Skip to main content

Bacterial Siderophore as a Plant Growth Promoter

  • Chapter
  • First Online:
Microbial Biotechnology

Abstract

Amongst the imperative microelements in soil environment iron is usually copious for all life forms. Despite of its abundance, availability is limited due to low solubility of the dominant Fe3+ in soil. The divalent state can be oxidized to the trivalent state and it is precipitated in soil in the form of oxide or hydroxides. So plant cannot take up this iron as a source of micronutrient . Some bacteria have the capability to produce low molecular weight (500–1000 dt) iron chelating compound, called Siderophore. In nature, different types of siderophore such as Hydroxymate, Catecholates etc. are produced by different bacteria. Siderophore can chelate the insoluble form of iron by the mechanism of mineralization and sequestration and make it available to the plant for their growth and development. Moreover, siderophore producing bacteria have the capability to inhibit the different types of phytopathogens and can be used as a potential bio-control agent as well. So, siderophore producing plant growth promoting rhizobacterial isolates can be very effective for enriching the soil fertility and yield of agricultural crops. This chapter will highlight on different siderophore producing soil bacteria and their role in sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M, Khan MS (2012) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945–950

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ahmed E, Holmstrom SJM (2014) Siderophores in environmental research: roles and applications. J Microbial Biotechnol 7:196–208

    Article  CAS  Google Scholar 

  • Arora DK, Saikia R, Dwievdi R, Smith D (2005) Current status, strategy and future prospects of microbial resource collections. Curr Sci 89:488–495

    Google Scholar 

  • Arun KS (2007) Bio-fertilizers for sustainable agriculture. Mechanism of solubilization, 6th edn. Agribios publishers, Jodhpur, pp 196–197

    Google Scholar 

  • Barona-Gómez F et al (2004) Identification of a cluster of genes that directs Desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 126:16282–16283

    Article  PubMed  CAS  Google Scholar 

  • Beasley FC, Marolda CL, Cheung J, Buac S, Heinrichs DE (2011) Staphylococcus aureustransporters Hts, Sir, and Sst capture iron liberated from human transferrin by Staphyloferrin A, Staphyloferrin B, and catecholamine stress hormones, respectively, and contribute to virulence. Infect Immun 79:2345–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrends T, Krawczyk-Bärsch E, Arnold T (2012) Implementation of microbial processes in the performance assessment of spent nuclear fuel repositories. Appl Geochem 27:453–462

    Article  CAS  Google Scholar 

  • Bellenger JP, Wichard T, Kustka AB, Kraepiel AML (2008) Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nat Geosci 1:243–246

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting Rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting Rhizobacteria PGPR: emergence in agriculture. J World Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Boos W, Eppler T (2001) Prokaryotic binding protein-dependent ABC transporters. In: Winkelmann G (ed) Microbial transport systems. Wiley-VCH, Weinheim, pp 77–114

    Chapter  Google Scholar 

  • Braud A, Hannauer M, Mislin GLA, Schalk IJ (2009a) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191:3517–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009b) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  PubMed  CAS  Google Scholar 

  • Braud A, Geoffroy V, Hoegy F, Mislin GLA, Schalk IJ (2010) Presence of the siderophorespyoverdine and pyochelin in the extracellular medium reduces toxic metal accumulation in Pseudomonas aeruginosa and increases bacterial metal tolerance. Environ Microbiol R 2:419–425

    Article  CAS  Google Scholar 

  • Briat JF, FobisLoisy I, Grignon N, Lobreaux S, Pascal N, Savino G, Thoiron S, Wiren N, Wuytswinkel O (1995) Cellular and molecular aspects of iron metabolism in plants. Biol Cell 84:69–81

    Article  CAS  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of Pyochelin and pioverdin in suppression of Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62(3):865–871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabaj A, Kosakowska A (2009) Iron-dependent growth of and siderophore production by two heterotrophic bacteria isolated from brackish water of the southern Baltic Sea. Microbiol Res 164:570–577

    Article  CAS  PubMed  Google Scholar 

  • Canbolat MY, Bilen S, Cakmakc R, Sahin F, Aydın A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizospheremicroflora. Biol Fertil Soils 42:350–357

    Article  CAS  Google Scholar 

  • Challis GL (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chem Bio Chem 6:601–611

    Article  CAS  PubMed  Google Scholar 

  • Crowley DA (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Netherlands, pp 169–189

    Chapter  Google Scholar 

  • Dave BP, Dube HC (2000) Chemical characterization of fungal siderophores. Indian J Exp Biol 38:56–62

    CAS  PubMed  Google Scholar 

  • Dave BP, Anshuman K, Hajela P (2006) Siderophores of halophilic archaea and their chemical characterization. Indian J Exp Biol 44:340–344

    CAS  PubMed  Google Scholar 

  • De Weger LA, van der Bij AJ, Dekkers LC, Simons M, Wijffelman CA, Lugtenberg BJJ (1995) Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol Ecol 17:221–228

    Article  Google Scholar 

  • Dell’mour M, Schenkeveld W, Oburger E, Fischer L, Kraemer S, Puschenreiter M et al (2012) Analysis of iron-phytosiderophore complexes in soil related samples: LC-ESI-MS/MS versus CE-MS. Electrophoresis 33:726–733

    Article  PubMed  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachishypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Dick RP (1992) A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric Ecosyst Environ 40:25–26

    Article  CAS  Google Scholar 

  • Dick RP (1994) Soil enzyme activities as indicators of soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment: Minneapolis, SSSA Special Publication, 35. Soil Science Society of America, New York, pp 107–124

    Google Scholar 

  • Diekmann H, Zahner H (1967) Konstitution von Fusigen and dessen Abbauzu Δ2-Anhydromevalonsaurelacton. Eur J Biochem 3(2):213–218

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A et al (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Article  CAS  PubMed  Google Scholar 

  • Drechsel H, Tschierske M, Thieken A, Jung G, Zahner H, Winkelmann G (1995) The carboxylate type siderophorerhizoferrin and its analogs produced by directed fermentation. J Ind Microbiol 14:105–112

    Article  CAS  Google Scholar 

  • Duhme AK, Hider RC, Naldrett MJand Pau RN (1998) The ability of the molybdnem-azotochelin complex and its effect on siderophore production in Azotobacter vnelandii. J Biol Inorg Chem 3(5):520–526

    Article  CAS  Google Scholar 

  • Edberg F, Kalinowski BE, Holmström SJM, Holm K (2010) Mobilization of metals from uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescens. Geobiology 8:278–292

    Article  CAS  PubMed  Google Scholar 

  • Efroymson RA, Will M E, Suter GW II (1997) Toxicological benchmarks for screening contaminants of potential concern for effects on terrestrial plants. 1997 Revision ES/ER/TM-85/R3

    Google Scholar 

  • Emery T (1971) Role of ferrochrome as a ferric ionophore in Ustilago sphaerogena. Biochemistry 10:1483–1488

    Article  CAS  PubMed  Google Scholar 

  • Essen SA, Johnsson A, Bylund D, Pedersen K, Lundstrom US (2007) Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions. Appl Environ Microbiol 73(18):5857–5864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fardeau S, Mullie C, Dassonville-Klimpt A, Audic N, Sonnet P (2011) Bacterial iron uptake: a promising solution against multidrug resistant bacteria. In: Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz, pp 695–705

    Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamalero E, Glick BR (2011) Mechanisms used by plant growth promoting bacteria. In: Bacteria in agrobiology: plant nutrient management. Springer, Berlin, Heidelberg, pp 17–46

    Chapter  Google Scholar 

  • Gangwar M, Kaur G (2009) Isolation and characterization of endophytic bacteria from endorhizosphere of sugarcane and ryegrass. Internet J Microbiol 7:139–144

