Skip to main content

Intercalation Compounds of Bilayer Graphene

  • Chapter
  • First Online:
Book cover Observation of Superconductivity in Epitaxially Grown Atomic Layers

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Study about doping-induced superconductivity in carbon allotropes has long history. Graphene, which is an rapidly growing subject in condensed matter research in this decade, is not the exception. Even though the as-grown graphene is far from superconductivity due to its semimetallic nature, A few groups have succeed to synthesize metal-doped graphene which show sign of superconductivity. Since their research totally differs in not only synthesis but detection method, however, it is still controversial issue to determine the driving force and establishment of superconductivity. In this chapter, the first demonstration of electrical transport measurements on metal-intercalated bilayer graphene is presented, where Ca-intercalated bilayer graphene exhibits superconducting transition at 2 K while Li-intercalated one do not. This result supports the interlayer-band origin of superconductivity, which has been conventionally suggested in graphite intercalation compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Hannay, T. Geballe, B. Matthias, K. Andres, P. Schmidt, D. MacNair, Phys. Rev. Lett. 14, 225 (1965)

    Article  ADS  Google Scholar 

  2. A. Hebard, M. Rosseinky, R. Haddon, D. Murphy, S. Glarum, T. Palstra, A. Ramirez, A. Karton, Nature 350, 600 (1991)

    Article  ADS  Google Scholar 

  3. K. Tanigaki, T. Ebbesen, S. Saito, J. Mizuki, J. Tsai, Y. Kubo, S. Kuroshima, Nature 352(6332), 222 (1991)

    Article  ADS  Google Scholar 

  4. M. Kociak, A.Y. Kasumov, S. Guéron, B. Reulet, I. Khodos, Y.B. Gorbatov, V. Volkov, L. Vaccarini, H. Bouchiat, Phys. Rev. Lett. 86, 2416 (2001)

    Article  ADS  Google Scholar 

  5. E. Ekimov, V. Sidorov, E. Bauer, N. Mel’Nik, N. Curro, J. Thompson, S. Stishov, Nature 428(6982), 542 (2004)

    Google Scholar 

  6. R. Barnett, E. Demler, E. Kaxiras, Phys. Rev. B 71, 035429 (2005)

    Article  ADS  Google Scholar 

  7. R.P. Smith, T.E. Weller, C.A. Howard, M.P. Dean, K.C. Rahnejat, S.S. Saxena, M. Ellerby, Phys. C Supercond. Appl. 514, 50 (2015)

    Article  ADS  Google Scholar 

  8. T.E. Weller, M. Ellerby, S.S. Saxena, R.P. Smith, N.T. Skipper, Nature Phys. 1, 39 (2005)

    Article  ADS  Google Scholar 

  9. M. Sutherland, N. Doiron-Leyraud, L. Taillefer, T. Weller, M. Ellerby, S.S. Saxena, Phys. Rev. Lett. 98, 067003 (2007)

    Article  ADS  Google Scholar 

  10. G. Lamura, M. Aurino, G. Cifariello, E. Di Gennaro, A. Andreone, N. Emery, C. Hérold, J.F. Marêché, P. Lagrange, Phys. Rev. Lett. 96(10), 107008 (2006)

    Article  ADS  Google Scholar 

  11. N. Bergeal, V. Dubost, Y. Noat, W. Sacks, D. Roditchev, N. Emery, C. Hérold, J.F. Marêché, P. Lagrange, G. Loupias, Phys. Rev. Lett. 97, 077003 (2006)

    Article  ADS  Google Scholar 

  12. G. Csányi, P. Littlewood, A.H. Nevidomskyy, C.J. Pickard, B. Simons, Nature Phys. 1, 42 (2005)

    Article  ADS  Google Scholar 

  13. S.L. Yang, J. Sobota, C. Howard, C. Pickard, M. Hashimoto, D. Lu, S.K. Mo, P. Kirchmann, Z.X. Shen, Nature Commun. 5 (2014)

    Google Scholar 

  14. K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  15. K. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  16. K.S. Novoselov, Z. Jiang, Y. Zhang, S. Morozov, H. Stormer, U. Zeitler, J. Maan, G. Boebinger, P. Kim, A. Geim, Science 315, 1379 (2007)

    Article  ADS  Google Scholar 

  17. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  18. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706 (2009)

    Article  ADS  Google Scholar 

  19. S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song et al., Nature Nanotechnol. 5, 574 (2010)

    Article  ADS  Google Scholar 

  20. M. Xue, G. Chen, H. Yang, Y. Zhu, D. Wang, J. He, T. Cao, J. Am. Chem. Soc. 134, 6536 (2012)

    Article  Google Scholar 

  21. A.P. Tiwari, S. Shin, E. Hwang, S.G. Jung, T. Park, H. Lee, arXiv preprint arXiv:1508.06360 (2015)

  22. Z.H. Pan, J. Camacho, M. Upton, A. Fedorov, C. Howard, M. Ellerby, T. Valla, Phys. Rev. Lett. 106, 187002 (2011)

    Article  ADS  Google Scholar 

  23. G. Profeta, M. Calandra, F. Mauri, Nature Phys. 8, 131 (2012)

    Article  ADS  Google Scholar 

  24. K. Li, X. Feng, W. Zhang, Y. Ou, L. Chen, K. He, L.L. Wang, L. Guo, G. Liu, Q.K. Xue et al., Appl. Phys. Lett. 103, 062601 (2013)

    Article  ADS  Google Scholar 

  25. A. Bostwick, T. Ohta, T. Seyller, K. Horn, E. Rotenberg, Nature Phys. 3, 36 (2007)

    Article  ADS  Google Scholar 

  26. M. Bianchi, E. Rienks, S. Lizzit, A. Baraldi, R. Balog, L. Hornekær, P. Hofmann, Phys. Rev. B 81, 041403 (2010)

    Article  ADS  Google Scholar 

  27. A. Fedorov, N. Verbitskiy, D. Haberer, C. Struzzi, L. Petaccia, D. Usachov, O. Vilkov, D. Vyalikh, J. Fink, M. Knupfer, et al., Nature Commun. 5 (2014)

    Google Scholar 

  28. C. Hwang, D.Y. Kim, D.A. Siegel, K.T. Chan, J. Noffsinger, A.V. Fedorov, M.L. Cohen, B. Johansson, J.B. Neaton, A. Lanzara, Phys. Rev. B 90, 115417 (2014)

    Article  ADS  Google Scholar 

  29. B. Ludbrook, G. Levy, P. Nigge, M. Zonno, M. Schneider, D. Dvorak, C. Veenstra, S. Zhdanovich, D. Wong, P. Dosanjh et al., Proc. Natl. Acad. Sci. 112, 11795 (2015)

    Article  ADS  Google Scholar 

  30. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl et al., Nature Mater. 8, 203 (2009)

    Article  ADS  Google Scholar 

  31. S. Lara-Avila, A. Tzalenchuk, S. Kubatkin, R. Yakimova, T. Janssen, K. Cedergren, T. Bergsten, V. Fal’ko, Phys. Rev. Lett. 107, 166602 (2011)

    Article  ADS  Google Scholar 

  32. T. Ohta, A. Bostwick, J.L. McChesney, T. Seyller, K. Horn, E. Rotenberg, Phys. Rev. Lett. 98, 206802 (2007)

    Article  ADS  Google Scholar 

  33. K. Sugawara, K. Kanetani, T. Sato, T. Takahashi, AIP Adv. 1, 022103 (2011)

    Article  ADS  Google Scholar 

  34. K. Kanetani, K. Sugawara, T. Sato, R. Shimizu, K. Iwaya, T. Hitosugi, T. Takahashi, Proc. Natl. Acad. Sci. 109, 19610 (2012)

    Article  ADS  Google Scholar 

  35. R. Shimizu, K. Sugawara, K. Kanetani, K. Iwaya, T. Sato, T. Takahashi, T. Hitosugi, Phys. Rev. Lett. 114, 146103 (2015)

    Article  ADS  Google Scholar 

  36. I. Mazin, A. Balatsky, Philos. Mag. Lett. 90, 731 (2010)

    Article  ADS  Google Scholar 

  37. R. Jishi, D. Guzman, H. Alyahyaei, arXiv preprint arXiv:1107.1845 (2011)

  38. S. Ichinokura, K. Sugawara, A. Takayama, T. Takahashi, S. Hasegawa, ACS Nano 10(2), 2761 (2016)

    Article  Google Scholar 

  39. S. Hikami, A.I. Larkin, Y. Nagaoka, Progr. Theor. Phys. 63, 707 (1980)

    Article  ADS  Google Scholar 

  40. E. McCann, K. Kechedzhi, V.I. Fal’ko, H. Suzuura, T. Ando, B. Altshuler, Phys. Rev. Lett. 97, 146805 (2006)

    Article  ADS  Google Scholar 

  41. N. Emery, C. Hérold, M. d’Astuto, V. Garcia, C. Bellin, J. Marêché, P. Lagrange, G. Loupias, Phys. Rev. Lett. 95, 087003 (2005)

    Article  ADS  Google Scholar 

  42. M. Yamada, T. Hirahara, S. Hasegawa, Phys. Rev. Lett. 110, 237001 (2013)

    Article  ADS  Google Scholar 

  43. R.D. Chaudhari, J.B. Brown, Phys. Rev. 139, A1482 (1965)

    Article  ADS  Google Scholar 

  44. E. Margine, F.G. Henry Lambert, Scient. Rep. 6 (2016)

    Google Scholar 

  45. K. Sugawara, T. Sato, K. Kanetani, T. Takahashi, J. Phys. Soc. Jpn. 80, 024705 (2011)

    Article  ADS  Google Scholar 

  46. K. Sugawara, T. Sato, T. Takahashi, Nature Phys. 5, 40 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Ichinokura .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ichinokura, S. (2018). Intercalation Compounds of Bilayer Graphene. In: Observation of Superconductivity in Epitaxially Grown Atomic Layers. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6853-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6853-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6852-2

  • Online ISBN: 978-981-10-6853-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics