Recent Advances in Optimization of Environmental Bioprocesses

  • Anshuman A. KhardenavisEmail author
  • Atul N. Vaidya
  • Vipin Chandra Kalia
  • Hemant J. Purohit


In the scenario of increasing population and concomitant pressure on the depleting fossil fuel resources, the focus of current research is on the development of innovative options for achieving sustainability and eco-efficiency in industrial and environmental bioprocesses. Further, there is a need for managing the ever-increasing waste generated as a result of human and industrial activities in an efficient manner. Of the currently available tools, environmental processes based on biomass utilization hold the highest potential owing to the abundance and renewable nature of such biomass. For achieving the highest efficiencies, these processes need to be optimized. In the current chapter, the underlying functioning of the various bioprocesses active in the environment has been discussed with particular reference to their optimization in bioremediation of solid and liquid waste. The chapter further discusses the tools for achieving higher efficiencies in such bioprocesses in addition to the value addition through energy generation in order to achieve the twin objectives of profitability and sustainability.


Environmental bioprocesses Eco-efficiency Waste management Bioremediation 



The authors are thankful to the Director of CSIR-National Environmental Engineering Research Institute Nagpur, and the Director of CSIR-Institute of Genomics and Integrative Biology New Delhi, for providing the necessary facilities for this work [KRC Manuscript No.: CSIR-NEERI/KRC/2017/JULY/EBGD/12].


  1. Agarwal L, Qureshi A, Kalia VC, Kapley A, Purohit HJ, Singh RN (2014) Arid ecosystem: future option for carbon sinks using microbial community intelligence. Curr Sci 106:1357–1363Google Scholar
  2. Ahiwale SS, Bankar AV, Tagunde S, Kapadnis BP (2017) A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian J Microbiol 57:188–194. doi:10.1007/s12088-017-0640-x PubMedPubMedCentralGoogle Scholar
  3. Bastida F, Jehmlich N, Lima K, Morris BEL, Richnow HH, Hernández T, von Bergen M (2016) The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J Proteome 135:162–169. doi:10.1016/j.jprot.2015.07.023 PubMedGoogle Scholar
  4. Bennett EM, Cramer W, Ai B, Cundill G, Díaz S, Egoh BN, Geijzendorffer IR, Krug CB, Lavorel S, Lazos E (2015) Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Curr Opin Environ Sustain 14:76–85. doi:10.1016/j.cosust.2015.03.007 Google Scholar
  5. Burmolle M, Ren D, Bjarnsholt T, Sorensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22:84–91. doi:10.1016/j.tim.2013.12.004 PubMedGoogle Scholar
  6. Cavinato C, Da Ros C, Pavan P, Cecchi F, Bolzonella D (2014) Treatment of waste activated sludge together with agrowaste by anaerobic digestion: focus on effluent quality. Water Sci Technol 69:525–531. doi:10.2166/wst.2013.736 Google Scholar
  7. Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56:247–264. doi:10.1007/s12088-016-0584-6 PubMedPubMedCentralGoogle Scholar
  8. Ding Y, Peng N, Du Y, Ji L, Cao B (2014) Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr (VI) immobilization. Appl Environ Microbiol 80:1498–1506. doi:10.1128/AEM.03461-13 PubMedGoogle Scholar
  9. Dobrowolski JW, Śliwka M, Mazur R (2012) Laser biotechnology for more efficient bioremediation, protection of aquatic ecosystems and reclamation of contaminated areas. J Chem Technol Biotechnol 87:1354–1359. doi:10.1002/jctb.3798 Google Scholar
  10. Donato PD, Poli A, Taurisano V, Abbamondi GR, Nicolaus B, Tommonaro G (2016) Recent advances in the study of marine microbial biofilm: from the involvement of quorum sensing in its production up to biotechnological application of the polysaccharide fractions. J Mar Sci Eng 4:34. doi:10.3390/jmse4020034 Google Scholar
  11. Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97:9909–9921. doi:10.1007/s00253-013-5216-z PubMedGoogle Scholar
  12. Ferreira-Leitão VS, Cammarota MC, Aguieiras ECG, de Sá LRV, Fernandez-Lafuente R, Freire DMG (2017) The protagonism of biocatalysis in green chemistry and its environmental benefits. Catalysts 7:9. doi:10.3390/catal7010009 Google Scholar
  13. Foster A, Barnes N, Speight R, Keane MA (2014) The repertoire of nitrogen assimilation in Rhodococcus: catalysis, pathways and relevance in biotechnology and bioremediation. J Chem Technol Biotechnol 89:787–802. doi:10.1002/jctb.4321 Google Scholar
  14. Fuentes S, Méndez V, Aguila P, Seeger M (2014) Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 98:4781–4794. doi:10.1007/s00253-014-5684-9 PubMedGoogle Scholar
  15. Ghosh S, Qureshi A, Purohit HJ (2017) Enhanced expression of catechol 1,2 dioxygenase gene in biofilm forming Pseudomonas mendocina EGD-AQ5 under increasing benzoate stress. Int Biodeterior Biodegrad 118:57–65. doi:10.1016/j.ibiod.2017.01.019 Google Scholar
  16. Gulhane M, Khardenavis AA, Karia S, Pandit P, Kanade GS, Lokhande S, Vaidya A, Purohit HJ (2016) Biomethanation of vegetable market waste in an anaerobic reactor: effect of effluent recirculation and carbon mass balance analysis. Bioresour Technol 215:100–109. doi:10.1016/j.biortech.2016.04.039 PubMedGoogle Scholar
  17. Gulhane S, Pandit P, Khardenavis AA, Purohit HJ (2017) Study of microbial community plasticity for anaerobic digestion of vegetable waste in plug flow bioreactor. Renew Energy 101:59–66. doi:10.1016/j.renene.2016.08.021 Google Scholar
  18. Gupta V, Capalash N, Gupta N, Sharma P (2017) Bio-prospecting laccases in the bacterial diversity of activated sludge from pulp and paper industry. Indian J Microbiol 57:75–82. doi:10.1007/s12088-016-0624-2 PubMedPubMedCentralGoogle Scholar
  19. Gurme ST, Surwase SN, Patil SA, Jadhav SB, Jadhav JP (2013) Optimization of biotransformation of l-Tyrosine to l-DOPA by Yarrowia lipolytica-NCIM 3472 using response surface methodology. Indian J Microbiol 53:194–198. doi:10.1007/s12088-012-0346-z PubMedPubMedCentralGoogle Scholar
  20. Hassanshahian M, Emtiazi G, Caruso G, Cappello S (2014) Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater: a mesocosm simulation study. Mar Environ Res 95:28–38. PubMedGoogle Scholar
  21. Jiang X, Jiao N (2016) Vertical distribution of bacterial communities in the Indian Ocean as revealed by analyses of 16S rRNA and nasA genes. Indian J Microbiol 56:309–317. doi:10.1007/s12088-016-0585-5 PubMedPubMedCentralGoogle Scholar
  22. Kalia VC (2015) Microbes: factories for bioproducts. In: Kalia VC (ed) Microbial factories biofuels, waste treatment, vol 1. Springer, New Delhi, pp 1–5. doi:10.1007/978-81-322-2598-0_1 Google Scholar
  23. Kalia VC, Prakash J, Koul S (2016) Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol 56:113–125. doi:10.1007/s12088-016-0583-7 PubMedPubMedCentralGoogle Scholar