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:15

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Griffiths GL, Sigel SP, Payne SM, Neilands JB (1984) Vibriobactin, a siderophore from Vibrio cholerae. J Biol Chem 259(1):383–385

    CAS  PubMed  Google Scholar 

  • Hamdan H, Weller D, Thomashow L (1991) Relative importance of fluorescens siderophores and other factors in biological control of Gaeumannomyces graminis var. Tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl Environ Microbiol 57(11):3270–3277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor. Iron. Proc Natl Acad Sci 100:3677–3682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernlem BJ, Vane LM, Sayles GD (1999) The application of siderophores for metal recovery and waste remediation: examination of correlations for prediction of metal affinities. Water Res 33:951–960

    Article  CAS  Google Scholar 

  • Higa T, Parr JF (1994) Beneficial and effective microorganisms for a sustainable agriculture and environment. International Nature Farming Research Center, Atami

    Google Scholar 

  • Hu X, Boyer GL (1996) Siderophore-mediated aluminium uptake by Bacillus megaterium ATCC 19213. Appl Environ Microbiol 62:4044–4048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Islam KR, Weil RR (2000) Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. J Soil Water Conserv 55:69–78

    Google Scholar 

  • James WC (1981) Estimated losses of crops from plant pathogens. In: Pimentel D (ed) Handbook of pest management in agriculture. CRC Press, Boca Raton, pp 79–94

    Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicerarietinum L.) Int J Plant Prod 2:141–152

    Google Scholar 

  • Kannahi M, Senbagam N (2014) Studies on siderophore production by microbial isolates obtained from rhizosphere soil and its antibacterial activity. J Chem Pharm Res 6:1142–1145

    CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schiroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting Rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kobayashi T, Nakanishi H, Nishizawa NK (2010) Recent insights into iron homeostasis and their application in graminaceous crops. Proc Jpn Acad Ser B Phys Biol Sci 86:900–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraemer SM, Crowley DE, Kretzschmar R (2006) Geochemical aspects of phytosiderophore promoted iron acquisition by plants. Adv Agron 91:1–46

    Article  CAS  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  PubMed  Google Scholar 

  • Lacava PT, Silva-Stenico ME, Araujo WL, Simionato AVC, Carrilho E, Tsai SM, Azevedo JL (2008) Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylellafastidiosa subsp. pauca. Pesq Agrop Brasileira 43(4):521–528

    Article  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophore enhances levels of iron available to Pseudomonasputidain the rhizosphere. Appl Environ Microbiol 65:5357–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF (2005) Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Crit Rev Plant Sci 24:267–281

    Article  CAS  Google Scholar 

  • Mahmoud ALE, Abd-Alla MH (2001) Siderophore production by some microorganisms and their effect on Bradyrhizobium-Mung Bean symbiosis. Int J Agric Biol 03(2):157–162

    CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439

    Article  CAS  Google Scholar 

  • Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M et al (2009) Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2:155–166

    Article  Google Scholar 

  • Maurer B, Keller-Schierlein W (1968) Ferribactin, a Siderochrome from Pseudomonas fluorescens Migula: 61. Mitteilung Ferribactin, einSiderochromaus Pseudomonas fluorescens Migula. Arch Microbiol 60:326–339

    CAS  Google Scholar 

  • May JJ, Wendrich TM, Marahiel MA (2001) The dhb Operon of Bacillus subtilis encodes the biosynthetic template for the catecholicsiderophore 2, 3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276:7209–7217

    Article  CAS  PubMed  Google Scholar 

  • Mc Loughlin T, Quinn J, Bettermann A, Bookland R (1992) Pseudomonas cepaciasuppression of sunflower. Pseudomonas cepacia. Wilt fungus and role of antifungal compounds in controlling the disease. Appl Environ Microbiol 58(3):1760–1763

    CAS  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sluge on soils, microorganisms and plants. J Ind Microbiol 14(2):94–104

    Article  CAS  PubMed  Google Scholar 

  • Megali L, Glauser G, Rasmann S (2013) Fertilization with beneficial microorganisms decreases tomato defences against insect pests. Agron Sustain Dev 34:649. https://doi.org/10.1007/s13593-013-0187-0

    Article  CAS  Google Scholar 

  • Meiwes J, Fiedler HP, Haag H, Zahner H, Konetschny-Rapp S, Jung G (1990) Isolation and characterization of Staphyloferrin A, a compound with siderophore activity from Staphylococcus hyicus DSM 20459. FEMS Microbiol Lett 67:201–206

    Article  CAS  Google Scholar 

  • Messenger AJ, Barclay R (1983) Bacteria, iron and pathogenicity. Biochem Educ 11(2):54–63

    Article  CAS  Google Scholar 

  • Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212

    Article  CAS  Google Scholar 

  • Nayak SK, Santra GH, Mishra BB (2012) Antimycotic potential of bacterial ethanolic extract isolated from acid soil of Mahishapat, Odisha. J Pure Appl Microbiol 6(4):1853–1858

    Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    Article  CAS  PubMed  Google Scholar 

  • Neubauer U, Nowak B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore desferroixamine B. Environ Sci Technol 34:2749–2755

    Article  CAS  Google Scholar 

  • Nomoto K, Mino Y, Ishida T, Yoshioka H, Ota N, Inoue M et al (1981) X-ray crystal structure of the copper (II) complex of mugineic acid, a naturally occurring metal chelator of graminaceous plants. J Chem Soc Chem Commun 7:338–339

    Article  Google Scholar 

  • O’Brien S, Hodgson DJ, Buckling A (2014) Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proc R Soc B Biol Sci 281(1787):20140858

    Article  CAS  Google Scholar 

  • Pahari A, Mishra BB (2017) Characterization of Siderophore producing Rhizobacteria and its effect on growth performance of different vegetables. Int J Curr Microbiol App Sci 6(5):1398–1405. doi: https://doi.org/10.20546/ijcmas.2017.605.152

    Google Scholar 

  • Pahari A, Dangar TK, Mishra BB (2016) Siderophore quantification of bacteria from Sundarban and its effect on growth of Brinjal (Solanum melongena. L). The Bioscan 11(4):2147–2151

    Google Scholar 

  • Pal KK, Tilak KV, Saxena AK, Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina Phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting Rhizobacteria. Microbiol Res 156:209–223

    Article  CAS  PubMed  Google Scholar 

  • Peek ME, Bhatnagar A, McCarty NA, Zughaier SM (2012) Pyoverdine, the major siderophore in Pseudomonas aeruginosa, evades NGAL recognition. Inter disciplinary perspectives on infectious diseases. 2012

    Google Scholar 

  • Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore iron chelators in soils. Nature 287:833–834

    Article  CAS  Google Scholar 

  • Pradhan A, Baisakh B, Mishra BB (2014) Plant growth characteristics of bacteria isolated from rhizosphere region of Santalum album. J Pure Appl Microbiol 8(6):4245–5054

    Google Scholar 

  • Rajash P (2005) Effect of plant growth promoting Rhizobacteria on Canola (Brassica napus L) and Lentil (Lens culinaris) Plants ETD Project

    Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Reddy P, Battu RMS (2009) Siderophore-mediated antibiosis of rhizobacterial fluorescent Pseudomonads against Rice fungal pathogens. Int J Pharm Tech Res 1:227–229

    Google Scholar 

  • Reddy MS, Kumar S, Khosla B (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillustubingensis and Aspergillusniger. Bioresour Technol 84:187–189

    Article  CAS  PubMed  Google Scholar 

  • Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Roselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Van Leeuwenhoek 102(3):463–472

    Article  CAS  PubMed  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterization of efficient native Azospirillum strains from rice fields for crop improvement. Protoplasma 251:943. https://doi.org/10.1007/s00709-013-0607-7

    Article  CAS  PubMed  Google Scholar 

  • Sayyed RZ, Badgujar MD, Sonawane HM, Mhaske MM, Chincholkar SB (2005) Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads. Indian J Biotechnol 4:484–490

    CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant–microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184

    Article  CAS  PubMed  Google Scholar 

  • Schippers B, Bakker AW, Bakker PA (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Schneider EL, Loke SP, Hopkins DT (1968) GLC analysis of cyclopropenoid acids. JAOCS 45:585–590

    Article  CAS  Google Scholar 

  • Serpil S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci 3(1):77–80

    Google Scholar 

  • Seuk C, Paulita T, Baker R (1988) Attributes associate with increased biocontrol activity of fluorescent Pseudomonads. J Plant Pathol 4(3):218–225

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Article  Google Scholar 

  • SSSA (1991) In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture, 2nd edn. Soil Science Society of America, Inc, Madison

    Google Scholar 

  • Takemoto T, Nomoto K, Fushiya S, Ouchi R, Kusano G, Hikino H et al (1978) Structure of mugineic acid, a new amino acid possessing an iron-chelating activity from roots washings of water-cultured Hordeumvulgare. L. Proc Jpn Acad Ser B 54:469–473

    Article  CAS  Google Scholar 

  • Thompson LM, Troeh FR (1973) Soils and soil fertility, 3rd edn. McGraw-Hill Book Company, New York

    Google Scholar 

  • Tilak KVBR, Ranganayaki NL, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–149

    CAS  Google Scholar 

  • Trivedi P, Pandey A, Palni LS (2008) In vitro evalution of antagonistic properties of Psudomonascoruugata. Microbiol Res 163:329–336

    Article  PubMed  Google Scholar 

  • Verma VC, Singh SK, Prakash S (2011) Bio-controland plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica Juss. J Basic Microbiol 51:550–555

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacterianas biofertilizers. Plant and Soil 255:571–586

    Article  CAS  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    Article  CAS  PubMed  Google Scholar 

  • Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8(2):351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallihan EF (1966) Iron. In: Chapman HD (ed) Diagnostic criteria for plants and soils. University of California, Div Agric Sci, Riverside, pp 203–212

    Google Scholar 

  • Wallner A, Blatzer M, Schrettl M, Sarg B, Lindner H, Haas H (2009) Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus. Appl Environ Microbiol 75:4194–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011) Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populusdeltoides LH05–17. J Appl Microbiol 111:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    Article  CAS  PubMed  Google Scholar 

  • Wichard T, Bellenger JP, Morel FM, Kraepiel AM (2009) Role of the siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors. Environ Sci Technol 43:7218–7224

    Article  CAS  PubMed  Google Scholar 

  • Wilson MK, Abergel RJ, Raymond KN, Arceneaux JE, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis. Biochem Biophys Res Commun 348:320–325

    Article  CAS  PubMed  Google Scholar 

  • Winkelman G, Drechsel H (1997) Microbial siderophores. In: Kleinkauf H, von Dohren H (eds) Products of secondary metabolism, vol 7. Wiley VCH, Weinheim, pp 200–246

    Google Scholar 

  • Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379–392

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:20–31

    Google Scholar 

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145

    Article  Google Scholar 

  • Zaidi A, Khan MS, Aamil M (2006) Bioassociative effect of rhizospheric microorganisms on growth, yield, and nutrient uptake of green gram. J Plant Nutr 27:601–612

    Article  CAS  Google Scholar 

  • Zhang MK, Liu ZY, Wang H (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun Soil Sci Plant Anal 41(7):820–831

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pahari, A., Pradhan, A., Nayak, S.K., Mishra, B.B. (2017). Bacterial Siderophore as a Plant Growth Promoter. In: Patra, J., Vishnuprasad, C., Das, G. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6847-8_7

Download citation

Publish with us

Policies and ethics