Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 357 Accesses

Abstract

The Rashba effect, a momentum-dependent spin splitting of electrical bands is a dramatic phenomena originated from lack of the space inversion symmetry. When the Rashba effect meets superconductivity, novel superconducting phenomena is predicted to realize: mixing of singlet-triplet component, spatial modulation of order parameter by Fulde-Ferrell-Larkin-Ovchinnikov mechanism, transition to topological superconductivity etc. Although the surface two-dimensional electron system has been expected to combine these independent frameworks, there has been no report on coexistence of them so far. Here, a one-atom-layer compound made of one monolayer of Tl and one-third monolayer of Pb on a Si (111) surface, known as Rashba-metallic surface system is presented to exhibit two-dimensional superconducting transport properties. The observed transition temperature of 2.26 K is sizable, while the energy of Rashba spin splitting is still larger upto 250 meV, promising for the emergence of the exotic superconductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.P. Gor’kov, E.I. Rashba, Phys. Rev. Lett. 87, 037004 (2001)

    Article  ADS  Google Scholar 

  2. V. Edel’shtein, Sov. Phys. JETP 68, 1244 (1989)

    Google Scholar 

  3. O.V. Dimitrova, M.V. Feigel’man, J. Exp. Theor. Phys. Lett. 78(10), 637 (2003)

    Article  Google Scholar 

  4. O. Dimitrova, M.V. Feigel’man, Phys. Rev. B 76, 014522 (2007)

    Article  ADS  Google Scholar 

  5. S. Fujimoto, J. Phys. Soc. Jpn. 76, 051008 (2007)

    Article  ADS  Google Scholar 

  6. K. Sakamoto, T. Oda, A. Kimura, K. Miyamoto, M. Tsujikawa, A. Imai, N. Ueno, H. Namatame, M. Taniguchi, P.E.J. Eriksson, R.I.G. Uhrberg, Phys. Rev. Lett. 102(9), 096805 (2009)

    Article  ADS  Google Scholar 

  7. J. Iba\(\tilde{n}\)ez-Azpiroz, A. Eiguren, A. Bergara, Phys. Rev. B 84(12), 125435 (2011)

    Google Scholar 

  8. K. Sakamoto, T.H. Kim, T. Kuzumaki, B. Müller, Y. Yamamoto, M. Ohtaka, J.R. Osiecki, K. Miyamoto, Y. Takeici, A. Harasawa, S.D. Stolwijk et al., Nat. Commun. 4, 2073 (2013)

    Article  Google Scholar 

  9. S.D. Stolwijk, A.B. Schmidt, M. Donath, K. Sakamoto, P. Krüger, Phys. Rev. Lett. 111(17), 176402 (2013)

    Article  ADS  Google Scholar 

  10. S.D. Stolwijk, K. Sakamoto, A.B. Schmidt, P. Krüger, M. Donath, Phys. Rev. B 90(16), 161109 (2014)

    Article  ADS  Google Scholar 

  11. K. Yaji, Y. Ohtsubo, S. Hatta, H. Okuyama, K. Miyamoto, T. Okuda, A. Kimura, H. Namatame, M. Taniguchi, T. Aruga, Nat. Commun. 1, (2010)

    Google Scholar 

  12. S. Hatta, T. Noma, H. Okuyama, T. Aruga, Phys. Rev. B 90, 245407 (2014)

    Article  ADS  Google Scholar 

  13. D.V. Gruznev, L.V. Bondarenko, A.V. Matetskiy, A.A. Yakovlev, A.Y. Tupchaya, S.V. Eremeev, E.V. Chulkov, J.P. Chou, C.M. Wei, M.Y. Lai, et al., Sci. Rep. 4, (2014)

    Google Scholar 

  14. D. Gruznev, L. Bondarenko, A. Matetskiy, A. Tupchaya, A. Alekseev, C. Hsing, C. Wei, S. Eremeev, A. Zotov, A. Saranin, Phys. Rev. B 91, 035421 (2015)

    Article  ADS  Google Scholar 

  15. A.V. Matetskiy, S. Ichinokura, L.V. Bondarenko, A.Y. Tupchaya, D.V. Gruznev, A.V. Zotov, A.A. Saranin, R. Hobara, A. Takayama, S. Hasegawa, Phys. Rev. Lett. 115(14), 147003 (2015)

    Article  ADS  Google Scholar 

  16. S.H. Uhm, H.W. Yeom, Phys. Rev. B 86, 245408 (2012)

    Article  ADS  Google Scholar 

  17. C. Kittel, Introduction to Solid State Physics (Wiley, 2005)

    Google Scholar 

  18. M. Yamada, T. Hirahara, R. Hobara, S. Hasegawa, H. Mizuno, Y. Miyatake, T. Nagamura, e-J. Surf. Sci. Nanotechnol. 10, 400 (2012)

    Article  Google Scholar 

  19. K. Horikoshi, X. Tong, T. Nagao, S. Hasegawa, Phys. Rev. B 60, 13287 (1999)

    Article  ADS  Google Scholar 

  20. A. Larkin, A. Varlamov, Theory of Fluctuations in Superconductors (Clarendon Press, 2005)

    Google Scholar 

  21. R.S. Thompson, Phys. Rev. B 1, 327 (1970)

    Article  ADS  Google Scholar 

  22. M. Yamada, T. Hirahara, S. Hasegawa, Phys. Rev. Lett. 110, 237001 (2013)

    Article  ADS  Google Scholar 

  23. B. Halperin, D.R. Nelson, J. Low Temp. Phys. 36(5–6), 599 (1979)

    Article  ADS  Google Scholar 

  24. V. Barzykin, L.P. Gor’kov, Phys. Rev. Lett. 89, 227002 (2002)

    Article  ADS  Google Scholar 

  25. S.K. Yip, Phys. Rev. B 65, 144508 (2002)

    Article  ADS  Google Scholar 

  26. K. Michaeli, A.C. Potter, P.A. Lee, Phys. Rev. Lett. 108, 117003 (2012)

    Article  ADS  Google Scholar 

  27. J.P.A. Devreese, J. Tempere, C.A.R. Sá de Melo, Phys. Rev. Lett. 113, 165304 (2014)

    Article  ADS  Google Scholar 

  28. J. Linder, J.W. Robinson, Nat. Phys. 11(4), 307 (2015)

    Article  Google Scholar 

  29. T. Sekihara, R. Masutomi, T. Okamoto, Phys. Rev. Lett. 111, 057005 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Ichinokura .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ichinokura, S. (2018). Thallium-Lead Monatomic-layer Compound. In: Observation of Superconductivity in Epitaxially Grown Atomic Layers. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6853-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6853-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6852-2

  • Online ISBN: 978-981-10-6853-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics