Mass Production of Microalgae in Photobioreactors for Biodiesel Application: Selection, Limitations, and Optimization

  • Sanjay PawarEmail author
  • Suvidha Gupta


The algal biodiesel is produced in four steps: cultivation, harvesting and dewatering, lipid extraction, and transesterification reaction (converting lipids to fatty acid methyl esters, FAME, i.e., biodiesel). Microalgae cultivation in photobioreactor (PBR) is not only costly but also very challenging step among the steps of algal biodiesel production. In this chapter, the advantages and disadvantages of various types of PBR have been discussed in the context of mass production at outdoor conditions. Several environmental limitations which affect the performance of PBR are critically reviewed with respect to the selections of PBRs and microalgae strains. The mode of cultivation was found to affect the biomass and lipid productivity under different conditions. Thus, an overview suggesting the optimal ways to enhance the total lipid content of microalgae under different modes of cultivation is discussed in this chapter. The research work of microalgae cultivation on wastewater is tabulated and discussed in the context of feasibility of process. The quality of biodiesel strongly depends on the proportion of saturated and unsaturated fatty acids. Thus, various process parameters and strategies which affect the lipid’s composition are also discussed in detail.


Mixotrophic Scale-up Cetane number Fatty acids Biofuel 



The authors are thankful to Director, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI) for providing necessary facilities for this work. The corresponding author is thankful to the Department of Science and Technology, New Delhi, for financial support for this research work under the scheme of DST INSPIRE Faculty Award (IFA13-ENG63).


  1. Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66. CrossRefPubMedGoogle Scholar
  2. Arudchelvam Y, Nirmalakhandan N (2012a) Energetic optimization of algal lipid production in bubble columns: part I: evaluation of gas sparging. Biomass Bioenergy 46:757–764. CrossRefGoogle Scholar
  3. Arudchelvam Y, Nirmalakhandan N (2012b) Energetic optimization of algal lipid production in bubble columns: part II: evaluation of CO2 enrichment. Biomass Bioenergy 46:765–772. CrossRefGoogle Scholar
  4. Barbosa MJ, Hadiyanto WRH (2004) Overcoming shear stress of microalgae cultures in sparged photobioreactors. Biotechnol Bioeng 85:78–85. CrossRefPubMedGoogle Scholar
  5. Benavides AMS, Torzillo G, Kopecky J, Masojidek J (2013) Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomass Bioenergy 54:115–122. CrossRefGoogle Scholar
  6. Benvenuti G, Bosma R, Cuaresma M, Janssen M, Barbosa MJ, Wijffels RH (2015) Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. J Appl Phycol 27:1425–1431. CrossRefGoogle Scholar
  7. Bhatnagar A, Chinnasamy S, Singh M, Das K (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431. CrossRefGoogle Scholar
  8. Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extraction of biofuels and coproducts. Renew Sust Energ Rev 14:557–577. CrossRefGoogle Scholar
  9. Bux F, Chisti Y (2016) Algae biotechnology: products and processes. Springer International Publishing, Switzerland. Google Scholar
  10. Ceron-Garcia MC, Fernandez-Sevilla JM, Sanchez-Miron A, Garcia-Camacho F, Contreras-Gomez A, Molina-Grima E (2013) Mixotrophic growth of Phaeodactylum tricornutum on fructose and glycerol in fed-batch and semi-continuous modes. Bioresour Technol 147:569–576. CrossRefPubMedGoogle Scholar
  11. Chandra R, Rohit MV, Swamy YV, Venkata Mohan S (2014) Regulatory function of organic carbon supplementation on biodiesel production during growth and nutrient stress phases of mixotrophic microalgae cultivation. Bioresour Technol 165:279–287. CrossRefPubMedGoogle Scholar
  12. Chen F, Johns MR (1995) A strategy for high cell density culture of heterotrophic microalgae with inhibitory substrates. J Appl Phycol 7:43–46CrossRefGoogle Scholar
  13. Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, Zittelli GC, Bondioli P (2013) Review of energy balance in raceway ponds for microalgae cultivation: re-thinking a traditional system is possible. Appl Energy 102:101–111. CrossRefGoogle Scholar
  14. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotech 167:201–214. CrossRefGoogle Scholar
  16. Chisti MY, Halard B, Moo-Young M (1998) Liquid circulation in airlift reactors. Chem Eng Sci 43:451–457. CrossRefGoogle Scholar
  17. Choi HJ, Lee SM (2015) Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Biosyst Eng 38:761–766. CrossRefPubMedGoogle Scholar
  18. Chu HQ, Tan XB, Zhang YL, Yang LB, Zhao FC, Guo J (2015) Continuous cultivation of Chlorella pyrenoidosa using anaerobic digested starch processing wastewater in the outdoors. Bioresour Technol 185:40–48. CrossRefPubMedGoogle Scholar
  19. Contreras A, Garcia F, Molina E, Merchuk JC (1998) Interaction between CO2 - mass transfer, light availability, and hydrodynamics stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng 60:317–325CrossRefGoogle Scholar
  20. Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531. CrossRefGoogle Scholar
  21. Delrue F, Setier PA, Sahut C, Cournac L, Roubaud A, Peltier G, Froment AK (2012) An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol 111:191–200. CrossRefPubMedGoogle Scholar
  22. Ding J, Zhao F, Cao Y, Xing L, Liu W, Mei S, Li S (2015) Cultivation of microalgae in dairy farm wastewater without sterilization. Int J Phytoremediation 17:222–227. CrossRefPubMedGoogle Scholar
  23. Eustance E, Wray JT, Badvipour S, Sommerfeld MR (2016) The effects of cultivation depth, areal density, and nutrient level on lipid accumulation of Scenedesmus acutus in outdoor raceway ponds. J Appl Phycol 28:1459–1469. CrossRefGoogle Scholar
  24. Fernandes BD, Mota A, Ferreira A, Dragone G, Teixeira JA, Vicente AA (2014) Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chem Eng Sci 117:445–454. CrossRefGoogle Scholar
  25. Francisco EC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403. CrossRefGoogle Scholar
  26. Gangadhar KN, Pereira H, Diogo HP, Borges dos Santos RM, Prabhavathi Devi BLA, Prasad RBN, Custodio L, Malcata FX, Varela J, Barreira L (2016) Assessment and comparison of the properties of biodiesel synthesized from three different types of wet microalgal biomass. J Appl Phycol 28:1571–1578. CrossRefGoogle Scholar
  27. Gentili FG (2014) Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases. Bioresour Technol 169:27–32. CrossRefPubMedGoogle Scholar
  28. Gim GH, Kim JK, Kim HS, Kathiravan MN, Yang H, Jeong SH, Kim SW (2014) Comparison of biomass production and total lipid content of freshwater green microalgae cultivated under various culture conditions. Bioprocess Biosyst Eng 37:99–106. CrossRefPubMedGoogle Scholar
  29. Gomez-Serrano C, Morales-Amaral MM, Acien FG, Escudero R, Fernandez-Sevilla JM, Molina-Grima E (2015) Utilization of secondary-treated wastewater for the production of freshwater microalgae. Appl Microbiol Biotechnol 99:6931–6944. CrossRefPubMedGoogle Scholar
  30. Gomma AE, Lee SK, Sun SM, Yang SH, Chung G (2015) Improvement in oil production by increasing Malonyl-CoA and Glycerol-3-Phosphate pools in Scenedesmus quadricauda. Indian J Microbiol 55:447–455. CrossRefPubMedPubMedCentralGoogle Scholar
  31. González-Garcinuño A, Tabernero A, Sánchez-Álvarez JM, del Valle EMM, Galán MA (2014) Effect of nitrogen source on growth and lipid accumulation in Scenedesmus abundans and Chlorella ellipsoidea. Bioresour Technol 173:334–341. CrossRefPubMedGoogle Scholar
  32. Gouveia L, Graça S, Sousa C, Ambrosano L, Ribeiro B, Botrel EP, Neto PC, Ferreira AF, Silva CM (2016) Microalgae biomass production using wastewater: treatment and costs scale-up considerations. Algal Res 16:167–176. CrossRefGoogle Scholar
  33. Griffiths MJ, van Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001. CrossRefGoogle Scholar
  34. Gris B, Morosinotto T, Giacometti GM, Bertucco A, Sforza E (2014) Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light–dark cycles on growth, productivity, and biochemical composition. Appl Biochem Biotechnol 172:2377–2389. CrossRefPubMedGoogle Scholar
  35. Gupta S, Pandey RA, Pawar SB (2016) Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: kinetics and scale-up approach. Front Chem Sci Eng. 10(4):499–508. CrossRefGoogle Scholar
  36. Gupta S, Pandey RA, Pawar SB (2017) Bioremediation of synthetic high–chemical oxygen demand wastewater using microalgal species Chlorella pyrenoidosa. Biorem J 21:38–51. CrossRefGoogle Scholar
  37. Hadiyanto H, Elmore S, Van Gerven T, Stankiewicz A (2013) Hydrodynamic evaluations in high rate algae pond (HRAP) design. Chem Eng J 217:231–239. CrossRefGoogle Scholar
  38. Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, Jinpeng L (2011) Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol 102:9884–9890. CrossRefPubMedGoogle Scholar
  39. Huang A, Sun L, Wu S, Liu C, Zhao P, Xie X, Wang G (2016) Utilization of glucose and acetate by Chlorella and the effect of multiple factors on cell composition. J Appl Phycol 29(1):23–33. CrossRefGoogle Scholar
  40. Hulatt C, Thomas D (2011) Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresour Technol 102:5775–5787. CrossRefPubMedGoogle Scholar
  41. Ippoliti D, Gonzalez DA, Martin I, Sevilla JMF, Pistocchi R, Acien FG (2016) Outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors. J Appl Phycol 28:3159–3166. CrossRefGoogle Scholar
  42. Ji MK, Yun HS, Park YT, Kabra AN, IH O, Choi J (2015) Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J Environ Manag 159:115–120. CrossRefGoogle Scholar
  43. Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413. CrossRefPubMedGoogle Scholar
  44. Kim S, Park J, Cho Y, Hwang S (2013) Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour Technol 144:8–13. CrossRefPubMedGoogle Scholar
  45. Lari Z, Moradi-kheibari N, Ahmadzadeh H, Abrishamchi P, Moheimani NR, Murry MA (2016) Bioprocess engineering of microalgae to optimize lipid production through nutrient management. J Appl Phycol 28(6):3235–3250. CrossRefGoogle Scholar
  46. Li C, Yu Y, Zhang D, Liu J, Ren N, Feng Y (2016) Combined effects of carbon, phosphorus and nitrogen on lipid accumulation of Chlorella vulgaris in mixotrophic culture. J Chem Technol Biotechnol 91:680–684. CrossRefGoogle Scholar
  47. Li Y, Chen YF, Chen P, Min M, Zhoi W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrate municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144. CrossRefPubMedGoogle Scholar
  48. Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110. CrossRefPubMedGoogle Scholar
  49. Lopez MCG, Sanchez EDR, Lopez JLC, Fernandez FGA, Sevilla JMF, Rivas J, Guerrero MG, Grima EM (2006) Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J Biotechnol 123:329–342. CrossRefPubMedGoogle Scholar
  50. Lowrey J, Brooks MS, McGinn PJ (2015) Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges – a critical review. J Appl Phycol 27:1485–1498. CrossRefGoogle Scholar
  51. Luo H, Al-Dahhan MH (2012) Airlift column photobioreactors for Porphyridium Sp culturing: part I: effects of hydrodynamics and reactor geometry. Biotechnol Bioeng 109:932–941. CrossRefPubMedGoogle Scholar
  52. Mandotra SK, Kumar P, Suseela MR, Ramteke PW (2014) Freshwater green microalga Scenedesmus abundans: a potential feedstock for high quality biodiesel production. Bioresour Technol 156:42–47. CrossRefPubMedGoogle Scholar
  53. Mata TM, Antonio AM, Nidia S (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232. CrossRefGoogle Scholar
  54. Mata TM, Melo AC, Simoes M, Caetano NS (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 2012(107):151–158. CrossRefGoogle Scholar
  55. Michels MHA, van der Goot AJ, Norsker NH, Wijffels RH (2010) Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess Biosyst Eng 33:921–927. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Miron AS, Camacho FG, Gomez AC, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactor for large scale monoculture of microalgae. J Biotechnol 70:249–270. CrossRefGoogle Scholar
  57. Miron AS, Camacho FG, Gomez AC, Grima EM, Chisti Y (2000) Bubble column and airlift photobioreactor for algal culture. AICHE J 46:1872–1887. CrossRefGoogle Scholar
  58. Miron AS, Garcia MCC, Gomez AC, Camacho FG, Grima EM, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297. CrossRefGoogle Scholar
  59. Nascimento IA, Marques SSI, Cabanelas ITD, Pereira SA, Druzian JI, Oliveira de Souza C, Vich DV, Carvalho GC, Nascimento MA (2013) Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Res 6:1–13. CrossRefGoogle Scholar
  60. Nascimento IA, Marques SSI, Cabanelas ITD, Carvalho GC, Nascimento MA, Souza CO, Druzian JI, Hussain J, Liao W (2014) Microalgae versus land crops as feedstock for biodiesel: productivity, quality, and standard compliance. Bioenergy Res 7:1002–1013. CrossRefGoogle Scholar
  61. Nauha EK, Alopaeus V (2013) Modeling method for combining fluid dynamics and algal growth in a bubble column photobioreactor. Chem Eng J 229:559–568. CrossRefGoogle Scholar
  62. Pegallapati AK, Nirmalakhandan N (2012) Modeling algal growth in bubble columns under sparging with CO enriched air. Bioresour Technol 124:137–145. CrossRefPubMedGoogle Scholar
  63. Pawar S (2016a) Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel. Renew Sust Energ Rev 62:640–653. CrossRefGoogle Scholar
  64. Pawar SB (2016b) Process engineering aspects of vertical column photobioreactors for mass production of microalgae. ChemBioEng Rev 3:101–115. CrossRefGoogle Scholar
  65. Perez-Garcia O, Escalante FME, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36. CrossRefPubMedGoogle Scholar
  66. Prathima Devi M, Venkata Mohan S (2012) CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Bioresour Technol 112:116–123. CrossRefGoogle Scholar
  67. Prathima Devi M, Swamy YV, Venkata Mohan S (2013) Nutritional mode influences lipid accumulation in microalgae with the function of carbon sequestration and nutrient supplementation. Bioresour Technol 142:278–286. CrossRefPubMedGoogle Scholar
  68. Pruvost J, Vooren GV, Cogne G, Legrand J (2009) Investigation of biomass and lipid production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100:5988–5995. CrossRefPubMedGoogle Scholar
  69. Pruvost J, Vooren GV, Gouic BL, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158. CrossRefPubMedGoogle Scholar
  70. Pruvost J, Cornet JF, Borgne FL, Goetz V, Legrand J (2015) Theoretical investigation of microalgae culture in the light changing conditions of solar photobioreactor production and comparison with cyanobacteria. Algal Res 10:87–99. CrossRefGoogle Scholar
  71. Quinn JC, Davis R (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452. CrossRefPubMedGoogle Scholar
  72. Quinn JC, Catton K, Wagner N, Bradley TH (2012) Current large-scale US biofuel potential from microalgae cultivated in photobioreactors. Bioenergy Res 5:49–60. CrossRefGoogle Scholar
  73. Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 1:261–268. CrossRefGoogle Scholar
  74. Rios LF, Klein BC, Luz LF, Filho RM, Maciel MRW (2015) Nitrogen starvation for lipid accumulation in the microalga species Desmodesmus sp. Appl Biochem Biotechnol 175:469–476. CrossRefPubMedGoogle Scholar
  75. San Pedro A, Gonzalez-Lopez CV, Acien FG, Molina-Grima E (2014) Outdoor pilot-scale production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in tubular photobioreactors. Bioresour Technol 169:667–676. CrossRefPubMedGoogle Scholar
  76. Sankaran K, Premalatha M, Vijayasekaran M, Somasundaram VT (2014) DEPHY project: distillery wastewater treatment through anaerobic digestion and phycoremediation – a green industrial approach. Renew Sust Energ Rev 37:634–643. CrossRefGoogle Scholar
  77. Scarsella M, Torzillo G, Cicci A, Belotti G, Filippis D, Bravia M (2012) Mechanical stress tolerance of two microalgae. Process Biochem 47:1603–1611. CrossRefGoogle Scholar
  78. Sforza E, Cipriani R, Morosinotto T, BertuccoA GGM (2012) Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresour Technol 104:523–529. CrossRefGoogle Scholar
  79. Shen QH, Jiang JW, Chen LP, Cheng LH, XH X, Chen HL (2015) Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production. Bioresour Technol 190:257–263. CrossRefPubMedGoogle Scholar
  80. Sierra E, Acien FG, Fernandez JM, Garcia JL, Gonzalez C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138:136–147. CrossRefGoogle Scholar
  81. Silaban A, Bai R, Gutierrez-Wing MT, Negulescu II, Rusch KA (2014) Effect of organic carbon, C:N ratio and light on the growth and lipid productivity of microalgae/cyanobacteria coculture. Eng Life Sci 14:47–56. CrossRefGoogle Scholar
  82. Soares AT, Costa DC, Silva BF, Lopes RG, Derner RB, Filho NRA (2014) Comparative analysis of the fatty acid composition of microalgae obtained by different oil extraction methods and direct biomass transesterification. Bioenergy Res 7:1035–1044. CrossRefGoogle Scholar
  83. Su Y, Mennerich A, Urban B (2011) Municipal wastewater treatment and biomass accumulation with a wastewater born and settleable algalbacterial culture. Water Res 45:3351–3358. CrossRefPubMedGoogle Scholar
  84. Tan X, Chu H, Zhang Y, Yang L, Zhao F, Zhou X (2014) Chlorella pyrenoidosa cultivation using anaerobic digested starch processing wastewater in an airlift circulation photobioreactor. Bioresour Technol 170:538–548. CrossRefPubMedGoogle Scholar
  85. Uggetti E, Passos F, Sole M, Garfi M, Ferrer I (2016) Recent achievements in the production of biogas from microalgae. Waste Biomass Valor 8(1):129–139. CrossRefGoogle Scholar
  86. Valdés FJ, Hernández MR, Catalá L, Marcilla A (2012) Estimation of CO stripping/CO microalgae consumption ratios in a bubble column photobioreactor using the analysis of the pH profiles. Application to Nannochloropsis oculata microalgae culture. Bioresour Technol 119:1–6. CrossRefPubMedGoogle Scholar
  87. Valdez-Ojeda R, Gonzalez-Munoz M, Us-Vazquez R, Narvaez-Zapata J, Chavarria-Hernandez JC, Lopez-Adrian S, Barahona-Perez F, Toledano-Thompson T, Garduno-Solorzano G, RMEG M (2015) Characterization of five fresh water microalgae with potential for biodiesel production. Algal Res 7:33–44. CrossRefGoogle Scholar
  88. Vasumathi KK, Premalatha M, Subramanian P (2012) Parameter influencing the design of photobioreactor for the growth of microalgae. Renew Sust Energ Rev 16:5443–5450. CrossRefGoogle Scholar
  89. Venkata Mohan S, Rohit MV, Chiranjeevi P, Chandra R, Navaneeth B (2015) Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Bioresour Technol 184:169–178. CrossRefPubMedGoogle Scholar
  90. Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oilrich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628. CrossRefPubMedGoogle Scholar
  91. Wang H, Xiong H, Hui Z, Zeng X (2012) Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour Technol 104:215–220. CrossRefPubMedGoogle Scholar
  92. Wang SK, Stiles AR, Guo C, Liu CZ (2014) Microalgae cultivation in photobioreactors: an overview of light characteristics. Eng Life Sci 14:550–559. CrossRefGoogle Scholar
  93. Wang Y, Guo W, Yen HW, Ho SH, Lo YC, Cheng CL, Ren N, Chang JS (2015) Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresour Technol 198:619–625. CrossRefPubMedGoogle Scholar
  94. Wen Q, Chen Z, Li P, Han Y, Fend Y, Ren N (2013) Lipid production for biofuels from effluent-based culture by heterotrophic Chlorella Protothecoides. Bioenergy Res 6:877–882. CrossRefGoogle Scholar
  95. Wu H, Miao X (2014) Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresour Technol 170:421–427. CrossRefPubMedGoogle Scholar
  96. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen M (2011) Life-cycle analysis on biodiesel production from microalgae: water foot print and nutrients balance. Bioresour Technol 102:159–165. CrossRefPubMedGoogle Scholar
  97. Yewalkar-Kulkarni S, Gera G, Nene S, Pandare K, Kulkarni B, Kamble S (2016) Exploiting phosphate-starved cells of Scenedesmus sp. for the treatment of raw sewage. Indian J Microbiol 57(2):241–249. CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zhan J, Zhang Q, Qin M, Hong Y (2015) Selection and characterization of eight fresh water green algae strains for synchronous water purification and lipid production. Front Environ Sci Eng 10:548–558. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Environmental Biotechnology and Genomics Division (EBGD)CSIR – National Environmental Engineering Research Institute (NEERI)NagpurIndia

Personalised recommendations