Advertisement

Bioflocculants and Production of Microalgal Biomass

  • Mihir C. Sarang
  • Anuradha S. NerurkarEmail author
Chapter
  • 618 Downloads

Abstract

With the increase in world population, the demand of fossil fuels has increased rapidly. With the rising concern of limited availability of the fossil fuels, the demand of alternative fuels like biodiesel has attained a considerable attention over a decade. Microalgae have shown to be one of the promising sources for the production of biodiesel, as it can be grown easily on inorganic nutrients and have a tendency to accumulate large amount of fatty acids, which can be converted to biodiesel. However, the recovery of microalgae is one of the major problems that limits its industrial production. Physical methods like centrifugation and filtration are costly. This chapter focuses on flocculation and the use of bioflocculants for the cost-effective recovery of microalgal biomass.

Keywords

Bioflocculant Biomass Coagulation Microalgae Photobioreactor 

References

  1. Agarwal M, Srinivasan R, Mishra A (2001) Study on flocculation efficiency of okra gum in sewage waste water. Macromol Mater Eng 286:560–563. https://doi.org/10.1002/1439-2054(20010901)286 CrossRefGoogle Scholar
  2. Amuda OS, Amoo IA (2007) Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J Hazard Mater 141:778–783. https://doi.org/10.1016/j.jhazmat.2006.07.044 CrossRefPubMedGoogle Scholar
  3. Banks WA, Niehoff ML, Drago D, Zatta P (2006) Aluminum complexing enhances amyloid β protein penetration of blood–brain barrier. Brain Res 1116:215–221. https://doi.org/10.1016/j.brainres.2006.07.112 CrossRefPubMedGoogle Scholar
  4. Bibi R, Ahmad Z, Imran M, Hussain S, Ditta A, Mahmood S, Khalid A (2016) Algal bioethanol production technology: a trend towards sustainable development. Renew Sustain Energy Rev 71:976–985. https://doi.org/10.1016/j.rser.2016.12.126 CrossRefGoogle Scholar
  5. Biggs S, Habgood M, Jameson GJ (2000) Aggregate structures formed via a bridging flocculation mechanism. Chem Eng J 80:13–22. https://doi.org/10.1016/S1383-5866(00)00072-1 CrossRefGoogle Scholar
  6. Blanco A, Negro C, Tijero J (2002) Flocculation monitoring: focused beam reflectance measurement as a measurement tool. Can J Chem Eng 80:1–7. https://doi.org/10.1002/cjce.5450800403 CrossRefGoogle Scholar
  7. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and coproducts. Renew Sust Energ Rev 14:557–577. https://doi.org/10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  8. Brostow W, Lobland HH, Pal S, Singh RP (2009) Polymeric flocculants for wastewater and industrial effluent treatment. J Mater Educ 31:157–166. https://doi.org/10.1016/j.watres.2007.03.012 CrossRefGoogle Scholar
  9. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechol Progr 22:1490–1506. https://doi.org/10.1021/bp060065r CrossRefGoogle Scholar
  10. Chevalier P, Proulx D, Lessard P, Vincent WF, De la Noüe J (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol 12:105–112. https://doi.org/10.1023/A:1008168128654 CrossRefGoogle Scholar
  11. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131. https://doi.org/10.1016/j.tibtech.2007.12.002 CrossRefPubMedGoogle Scholar
  13. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838. https://doi.org/10.1016/j.biortech.2008.06.061 CrossRefGoogle Scholar
  14. Chong MF (2012) Direct flocculation process for wastewater treatment. In: Sharma (ed) Advances in water treatment and pollution prevention, pp 201–230. ISBN: 978-94-007-4203-1. https://doi.org/10.1007/978-94-007-4204-8_8 CrossRefGoogle Scholar
  15. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702. https://doi.org/10.1016/j.biotechadv.2011.05.015 CrossRefPubMedGoogle Scholar
  16. Cosa S, Ugbenyen AM, Mabinya LV, Rumbold K, Okoh AI (2013) Characterization and flocculation efficiency of a bioflocculant produced by a marine Halobacillus. Environ Technol 34(2671):2679. https://doi.org/10.1080/09593330.2013.786104 CrossRefGoogle Scholar
  17. de Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ (2002) Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can J Microbiol 48:514–521. https://doi.org/10.1139/W02-051 CrossRefPubMedGoogle Scholar
  18. Delrue F, Imbert Y, Fleury G, Peltier G, Sassi JF (2015) Using coagulation–flocculation to harvest Chlamydomonas reinhardtii: coagulant and flocculant efficiencies, and reuse of the liquid phase as growth medium. Algal Res 9:283–290. https://doi.org/10.1016/j.algal.2015.04.004 CrossRefGoogle Scholar
  19. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C (2011) Solutions for a cultivated planet. Nature 478:337–342. https://doi.org/10.1038/nature10452 CrossRefPubMedGoogle Scholar
  20. Ghosh S, Sen G, Jha U, Pal S (2010) Novel biodegradable polymeric flocculant based on polyacrylamide-grafted tamarind kernel polysaccharide. Bioresour Technol 101:9638–9644. https://doi.org/10.1016/j.biortech.2010.07.058 CrossRefPubMedGoogle Scholar
  21. Gonçalves AL, Ferreira C, Loureiro JA, Pires JC, Simões M (2015) Surface physicochemical properties of selected single and mixed cultures of microalgae and cyanobacteria and their relationship with sedimentation kinetics. Bioresour Bioprocess 2:21. https://doi.org/10.1186/s40643-015-0051-y CrossRefGoogle Scholar
  22. Grima EM, Fernández FA, Camacho FG, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247. https://doi.org/10.1016/j.biortech.2011.11.105 CrossRefGoogle Scholar
  23. Gupta BS, Ako JE (2005) Application of guar gum as a flocculant aid in food processing and potable water treatment. Eur Food Res Technol 221:746–751. https://doi.org/10.1007/s00217-005-0056-4 CrossRefGoogle Scholar
  24. Hodoki Y (2005) Bacteria biofilm encourages algal immigration onto substrata in lotic systems. Hydrobiologia 539:27–34. https://doi.org/10.1007/s10750-004-3082-5 CrossRefGoogle Scholar
  25. Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34:757–763. https://doi.org/10.1046/j.1529-8817.1998.340757.x CrossRefGoogle Scholar
  26. Jani GK, Shah DP, Prajapati VD, Jain VC (2009) Gums and mucilages: versatile excipients for pharmaceutical formulations. Asian J Pharm Sci 4:309–323Google Scholar
  27. Kalia S, Sabaa MW, Kango S (2013) Polymer grafting: a versatile means to modify the polysaccharides. In: Polysaccharide based graft copolymers. Springer, Berlin. https://doi.org/10.1007/978-3-642-36566-91 CrossRefGoogle Scholar
  28. Khiari R, Dridi-Dhaouadi S, Aguir C, Mhenni MF (2010) Experimental evaluation of eco-friendly flocculants prepared from date palm rachis. J Environ Sci 22:1539–1543. https://doi.org/10.1016/S1001-0742(09)60286-2 CrossRefGoogle Scholar
  29. Kleimann J, Gehin-Delval C, Auweter H, Borkovec M (2005) Super-stoichiometric charge neutralization in particle-polyelectrolyte systems. Langmuir 21:3688–3698. https://doi.org/10.1021/la046911u CrossRefPubMedGoogle Scholar
  30. Kumar R, Setia A, Mahadevan N (2012) Grafting modification of the polysaccharide by the use of microwave irradiation—a review. Int J Recent Adv Pharm Res 2:45–53. ISSN: 2230-9306Google Scholar
  31. Larkum AW, Ross IL, Kruse O, Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30:198–205. https://doi.org/10.1016/j.tibtech.2011.11.003 CrossRefPubMedGoogle Scholar
  32. Lee KE, Morad N, Teng TT, Poh BT (2012) Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: a review. Chem Eng J 203:370–386. https://doi.org/10.1016/j.cej.2012.06.109 CrossRefGoogle Scholar
  33. Lei X, Chen Y, Shao Z, Chen Z, Li Y, Zhu H, Zhang J, Zheng W, Zheng T (2015) Effective harvesting of the microalgae Chlorella vulgaris via flocculation–flotation with bioflocculant. Bioresour Technol 198:922–925. https://doi.org/10.1016/j.biortech.2015.08.095 CrossRefPubMedGoogle Scholar
  34. Li WW, Zhou WZ, Zhang YZ, Wang J, Zhu XB (2008) Flocculation behavior and mechanism of an exopolysaccharide from the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Bioresour Technol 99:6893–6899. https://doi.org/10.1016/j.biortech.2008.01.050 CrossRefPubMedGoogle Scholar
  35. Lim JK, Chieh DCJ, Jalak SA, Toh PY, Yasin NM, Ng BW, Ahmad AL (2012) Rapid magnetophoretic separation of microalgae. Small 8:1683–1692. https://doi.org/10.1002/smll.201102400 CrossRefPubMedGoogle Scholar
  36. Liu C, Wang K, Jiang JH, Liu WJ, Wang JY (2015) A novel bioflocculant produced by a salt-tolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. Biochem Eng J 93:166–172. https://doi.org/10.1016/j.bej.2014.10.006 CrossRefGoogle Scholar
  37. Liu J, Zhu Y, Tao Y, Zhang Y, Li A, Li T, Sang M, Zhang C (2013a) Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels 6:1. https://doi.org/10.1186/1754-6834-6-98 CrossRefGoogle Scholar
  38. Luvuyo N, Nwodo UU, Mabinya LV, Okoh AI (2013) Studies on bioflocculant production by a mixed culture of Methylobacterium sp. Obi and Actinobacterium sp. Mayor. BMC Biotechnol 13:62. https://doi.org/10.1186/1472-6750-13-62 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232. https://doi.org/10.1016/j.rser.2009.07.020 CrossRefGoogle Scholar
  40. Merchuk JC, Rosenblat Y, Berzin I (2007) Fluid flow and mass transfer in a counter-current gas–liquid inclined tubes photo-bioreactor. Chem Eng Sci 62:7414–7425. https://doi.org/10.1016/j.ces.2007.08.058 CrossRefGoogle Scholar
  41. Mirhosseini H, Amid BT (2012) A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res Int 46:387–398. https://doi.org/10.1016/j.foodres.2011.11.017 CrossRefGoogle Scholar
  42. Mishra A, Bajpai M (2005) Flocculation behaviour of model textile wastewater treated with a food grade polysaccharide. J Hazard Mater 118:213–217. https://doi.org/10.1016/j.jhazmat.2004.11.003 CrossRefPubMedGoogle Scholar
  43. Okaiyeto K, Nwodo UU, Mabinya LV, Okoh AI (2013) Characterization of a Bioflocculant produced by a consortium of Halomonas sp. Okoh and Micrococcus sp. Leo. Int J Environ Res Public Health 10:5097–5110. https://doi.org/10.3390/ijerph10105097 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pal S, Sen G, Ghosh S, Singh RP (2012) High performance polymeric flocculants based on modified polysaccharides—microwave assisted synthesis. Carbohydr Polym 87:336–342. https://doi.org/10.1016/j.carbpol.2011.07.052 CrossRefGoogle Scholar
  45. Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333. https://doi.org/10.1016/S0079-6611(02)00138-6 CrossRefGoogle Scholar
  46. Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S (2002) Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. Neuro Toxicol 23:761–774. https://doi.org/10.1016/S0161-813X(02)00097-9 CrossRefGoogle Scholar
  47. Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—a process view. J Biotechnol 142:64–69. https://doi.org/10.1016/j.jbiotec.2009.03.015 CrossRefPubMedGoogle Scholar
  48. Prajapati SK, Bhattacharya A, Kumar P, Malik A, Vijay VK (2016) A method for simultaneous bioflocculation and pretreatment of algal biomass targeting improved methane production. Green Chem 18:5230–5238. https://doi.org/10.1039/C6GC01483F CrossRefGoogle Scholar
  49. Razack SA, Duraiarasan S, Shellomith AS, Muralikrishnan K (2015) Statistical optimization of harvesting Chlorella vulgaris using a novel biosource, Strychnos potatorum. Biotechnol Rep 7:150–156. https://doi.org/10.1016/j.btre.2015.06.006 CrossRefGoogle Scholar
  50. Renault F, Sancey B, Badot PM, Crini G (2009) Chitosan for coagulation/flocculation processes–an eco-friendly approach. Eur Polym J 45:1337–1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027 CrossRefGoogle Scholar
