to augment acidogenic process at higher organic load: valorizing biohydrogen, volatile fatty acids and biohythane. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.05.053 CrossRefGoogle Scholar
- Sarkar O, Goud RK, Subhash GV, Venkata Mohan S (2013) Relative effect of different inorganic acids on selective enrichment of acidogenic biocatalyst for fermentative biohydrogen production from wastewater. Bioresour Technol 147:321–331. https://doi.org/10.1016/j.biortech.2013.08.021 CrossRefPubMedGoogle Scholar
- Sarkar O, Kumar AN, Dahiya S, Krishna KV, Yeruva DK, Venkata Mohan S (2016) Regulation of acidogenic metabolism towards enhanced short chain fatty acid biosynthesis from waste: metagenomic profiling. RSC Adv 6:18641–18653. https://doi.org/10.1039/C5RA24254A CrossRefGoogle Scholar
- Sarkar O, Butti SK, Venkata Mohan S (2017) Acidogenesis driven by hydrogen partial pressure towards bioethanol production through fatty acids reduction. Energy 118:425–434. https://doi.org/10.1016/j.energy.2016.12.017 CrossRefGoogle Scholar
- Show K-Y, Lee D-J (2013) Bioreactor and bioprocess design for biohydrogen production. In: Larroche AP-SCCH (ed) Biohydrogen. Elsevier, Amsterdam. In: Pandey A, Chang JS, Hallenbeck P, Larroche C (eds) Biohydrogen, pp 317–337. Elsevier, Amsterdam. ISBN: 978-0-444-59555-3CrossRefGoogle Scholar
- Srikanth S, Venkata Mohan S (2012) Regulatory function of divalent cations in controlling the acidogenic biohydrogen production process. RSC Adv 2:6576–6589. https://doi.org/10.1039/C2RA20383A CrossRefGoogle Scholar
- Srikanth S, Venkata Mohan S (2014) Regulating feedback inhibition caused by the accumulated acid intermediates during acidogenic hydrogen production through feed replacement. Int J Hydrog Energy 39:10028–10040. https://doi.org/10.1016/j.ijhydene.2014.04.152 CrossRefGoogle Scholar
- Srikanth S, Venkata Mohan S, Prathima Devi M, Peri D, Sarma PN (2009) Acetate and butyrate as substrates for hydrogen production through photo-fermentation: process optimization and combined performance evaluation. Int J Hydrog Energy 34:7513–7522. https://doi.org/10.1016/j.ijhydene.2009.05.095 CrossRefGoogle Scholar
- Thi NBD, Lin C-Y, Kumar G (2016) Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy. J Clean Prod 122:29–41. https://doi.org/10.1016/j.jclepro.2016.02.034 CrossRefGoogle Scholar
- Van Ginkel S, Logan BE (2005a) Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ Sci Technol 39:9351–9356. https://doi.org/10.1021/es0510515 CrossRefPubMedGoogle Scholar
- Van Ginkel SW, Logan B (2005b) Increased biological hydrogen production with reduced organic loading. Water Res 39:3819–3826. https://doi.org/10.1016/j.watres.2005.07.021 CrossRefPubMedGoogle Scholar
- Venkata Mohan S (2009) Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization. Int J Hydrog Energy 34:7460–7474. https://doi.org/10.1016/j.ijhydene.2009.05.062 CrossRefGoogle Scholar
- Venkata Mohan S, Lalit Babu V, Sarma PN (2007a) Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzym Microb Technol 41:506–515. https://doi.org/10.1016/j.enzmictec.2007.04.007 CrossRefGoogle Scholar
- Venkata Mohan S, Vijaya Bhaskar Y, Murali Krishna P, Chandrasekhara Rao N, Lalit Babu V, Sarma PN (2007b) Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: influence of fermentation pH and substrate composition. Int J Hydrog Energy 32:2286–2295. https://doi.org/10.1016/j.ijhydene.2007.03.015 CrossRefGoogle Scholar
- Venkata Mohan S, Vijaya Bhaskar Y, Sarma PN (2007c) Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. Water Res 41:2652–2664. https://doi.org/10.1016/j.watres.2007.02.015 CrossRefPubMedGoogle Scholar
- Venkata Mohan S, Babu VL, Sarma P (2008a) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 99:59–67. https://doi.org/10.1016/j.biortech.2006.12.004 CrossRefPubMedGoogle Scholar
- Venkata Mohan S, Mohanakrishna G, Sarma P (2008b) Integration of acidogenic and methanogenic processes for simultaneous production of biohydrogen and methane from wastewater treatment. Int J Hydrog Energy 33:2156–2166. https://doi.org/10.1016/j.ijhydene.2008.01.055 CrossRefGoogle Scholar
- Venkata Mohan S, Venkateswar Reddy M, Venkata Subhash G, Sarma PN (2010) Fermentative effluents from hydrogen producing bioreactor as substrate for poly (β -OH) butyrate production with simultaneous treatment: an integrated approach. Bioresour Technol 101:9382–9386. https://doi.org/10.1016/j.biortech.2010.06.109 CrossRefPubMedGoogle Scholar
- Venkata Mohan S, Agarwal L, Mohanakrishna G, Srikanth S, Kapley A, Purohit HJ, Sarma PN (2011) Firmicutes with iron dependent hydrogenase drive hydrogen production in anaerobic bioreactor using distillery wastewater. Int J Hydrog Energy 36:8234–8242. https://doi.org/10.1016/j.ijhydene.2011.04.021 CrossRefGoogle Scholar
- Venkata Mohan S, Velvizhi G, Vamshi Krishna K, Lenin Babu M (2014) Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. Bioresour Technol 165:355–364. https://doi.org/10.1016/j.biortech.2014.03.048 CrossRefPubMedGoogle Scholar
- Venkata Mohan S, Nikhil GN, Chiranjeevi P, Reddy CN, Rohit MV, Kumar AN, Sarkar O (2016) Waste biorefinery models towards sustainable circular bioeconomy: crit rev future perspect. Bioresour Technol 215:2–12. https://doi.org/10.1016/j.biortech.2016.03.130 CrossRefPubMedGoogle Scholar
- Venkata Mohan S, Srikanth S, Nikhil GN (2017) Augmentation of bacterial homeostasis by regulating in situ buffer capacity: significance of total dissolved salts over acidogenic metabolism. Bioresour Technol 225:34–39. https://doi.org/10.1016/j.biortech.2016.11.027 CrossRefPubMedGoogle Scholar
- Venkateswar Reddy M, Venkata Mohan S (2012) Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Bioresour Technol 103:313–321. https://doi.org/10.1016/j.biortech.2011.09.040 CrossRefPubMedGoogle Scholar
- Venkateswar Reddy M, Chitanya DNSK, Nikhil GN, Venkata Mohan S, Sarma PN (2014) Influence of co-factor on enhancement of bioplastic production through wastewater treatment. Clean Soil Air Water 42:809–814. https://doi.org/10.1002/clen.201300105 CrossRefGoogle Scholar
- Wagner RC, Regan JM, S-E O, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43:1480–1488. https://doi.org/10.1016/j.watres.2008.12.037 CrossRefPubMedGoogle Scholar
- Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807. https://doi.org/10.1016/j.biotechadv.2013.10.001 CrossRefPubMedGoogle Scholar
- Wang B, Wan W, Wang J (2009) Effect of ammonia concentration on fermentative hydrogen production by mixed cultures. Bioresour Technol 100:1211–1213. https://doi.org/10.1016/j.biortech.2008.08.018 CrossRefPubMedGoogle Scholar
- Willquist K, Nkemka VN, Svensson H, Pawar S, Ljunggren M, Karlsson H, Murto M, Hulteberg C, van Niel EWJ, Liden G (2012) Design of a novel biohythane process with high H and CH production rates. Int J Hydrog Energy 37:17749–17762. https://doi.org/10.1016/j.ijhydene.2012.08.092 CrossRefGoogle Scholar
- Wong YM, TY W, Juan JC (2014) A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew Sustain Energy Rev 34:471–482. https://doi.org/10.1016/j.rser.2014.03.008 CrossRefGoogle Scholar
- Zhu H, Parker W, Basnar R, Proracki A, Falletta P, Béland M, Seto P (2009) Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes. Bioresour Technol 100:5097–5102. https://doi.org/10.1016/j.biortech.2009.02.066 CrossRefPubMedGoogle Scholar