Skip to main content

Biosurfactants: An Agent to Keep Environment Clean

  • Chapter
  • First Online:
Microbial Biotechnology

Abstract

Biosurfactants (BFs) are the agent produced by the bacteria, yeast and fungi. They have unique properties such as high activity, less toxicity, biodegradability and ease of production from renewable resources. They are msophorolipidsainly surface active molecules having hydrophobic and hydrophilic moieties which make them good emulsifiers. The biosurfactants vary in their chemical properties and molecular weight as well and are usually secreted extracellularly. The biochemical diversity of BFs makes them a source for green chemicals having many potentials applications for the environment. Some of the examples of biosurfactant producing microorganisms are Lysinibacillus fusiformis, Bacillus tequilensis, Acinetobacter sp., Aspergillus niger, Arthrobacter sp. Due the diversity and distinct features, they are used for the removal of heavy metal or organic contaminant from the contaminated substances or ecological keys. It is an eco-friendly method to keep environment clean. Present study focus on the types of BFs and its environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aljendro CS, Humberto HS, Maria JF (2011) Producation of glycolipids with antimicrobial activity by Ustilago maydis FBD 12 in submerged culture. African J Microbiol Res 5:2512–2523

    Google Scholar 

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization, and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 3:488–494

    Article  Google Scholar 

  • Asselineau C, Asselineau J (1978) Trehalose-containing glycolipids. Prog Chem Fats Other Lipids 16:59–99

    Article  CAS  PubMed  Google Scholar 

  • Boyette CD, Walker HL, Abbas HK (2002) Biological control of kudzu (Pueraria lobata): with an isolate of Myrothecium verrucaria. Biocontrol Sci Tech 12:75–82

    Article  Google Scholar 

  • Casas JA, De Lara SG, Garcia F (1997) Optimization of a synthetic medium for Candida bombicola growth using factorial design of experiments. Enzyme Microb Technol 21:221–229

    Article  CAS  Google Scholar 

  • Cavalero DA, Cooper DG (2003) The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214. J Biotechnol 103:31–41

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti S (2012) Bacterial biosurfactants: characterization, antimicrobial and metal remediation properties. PhD. Thesis, National Institute of Technology

    Google Scholar 

  • Chandran P, Das N (2010) Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int J Eng Sci Technol 2:6942–6953

    Google Scholar 

  • Chang MW, Holoman TP, Yi H (2008) Molecular characterization of surfactant-driven microbial community changes in aerobic phenanthrene-degrading cultures under methanogenic conditions. Biotechnol Lett 30:1595–1601

    Article  CAS  PubMed  Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a biomulsifier from Candida lipolytica. Appl Environ Microbiol 50:846–850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DG, Paddock DA (1984) Production of a biosurfactant from Torulopsis bombicola. Appl Environ Microbiol 47:173–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DG, Macdonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flasz A, Rocha CA, Mosquera B, Sajo C (1998) A comparative study of the toxicity of a synthetic surfactants and one produced by Pseudomonas aeruginosa ATCC 55925. Med Sci Res 26:181–185

    CAS  Google Scholar 

  • Gautam KK, Tyagi VK (2006) Microbial surfactants: a review. J Oleo Sci 55:155–166

    Article  CAS  Google Scholar 

  • Haddad NI (2008) Isolation and characterization of a biosurfactant producing strain, brevibacilis brevis HOB1. J Ind Microbiol Biotechnol 35:1597–1604

    Article  CAS  PubMed  Google Scholar 

  • Hatha AAM (2007) Microbial biosurfactants–review. J Mar Atmos Res 3:1–17

    Google Scholar 

  • Herman DC, Artiola JF, Miller RA (1995) Removal of cadmium, lead and zinc from soil by a rhamnoid biosurfactant. Environ Sci Technol 29:2280–2285

    Article  CAS  PubMed  Google Scholar 

  • Hood SK, Zottola EA (1995) Biofilms in food processing. Food Control 6:9–18

    Article  Google Scholar 

  • Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-parafin-utilizing ability. Agric Biol Chem 36:2233–2235

    Article  CAS  Google Scholar 

  • Jarvis FG, Johnson MJ (1949) A glycolipid produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126

    Article  CAS  Google Scholar 

  • Kaeppeli O, Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobactor. J Bacteriol 140:707–712

    Google Scholar 

  • Kassab DM, Roane TM (2006) Differential responses of a mine tailings Pseudomonas isolate to cadmimum and lead exposures. Biodegradation 17:379–387

    Article  CAS  PubMed  Google Scholar 

  • Kilburn JO, Takayama K (1981) Effects of ethambutol on accumulation and secretion of trehalose mycolates and free mycolic acid in Mycobacterium smegmatis. Antimicrob Agents Chemother 20:401–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptide Iturin A. fengycin and surfaction A from Bacillus subtilis CMB32 for control of Colletotrichum glocosporides. J Microbiol Biotechnol 20:138–145

    CAS  PubMed  Google Scholar 

  • Kim SK, Kim YC, Lee S, Kim JC, Yun MY, Kim IS (2011) Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J Agric Food Chem 59:934–938

    Article  CAS  PubMed  Google Scholar 

  • Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcuc erythropolis grown on n-alkane. Appl Environ Microbiol 44:864–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruijit M, Tran H, Raaijmakers JM (2009) Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol 107:546–556

    Article  Google Scholar 

  • Krzyzanowska DM, Patrykus M, Golanowska M, Polonis K, Gwizdek A, Lojkowska E, Jafra S (2012) Rhizospore bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. Strains. J Plant Pathol 94(2):367–368

    Google Scholar 

  • Lee YJ, Choi JK, Kim EK, Youn SH, Yang EJ (2008) Field experiments on mitigation of harmful algal bloom using a Sophorolipid: Yellow clay mixture and effects on marine plankton. Harmful Algae 7:154–162

    Article  Google Scholar 

  • Martin VG, Kalil SJ, Alberto, Costa V (2009) In situ bioremediation using biosurfactant produced by solid state fermentation. World J Microbiol Biotechnol 25:843–851

    Article  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2001) Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous and soil slurries. J Agric Food Chem 49:3296–3303

    Article  CAS  PubMed  Google Scholar 

  • McInerney MJM, Javaheri M, Nagle DP (1990) Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J Ind Microbiol Biotechnol 5:95–101

    CAS  Google Scholar 

  • Mohan PK, Nakhla G, Yanful EK (2006) Biokinetics of biodegradation of surfactants under aerobic, anoxic and anaerobic conditions. Water Res 40:533–540

    Article  CAS  PubMed  Google Scholar 

  • Moldes AB, Paradelo R, Rubinos D, Devesa-Rey R, Cruz JM, Barral MT (2011) Ex-situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. J Agric Food Chem 59:9443–9447

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378

    Article  CAS  Google Scholar 

  • Mulligan CN, Wang S (2004) Remediation of a heavy metal contaminated soil by a rhanolipid foam. In: Thomas HR, Yangt RN (eds) Geoenvironmental engineering. Integrated management of groundwater and contaminated land. Thomas Telford, London, pp 544–551

    Chapter  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments for biosurfactants. J Hazard Mater 85:111–125

    Article  CAS  PubMed  Google Scholar 

  • Nabar BM, Lokegaonkar S (2015) Larvicidal activity of microbial metabolites extracted from extremophiles against vector mosquitoes. Int J Mosquito Res 2:161–165

    Google Scholar 

  • Navon-Venezia SZ, Zosim A, Gottlieb A, Legmann R, Carmeli S, Ron EZ, Roserberg E (1995) Alasan, a new bioemulsifer from Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak AS, Vijaykumar MH, Karegoudar TB (2009) Characterization of Biosurfactants produced by Pseudoxanthomonas sp. PNK-04 and its application in bioremediation. Int Biodeterior Biodegrad 63:73–79

    Article  CAS  Google Scholar 

  • Nielsen TH, Sorensen J (2003) Producation of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphore. Appl Environ Microbiol 69:861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nihorimbere V, Marc O, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphore microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337

    Google Scholar 

  • Olivera NL, Nievas ML, Lozanda M, Prado G, Dionisi HM, Sineriz F (2009) Isolation and characterization of biosurfactants potential of natural bilge waste microflora. J Ind Microbiol Biotechnol 30:542–548

    Article  Google Scholar 

  • Pacwa-Plociniczak P, Piotrowska SZ, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poremba KW, Gunkel S, Lang S, Wagner F (1991) Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ Toxicol Water Qual 6:157–163

    Article  CAS  Google Scholar 

  • Priya T, Usharani G (2009) Comparative study for biosurfactant production by using Bacillus subtilis and Pseudomonas aeruginosa. Bot Res Int 2:284–287

    CAS  Google Scholar 

  • Ristu E, Wanger F (1983) Formation of novel trehalose lipids from Rhodocuccus erythropolis under growth RR limiting conditions. Biotechnol Lett 5:95–100

    Article  Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rufino RD, Sarubbo LA, Takaki GM (2007) Enhancement of stability of biosurfactants produced by Candida lipolytica using industrial residue as substrate. World J Microbiol Biotechnol 23:729–734

    Article  CAS  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarubbo LM, Farias CBB, Takaki GMC (2007) Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr Microbiol 54:68–73

    Article  CAS  PubMed  Google Scholar 

  • Sekelsky AM, Shreve GS (1999) Kinetic model of biosurfactants enchanced hexadecane biodegradation by Pseudomonus aeruginosa. Biotechnol Bioeng 63:401–409

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Singh P, Raj M, Chadha BS, Saini HS (2009) Aqueous phase partitioning of hexachlorocyclohexane (HCH) isolates by biosurfactants produced by Pseudomonas aerginosa WH-2. J Hazard Mater 171:1178–1182

    Article  CAS  PubMed  Google Scholar 

  • Shin KH, Kim KW, Seagren EA (2004) Combined effects of pH and biosurfactants addition on solublization and biodegradation of phenanthrene. Appl Microbiol Biotechnol 65:336–343

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  CAS  PubMed  Google Scholar 

  • Somayeh C, Abbas AS, Nouhi AS (2008) Study the role of isolated bacteria from oil contaminated soil in bioremediation. J Bacteriol 1365:678–707

    Google Scholar 

  • Sun X, Wu L, Luo Y (2006) Application of organic agents in remediation of heavy metals-contaminated soil. Ying Yong Sheng Tai Xue Bao 17:1123–1128

    CAS  PubMed  Google Scholar 

  • Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas species. DSM 2874 grown on n-alkane. Zeitschrift Naturforschung C 40:51–60

    CAS  Google Scholar 

  • Tang JS, Zhao F, Gao H, Dai Y, Yao ZH, Hong K et al (2010) Characterization and online detection of surfactin isomers based on HPLC-MS n analyses and their inhibitory effects on the overproduction of nitric oxide and the release of TNF and IL-6 in LPS-induced macrophages. Mar Drugs 8:2605–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanomsub B, Watcharachaipong T, Chotelersak K, Arunrattiyakorn P, Nitoda T, Kanzaki H (2004) Monoacylglycerols: Glycolipids biosurfactants produced by a thermotolerant yeast, Candida ishiwadae. J Appl Microbiol 96:588–592

    Article  CAS  PubMed  Google Scholar 

  • Thavasi R (2011) Microbial biosurfactants: from an environmental applications point of view. J Bioremediation Biodegradation 2(5):1000104e

    Article  CAS  Google Scholar 

  • Velho RV, Medina LF, Segalin J, Brandelli A (2011) Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbial (Praha) 56:297–303

    Article  CAS  Google Scholar 

  • Velikonja J, Kosaric N (1993) Biosurfactants in food applications. In: Kosaric N, Sukun FV (eds) Biosurfactants production: properties: applications. CRC Press, New York, pp 419–448

    Google Scholar 

  • Vijayakumar S, Sarvana V (2015) Biosurfactants-types, sources and applications. Res J Microbiol 10(5):181–192

    Article  CAS  Google Scholar 

  • Wattanaphon IIT, Kerdsin A, Thammacharoen C, Sangvanich P, Vangnai AS (2008) A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. J Appl Microbiol 105:416–423

    Article  CAS  PubMed  Google Scholar 

  • Whang LM, Liu PWG, Ma CC, Cheng SS (2008) Application of biosurfactants, rhamnolipid and surfaction, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163

    Article  CAS  PubMed  Google Scholar 

  • White JC, Parrish ZD, Gent MP, Lannucci BW, Eitzer BD, Isleyen M, Mattina MI (2006) Soil amendments, plant age, and intercropping impact p, p- DDE bioavailability to Cucurbita pepo. J Environ Qual 35:992–1000

    Article  CAS  PubMed  Google Scholar 

  • Willumsen P, Nielsen J, Karlson U (2001) Degradation of phenanthrene-analogue azaarenes by Mycobacterium gilvum strain LB307T under aerobic conditions. Appl Microbiol Biotechnol 56:539–544

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Wu Y, Qian X, Meng Q (2005) Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J Zhejiang Univ Sci B6:725–730

    Article  Google Scholar 

  • Zhang C, Wang S, Yan Y (2011) Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresources Technology 102:7139–7146

    Article  CAS  Google Scholar 

  • Zottola EA (1994) Microbial attachment and biofilm formation: a new problem for the food industry? Food Technol 48:107–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjeet Kumar or Jayanta Kumar Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahanti, P., Kumar, S., Patra, J.K. (2017). Biosurfactants: An Agent to Keep Environment Clean. In: Patra, J., Vishnuprasad, C., Das, G. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6847-8_18

Download citation

Publish with us

Policies and ethics