  24. Kaur J, Niharika N, Lal R (2014) Biofilms: united we stand, divided we fall. Indian J Microbiol 54:246–247. doi:10.1007/s12088-014-0460-1 PubMedPubMedCentralGoogle Scholar
  25. Khardenavis AA, Wang JY, Ng WJ, Purohit HJ (2013) Management of various organic fractions of municipal solid waste via recourse to VFA and biogas generation. Environ Technol 34:2085–2097. doi:10.1080/09593330.2013.817446 Google Scholar
  26. Kohli P, Richnow HH, Lal R (2017) Compound-specific stable isotope analysis: implications in Hexachlorocyclohexane in-vitro and field assessment. Indian J Microbiol 57:11–22. doi:10.1007/s12088-016-0630-4 PubMedPubMedCentralGoogle Scholar
  27. Koul S, Kalia VC (2017) Multiplicity of quorum quenching enzymes: a potential mechanism to limit quorum sensing bacterial population. Indian J Microbiol 57:100–108. doi:10.1007/s12088-016-0633-1 PubMedPubMedCentralGoogle Scholar
  28. Koul S, Prakash J, Mishra A, Kalia VC (2016) Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol 56:1–18. doi:10.1007/s12088-015-0558-0 PubMedPubMedCentralGoogle Scholar
  29. Kuhad RC (2012) Microbes and their role in sustainable development. Indian J Micorbiol 52:309–313. doi:10.1007/s12088-012-0267-x PubMedPubMedCentralGoogle Scholar
  30. Kumar RR, Prasad S (2011) Metabolic engineering of bacteria. Indian J Microbiol 51:403–409. doi:10.1007/s12088-011-0172-8 PubMedPubMedCentralGoogle Scholar
  31. Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267. doi:10.1007/s12088-014-0467-7 PubMedPubMedCentralGoogle Scholar
  32. Kumari S, Regar RK, Bajaj A, Ch R, Satyanarayana GNV, Mudiam MKR, Manickam N (2017) Simultaneous biodegradation of polyaromatic hydrocarbons by a Stenotrophomonas sp: characterization of nid genes and effect of surfactants on degradation. Indian J Microbiol 57:60–67. doi:10.1007/s12088-016-0612-6 PubMedPubMedCentralGoogle Scholar
  33. Lanham AB, Oehmen A, Saunders AM, Carvalho G, Nielsen PH, Reis MAM (2014) Metabolic modelling of full-scale enhanced biological phosphorus removal sludge. Water Res 66:283–295. doi:10.1016/j.watres.2014.08.036 PubMedGoogle Scholar
  34. Leite WRM, Gottardo M, Pavan P, Filho PB, Bolzonella D (2016) Performance and energy aspects of single and two phase thermophilic anaerobic digestion of waste activated sludge. Renew Energy 86:1324–1331. doi:10.1016/j.renene.2015.09.069 Google Scholar
  35. Leong YK, Show PL, Lin HC, Chang CK, Loh HS, Lan JCW, Ling TC (2016) Preliminary integrated economic and environmental analysis of polyhydroxyalkanoates (PHAs) biosynthesis. Bioresources Bioprocess 3:41. doi:10.1186/s40643-016-0120-x
  36. Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, Hertel T, Lubchenco J, Seto KC, Gleick P, Kremen C, Li S (2015) Systems integration for global sustainability. Science 347, 1258832. doi:10.1126/science.1258832 PubMedGoogle Scholar
  37. Lv X-M, Shao M-F, Li C-L, Li J, Gao X-L, Sun F-Y (2014) A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes. Microb Environ 29:261–268. doi:10.1264/jsme2.ME13132 PubMedPubMedCentralGoogle Scholar
  38. Mangwani N, Kumari S, Das S (2016) Bacterial biofilms and quorum sensing: fidelity in bioremediation technology. Biotechnol Genet Eng Rev 32:43–73. doi:10.1080/02648725.2016.1196554 PubMedGoogle Scholar
  39. Nair NR, Sekhar VC, Nampoothiri KM (2016) Augmentation of a microbial consortium for enhanced polylactide (PLA) degradation. Indian J Microbiol 56:59–63. doi:10.1007/s12088-015-0559-z PubMedPubMedCentralGoogle Scholar
  40. Ng CK, Mohanty A, Cao B (2015) Biofilms in bio-nanotechnology: opportunities and challenges. In: Singh OV (ed) Bio-nanoparticles: biosynthesis and sustainable biotechnological implications, 1st edn. Wiley, New YorkGoogle Scholar
  41. Nigam VK, Arfi T, Kumar V, Shukla P (2017) Bioengineering of nitrilases towards its use as green catalyst: applications and perspectives. Indian J Microbiol 57:131–138. doi:10.1007/s12088-017-0645-5 PubMedPubMedCentralGoogle Scholar
  42. Nocelli N, Bogino PC, Banchio E, Giordano W (2016) Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of Rhizobia. Materials 9:418. doi:10.3390/ma9060418 PubMedCentralGoogle Scholar
  43. Pal S, Qureshi A, Purohit HJ (2016) Antibiofilm activity of biomolecules: gene expression study of bacterial isolates from brackish and fresh water biofouled membranes. Biologia 71:239–246. doi:10.1515/biolog-2016-0045
  44. Pandit PD, Gulhane MK, Khardenavis AA, Vaidya AN (2015) Technological advances for treating municipal waste. In: Kalia VC (ed) Microbial factories biofuels, waste treatment, vol 1. Springer, New Delhi, pp 217–229. doi:10.1007/978-81-322-2598-0_13 Google Scholar
  45. Pandit PD, Gulhane MK, Khardenavis AA, Purohit HJ (2016) Mining of hemicellulose and lignin degrading genes from differentially enriched methane producing microbial community. Bioresour Technol 216:923–930. doi:10.1016/j.biortech.2016.06.021 PubMedGoogle Scholar
  46. Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202. doi:10.1016/j.jhazmat.2014.05.051 PubMedGoogle Scholar
  47. Patel SKS, Lee JK, Kalia VC (2016) Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J Microbiol 56:293–300. doi:10.1007/s12088-016-0595-3 PubMedPubMedCentralGoogle Scholar
  48. Patel SKS, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Indian J Microbiol 57:171–176. doi:10.1007/s12088-017-0643-7 PubMedPubMedCentralGoogle Scholar
  49. Purohit HJ, Kapley A, Khardenavis A, Qureshi A, Dafale NA (2016) Insights in waste management bioprocesses using genomic tools. In: Sariaslani S, Gadd GM (eds) Adv Appl Microbiol 97:121–170. Google Scholar
  50. Qureshi A, Pal S, Ghosh S, Kapley A, Purohit HJ (2015) Antibiofouling biomaterials. Int J Recent Adv Multidiscip Res (IJRAMR) 2:677–684Google Scholar
  51. Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol 57(3):261–269. PubMedPubMedCentralGoogle Scholar
  52. Roling WFM, van Bodegom PM (2014) Toward quantitative understanding on microbial community structure and functioning: a modeling-centered approach using degradation of marine oil spills as example. Front Microbiol 5:Article 125PubMedGoogle Scholar
  53. Scoma A, Barbato M, Hernandez-Sanabria E, Mapelli F, Daffonchio D, Borin S, Boon N (2016) Microbial oil-degradation under mild hydrostatic pressure (10MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria? Sci Rep 6:23526. doi:10.1038/srep23526
  54. Shang Z, Wang H, Zhou S, Chu W (2014) Characterization of N-acyl-homoserine lactones (AHLs)-deficient clinical isolates of Pseudomonas aeruginosa. Indian J Microbiol 54:158–162. doi:10.1007/s12088-014-0449-9 PubMedPubMedCentralGoogle Scholar
  55. Sharma S, Singh DK (2017) Temporal variations in diazotrophic communities and nifH transcripts level across the agricultural and fallow land at Jaipur, Rajasthan, India. Indian J Microbiol 57:92–99. doi:10.1007/s12088-016-0634-0 PubMedPubMedCentralGoogle Scholar
  56. Sharma NK, Thakur S, Thakur N, Savitri BTC (2016) Thermostable xanthine oxidase activity from Bacillus pumilus RL-2d isolated from Manikaran thermal spring: production and characterization. Indian J Microbiol 56:88–98. doi:10.1007/s12088-015-0547-3 PubMedPubMedCentralGoogle Scholar
  57. Soares LCSR, Chandel AK, Pagnocca FC, Gaikwad SC, Rai M, da Silva SS (2016) Screening of yeasts for selection of potential strains and their utilization for in situ microbial detoxification (ISMD) of sugarcane bagasse hemicellulosic hydrolysate. Indian J Microbiol 56:172–181. doi:10.1007/s12088-016-0573-9 PubMedPubMedCentralGoogle Scholar
  58. Solovchenko A, Verschoor AM, Jablonowski ND, Nedbal L (2016) Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotech Adv 34:550–564. doi:10.1016/j.biotechadv.2016.01.002 PubMedGoogle Scholar
  59. Sun R, Zhou A, Jia J, Liang Q, Liu Q, Xing D, Ren N (2015) Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells. Bioresour Technol 175:68–74. doi:10.1016/j.biortech.2014.10.052 PubMedGoogle Scholar
  60. Szajsner H, Koszelnik-Leszek A, Nowosad K (2014) Influence of laser light on the germination parameters and morphological characteristics of seedlings of selected Silene vulgaris ecotypes. Pol J Natur Sc 29:5–16Google Scholar
  61. Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399. doi:10.1016/j.jenvman.2014.07.014 PubMedGoogle Scholar
  62. Turki Y, Mehri I, Lajnef R, Rejab AB, Khessairi A, Cherif H, Ouzari H, Hassen A (2017) Biofilms in bioremediation and wastewater treatment: characterization of bacterial community structure and diversity during seasons in municipal wastewater treatment process. Environ Sci Pollut Res 24:3519–3530. doi:10.1007/s11356-016-8090-2 PubMedGoogle Scholar
  63. Tursunov O, Dobrowolski J (2015) Addressing environmental issues and risks in Uzbekistan. Integer J Engg Res Tech 2:62–69Google Scholar
  64. Valverde-Pérez B, Ramin E, Smets BF, Plósz BG (2015) EBP2R – an innovative enhanced biological nutrient recovery activated sludge system to produce growth medium for green microalgae cultivation. Water Res 68:821–830. doi:10.1016/j.watres.2014.09.027 PubMedGoogle Scholar
  65. Wang X, Chen J, Kong Y, Shi X (2014) Sequestration of phosphorus from wastewater by cement-based or alternative cementitious materials. Water Res 62:88–96. doi:10.1016/j.watres.2014.05.021 PubMedGoogle Scholar
  66. Yewalkar-Kulkarni S, Gera G, Nene S, Pandare K, Kulkarni B, Kamble S (2017) Exploiting phosphate-starved cells of Scenedesmus sp. for the treatment of raw sewage. Indian J Microbiol 57:241–249. doi:10.1007/s12088-016-0626-0 PubMedPubMedCentralGoogle Scholar
  67. Zhuang KH, Herrgard MJ (2015) Multi-scale exploration of the technical, economic, and environmental dimensions of bio-based chemical production. Metab Eng 31:1–12. doi:10.1016/j.ymben.2015.05.007 PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Anshuman A. Khardenavis
    • 1
    Email author
  • Atul N. Vaidya
    • 2
  • Vipin Chandra Kalia
    • 3
  • Hemant J. Purohit
    • 1
  1. 1.Environmental Biotechnology and Genomics DivisionCSIR – National Environmental Engineering and Research Institute (CSIR-NEERI)NagpurIndia
  2. 2.Solid and Hazardous Waste Management DivisionCSIR – National Environmental Engineering and Research Institute (CSIR-NEERI)NagpurIndia
  3. 3.Microbial Biotechnology and GenomicsCSIR – Institute of Genomics and Integrative BiologyNew DelhiIndia

Personalised recommendations