  51. Rwehumbiza VM, Harrison R, Thomsen L (2012) Alum-induced flocculation of preconcentrated Nannochloropsis salina: residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chem Eng J 200:168–175. https://doi.org/10.1016/j.cej.2012.06.008 CrossRefGoogle Scholar
  52. Salim S, Bosma R, Vermuë MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23:849–855. https://doi.org/10.1007/s10811-010-9591-x CrossRefPubMedGoogle Scholar
  53. Sharma BR, Dhuldhoya NC, Merchant UC (2006) Flocculants—an ecofriendly approach. J Polym Environ 14:195–202. https://doi.org/10.1007/s10924-006-0011-x CrossRefGoogle Scholar
  54. Singh RP, Karmakar GP, Rath SK, Karmakar NC, Pandey SR, Tripathy T, Panda J, Kanan K, Jain SK, Lan NT (2000) Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications. Polym Eng Sci 40:46–60. https://doi.org/10.1002/pen.11138 CrossRefGoogle Scholar
  55. Suh HH, Kwon GS, Lee CH, Kim HS, HM O, Yoon BD (1997) Characterization of bioflocculant produced by Bacillus sp. DP-152. J Ferment Bioeng 84:108–112. https://doi.org/10.1016/S0922-338X(97)82537-8 CrossRefGoogle Scholar
  56. Suopajärvi T, Liimatainen H, Hormi O, Niinimäki J (2013) Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chem Eng J 231:59–67. https://doi.org/10.1016/j.cej.2013.07.010 CrossRefGoogle Scholar
  57. Trent JD, Gormly SJ, Embaye TN, Delzeit LD, Flynn MT, Liggett TA, Buckwalter PW, Baertsch R (2013) US Patent No. 8,409,845. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  58. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sust Energ 2:012701. https://doi.org/10.1063/1.3294480 CrossRefGoogle Scholar
  59. Ugbenyen AM, Cosa S, Mabinya LV, Okoh AI (2014) Bioflocculant production by Bacillus sp. Gilbert isolated from a marine environment in South Africa. Appl Biochem Microbiol 50:49–54. https://doi.org/10.1134/S0003683814010104 CrossRefGoogle Scholar
  60. Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239. https://doi.org/10.1016/j.tibtech.2012.12.005 CrossRefPubMedGoogle Scholar
  61. Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K (2012) Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119. https://doi.org/10.1016/j.biortech.2011.11.105 CrossRefPubMedGoogle Scholar
  62. Ward RJ, McCrohan CR, White KN (2006) Influence of aqueous aluminium on the immune system of the freshwater crayfish Pacifastacus leniusculus. Aquat Toxicol 77:222–228. https://doi.org/10.1016/j.aquatox.2005.12.006 CrossRefPubMedGoogle Scholar
  63. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Sci 329:796–799. https://doi.org/10.1126/science.1189003 CrossRefGoogle Scholar
  64. Xiong Y, Wang Y, Yu Y, Li Q, Wang H, Chen R, He N (2010) Production and characterization of a novel bioflocculant from Bacillus licheniformis. Appl Environ Microbiol 76:2778–2782. https://doi.org/10.1128/AEM.02558-09 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zaki S, Farag S, Elreesh GA, Elkady M, Nosier M, El Abd D (2011) Characterization of bioflocculants produced by bacteria isolated from crude petroleum oil. Int J Environ Sci Technol 8:831–840. https://doi.org/10.1007/BF03326266 CrossRefGoogle Scholar
  66. Zhang J, Wang R, Jiang P, Liu Z (2002) Production of an exopolysaccharide bioflocculant by Sorangium cellulosum. Lett Appl Microbiol 34:178–181. https://doi.org/10.1046/j.1472-765x.2002.01068.x CrossRefPubMedGoogle Scholar
  67. Zhang J, Hu B (2012) A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol 114:529–535. https://doi.org/10.1016/j.biortech.2012.03.054 CrossRefPubMedGoogle Scholar
  68. Zhou W, Cheng Y, Li Y, Wan Y, Liu Y, Lin X, Ruan R (2012) Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167:214–228. https://doi.org/10.1007/s12010-012-9667-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Microbiology and Biotechnology Centre, Faculty of ScienceThe Maharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations