Skip to main content

Promising Applications for the Production of Biofuels Through Algae

  • Chapter
  • First Online:
Microbial Biotechnology

Abstract

The optimal exploitation of renewable energy had become a major concern to many countries of the world, especially in light of the worsening economic, environmental problems and crises facing the world. Therefore, many efforts have combined to produce cheap energy through reliance on a variety of sources. The production of biofuels is one of the fastest developed renewable energy sources in many countries. Some areas began to grow certain types of plants specifically designed for use in biofuels, such as maize and soybeans in the United States and Sugar cane in Brazil as well as palm oil in Southeast Asia. The production of bio-fuel technology faces a lot of criticism because of the continued expansion by some States for this type of energy, due to its adverse effects on the natural environment, food security and the soil, and leads to higher grain and food prices. The algae are one of the most important alternative sources with environmentally safe and low-cost in the production of biofuels. This chapter of the book will address the most important concepts related to the production of biofuels from algae. Starting with the biological characteristics of the algae to produce biofuels, Advantages of Algal feed-stocks, biodiesel production processes, opportunities and challenges and future prospects of algal biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrich G, Nesti U, Venturi F, Zinnai A, Fiorentini R (2005) Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. Eur J Lipid Sci Technol 107(6):381–386

    Article  CAS  Google Scholar 

  • Bagnoud-Velásquez M, Refardt D, Vuille F, Ludwig C (2015) Opportunities for Switzerland to contribute to the production of algal biofuels: the hydrothermal pathway to bio-methane. Chimia (Aarau) 69(10):614–621. https://doi.org/10.2533/chimia.2015.614

    Article  Google Scholar 

  • Bai M, Cheng C, Wan H, Lin Y (2011) Microalgal pigments potential as by products in lipid production. J Taiwan Inst Chem Eng 42:783–786

    Article  CAS  Google Scholar 

  • Baker ER, McLaughlin JJA, Hutner SH (1981) Water-soluble vitamins in cells and spent culture supernatants of Poteriochromonas stipitata, Euglena gracilis, and Tetrahymena thermophila. Arch Microbiol 129:310–313

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii- a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245–279

    Article  CAS  PubMed  Google Scholar 

  • Becker EW (1994) In: Baddiley J et al (eds) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503

    Article  CAS  PubMed  Google Scholar 

  • Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol 73:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Bondioli P (2003) From oil seeds to industrial products: present and near future of oleochemistry. Ital J Agron 7(2):129–135

    Google Scholar 

  • Borowitzka LJ (1991) Development of western biotechnology’s algal β-carotene plant. Bioresour Technol 38:251–252

    Article  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Cadoret J, Bernard O (2008) La production de biocarburant lipidique avec des microalgues: promesses et defis. J de la Societe de Biologie 202(3):201–211

    Article  CAS  Google Scholar 

  • Callieri C, Stockner JG (2002) Freshwater autotrophic picoplankton: a review. J Limnol 61(1):1–14

    Article  Google Scholar 

  • Canakci M, Van Gerpen JH (1999) Biodiesel production via acid catalysis. Trans ASAE 42(5):1203–1210

    Article  CAS  Google Scholar 

  • Cantin I (2010) La production de biodiesel à partir des microalgues ayant un métabolisme hétérotrophe. Maîtrise en environnement (M.Env), Université de Sherbrooke, Sherbrooke, pp 1–82

    Google Scholar 

  • Cardozo KHM, Guaratini T, Barros PM, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol 146:60–78

    Article  Google Scholar 

  • Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bio-energy grasses. Trends Plant Sci 13:415–420

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Yeh K, Aisyah R, Lee D, Chang J (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101:5330–5336

    Article  CAS  PubMed  Google Scholar 

  • Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38:291–325

    Article  CAS  Google Scholar 

  • Corporation C (2007) Diesel Fuels Technical Review. Chevron Products Company, San Ramon, pp 1–116. Available from http://www.chevron.com/products/prodserv/fuels/documents/Diesel_Fuel_Tech_Review.pdf

  • Couto RM, Simões PC, Reis A, Da Silva TL, Martins VH, Sánchez Vicente Y (2010) Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng Life Sci 10(2):158–164

    CAS  Google Scholar 

  • Del Campo JA, Garcia-Gonzalez M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A (2008) Relationships derived from physical properties of vegetable oil and bio-diesel fuels. Fuel 87:1743–1748

    Article  CAS  Google Scholar 

  • Demirbas AH (2009) Inexpensive oil and fats feedstocks for production of biodiesel. Energy Edu. Sci Technol 23:1–13

    CAS  Google Scholar 

  • Demirbas MF (2010) Microalgae as a feedstock for biodiesel, Energy Edu. Sci Technol 25:31–43

    CAS  Google Scholar 

  • Ehimen EA, Sun ZF, Carrington CG (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89(3):677–684

    Article  CAS  Google Scholar 

  • Fedorov AS, Kosourov S, Ghirardi ML, Seibert M (2005) Continuous hydrogen photoproduction by Chlamydomonas reinhardtii: using a novel two-stage, sulfate limited chemostat system. Applied biochemistry and biotechnology - part a enzyme engineering and. Biotechnology 121(1–3):403–412

    Google Scholar 

  • Furuki T, Maeda S, Imajo S, Hiroi T, Amaya T, Hirokawa T, Ito K, Nozawa H (2003) Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. J Appl Phycol 15:319–324

    Article  CAS  Google Scholar 

  • Garofalo R (2010) Algae and aquatic biomass for a sustainable production of 2nd Generation bio-fuels, http://www.aquaculture.ugent.be

  • Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253

    Article  CAS  PubMed  Google Scholar 

  • Gerpan JV (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  Google Scholar 

  • Giostri A, Binotti M, Macchi E (2016) Microalgae coffering in coal power plants: innovative system layout and energy analysis. Renew Energy 95:449–464

    Article  CAS  Google Scholar 

  • Halim R, Gladman B, Danquah MK, Webley PA (2010) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102(1):178–185

    Article  PubMed  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala M, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helwani Z, Othman MR, Aziz N, Kim J, Fernando WJN (2009) Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl Catal 363:1–10

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Huang JC, Chen F, Sandmann G (2006) Stress-related differential expression of multiple b-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J Biotechnol 122:176–185

    Article  CAS  PubMed  Google Scholar 

  • Huntley M, Redalje D (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigat Adapt Strat Global Change 12:573–608

    Article  Google Scholar 

  • Ip PF, Chen F (2005) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496

    Article  CAS  Google Scholar 

  • Jiang FC (2000) Algae and their biotechnological potential. Kluwer Academic Publishers, Dordrecht/Boston/ London

    Google Scholar 

  • Johnson MB, Wen Z (2009) Production of biodiesel fuel from the micro alga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Knothe G (2005) Cetane numbers–heat of combustion–why vegetable oils and their derivatives are suitable as viscosity of biodiesel. In: Knothe G, Krahl J, Gerpen JV (eds) The biodiesel handbook. AOCS Press, Campaign, pp 81–82

    Chapter  Google Scholar 

  • Knothe G (2006) Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc 83(10):823–833

    Article  CAS  Google Scholar 

  • Knothe G (2010) Biodiesel and renewable diesel: a comparison. Prog Energy Combust Sci 36(3):364–373

    Article  CAS  Google Scholar 

  • Knothe G, Steidley KR (2005) Lubricity of components of biodiesel and petrodiesel, the origin of biodiesel lubricity. Energy Fuels 19(3):1192–1200

    Article  CAS  Google Scholar 

  • Koberg M, Cohen M, Ben-Amotz A, Gedanken A (2011) Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresour Technol 102:4265–4269

    Article  CAS  PubMed  Google Scholar 

  • Kumar RR, Raoand PH, Arumugam M (2015) Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res. https://doi.org/10.3389/fenrg.2014.00061

  • Lee J, Yoo C, Jun S, Ahn C, Oh H (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:575–577

    Google Scholar 

  • Leung DYC, Wu X, Leung MKH (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87:1083–1095

    Article  CAS  Google Scholar 

  • Lewis T, Nichols PD, McMeekina TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid- producing micro-heterotrophs. J Microbiol Methods 42:107–116

    Article  Google Scholar 

  • Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771

    Article  CAS  PubMed  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    Article  CAS  PubMed  Google Scholar 

  • NAABB (National Alliance for Advanced Biofuels and Bioproducts) (2014) National Alliance for Advanced Biofuels and Bio-products Full Final Report. Donald Danforth Plant Science Center. http://energy.gov/eere/bioenergy/downloads/ national-alliance-advanced-biofuels-and-bioproducts-synopsis-naabb-final

  • Nagle N, Lemke P (1990) Production of methyl-ester fuel from microalgae. Appl Biochem Biotechnol 24:355–361

    Article  Google Scholar 

  • National Renewable Energy Laboratory (2009) Biodiesel handling and use guide. pp. 1–56

    Google Scholar 

  • Natural Resources Canada (2011) Government of Canada calls on industry to participate in new bio-fuels initiative, In: Natural Resources Canada, 25.05.2011, Available from

    Google Scholar 

  • Nelson LA, Foglia TA, Marmer WN (1996) Lipase catalyzed production of biodiesel. JAOCS 73:1191–1195

    Article  CAS  Google Scholar 

  • Oh HM, Choi A, Mheen TI (2003) High-value materials from microalgae. Korean J Microbiol Biotechnol 31:95–102

    Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    Article  CAS  PubMed  Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 11:223–242

    Article  Google Scholar 

  • Ranjbar R, Inoue R, Shiraishi H, Katsuda T, Katoh S (2008) High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor. Biochem Eng J 39(3):575–580

    Article  CAS  Google Scholar 

  • Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985

    Article  CAS  PubMed  Google Scholar 

  • Running JA, Severson DK, Schneider KJ (2002) Extracellular production of Lascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of Prototheca moriformis during aerobic culturing at low pH. J Ind Microbiol Biotechnol 29:93–98

    Article  CAS  PubMed  Google Scholar 

  • Ryckebosch E, Bruneel C, Termote-Verhalle R, Muylaert K, Foubert I (2014) Influence of extraction solvent system on extractability of lipid components from different microalgae species. Algal Res 3:36–43

    Article  Google Scholar 

  • Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci U S A 105:464–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan J, Combreco V, Duffield J, Graboski M, Shapouri H (1998) An overview of biodiesel and petroleum diesel life cycles. National Renewable Energy Laboratory, Golden, pp 1–47

    Google Scholar 

  • Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fedbatch culture. Biotechnol Prog 18:723–727

    Article  CAS  PubMed  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Stansell GR, Gray VM, Sym SD (2012) Microalgal fatty acid composition: implications for biodiesel quality. J Appl Phycol 24:791–801

    Article  CAS  Google Scholar 

  • Survase SA, Bajaj IB, Singhal RS (2006) Biotechnological production of vitamins. Food Technol Biotechnol 44:381–396

    CAS  Google Scholar 

  • Tan KT, Lee KT (2011) A review on supercritical fluids (SCF) technology in unstainable biodiesel production: potential and challenges. Renew Sust Energ Rev 15(5):2452–2456

    Article  CAS  Google Scholar 

  • Tran H, Hong S, Lee C (2009) Evaluation of extraction methods for recovery of fatty acids from Botryococcus braunii LB 572 and Synechocystis sp. PCC 6803. Biotechnol Bioprocess Eng 14(2):187–192

    Article  CAS  Google Scholar 

  • U.S. Energy Information Administration (2011) Annual energy outlook, pp 1–246, Available from http://www.eia.doe.gov/forecasts/aeo/pdf/0383 (2011.pdf)

  • Umdu ES, Tuncer M, Seker E (2009) Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour Technol 100:2828–2831

    Article  CAS  PubMed  Google Scholar 

  • Valencia I, Ansorena D, Astiasaran I (2007) Development of dry fermented sausages rich in docosahexaenoic acid with oil from the microalgae Schizochytrium sp.: influence on nutritional properties, sensorial quality and oxidation stability. Food Chem 104:1087–1096

    Article  CAS  Google Scholar 

  • Wang Z, Pan Y, Dong T, Zhu X, Kan T, Yuan L, Torimoto Y, Sadakata M, Li Q (2007) Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O-based catalysts. Appl Catal A 320:24–34

    Article  CAS  Google Scholar 

  • Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  CAS  PubMed  Google Scholar 

  • Williams PJlB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3(5):554–590

    Article  Google Scholar 

  • Wiltshire KH, Boersma M, Möller A, Buhtz H (2000) Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquat Ecol 34(2):119–126

    Article  CAS  Google Scholar 

  • Wu Z, Shi X (2008) Rheological properties of Chlorella pyrenoidosa culture grown heterotrophically in a fermentor. J Appl Phycol 20(3):279–282

    Article  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101(14):5494–5500

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Weathers PJ, Xiong X, Liu C (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9(3):1787189

    Article  Google Scholar 

  • Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74:1431–1434

    Article  CAS  Google Scholar 

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol- a path to economic viability for the bio-fuels industry. Curr Opin Biotechnol 18(3):213–219

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aziz, N., Prasad, R., Ibrahim, A.I.M., Ahmed, A.I.S. (2017). Promising Applications for the Production of Biofuels Through Algae. In: Patra, J., Vishnuprasad, C., Das, G. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6847-8_4

Download citation

Publish with us

Policies and ethics