Skip to main content

An introduction to Quantum Spin Liquids

  • Chapter
  • First Online:
Topology and Condensed Matter Physics

Part of the book series: Texts and Readings in Physical Sciences ((TRiPS,volume 19))

  • 4288 Accesses

Abstract

Quantum spin liquids represent phases of condensed matter that fall beyond the paradigm of Landau’s symmetry based classification. They, instead, are characterized by the presence of subtle patterns of long-range many-body quantum entanglement. An ever growing list of experiments suggests that understanding such phases of matter forms a crucial step towards the development of a new and general framework of condensed matter systems. We provide an introduction to such physics in the context of quantum spin liquids that would be relevant to frustrated quantum magnets. We take two examples, (1) the two dimensional Z2 quantum spin liquid in Kitaev’s Toric code model, and (2) the three dimensional U(1) quantum spin liquid in the XXZ pyrochlore system, both for spin\( - \frac{1}{2} \) 1 2, to explain some of the inherent properties of quantum spin liquids, as we know them. The aim is to contrast these properties with those of conventional phases like the magnetically ordered ones. These differences range from novel excitations such as mutual semions in the form of Ising electric and magnetic charges in Toric code to emergent photons and fractionalized spin\( - \frac{1}{2} \) excitations in XXZ pyrochlores. These two examples have been chosen to bring out the differences clearly, without going into the general structure of emergent gauge theories in quantum spin liquids. However, all the principles introduced here have very general applications.-

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. Anderson Basic notions of condensed matter physics (Benjamin-Cummings, 1984).

    Google Scholar 

  2. S. Ma, Modern theory of critical phenomena, 46 (Da Capo Press, 2000).

    Google Scholar 

  3. T. Senthil, International Journal of Modern Physics B 20, 2603 (2006).

    Google Scholar 

  4. K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

    Google Scholar 

  5. D. C. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    Google Scholar 

  6. X.-G. Wen, Quantum Field Theory of Many-body Systems (Oxford University Press Inc., New York. ISBN 019853094., 2004).

    Google Scholar 

  7. P. A. Lee, Science (New York, NY) 321, 1306 (2008).

    Google Scholar 

  8. L. Balents, Nature 464, 199 (2010).

    Google Scholar 

  9. P. W. Anderson, Materials Research Bulletin 8, 153 (1973).

    Google Scholar 

  10. X.-G. Wen, Physical Review B 65, 165113 (2002).

    Google Scholar 

  11. G. Baskaran, Z. Zou, and P. Anderson, Solid state communications 63, 973 (1987).

    Google Scholar 

  12. A. Y. Kitaev Annals of Physics 303, 2 (2003).

    Google Scholar 

  13. A. Kitaev Annals of Physics 321, 2 (2006).

    Google Scholar 

  14. M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69, 064404 (2004).

    Google Scholar 

  15. A. Auerbach, Interacting electrons and quantum magnetism (Springer Science & Business Media, 2012).

    Google Scholar 

  16. A. Zee, Quantum field theory in a nutshell (Princeton university press, 2010).

    Google Scholar 

  17. V. Berezinskii, Soviet Journal of Experimental and Theoretical Physics 32, 493 (1971).

    Google Scholar 

  18. V. Berezinskii, Soviet Journal of Experimental and Theoretical Physics 34, 610 (1972).

    Google Scholar 

  19. J. M. Kosterlitz and D. J. Thouless, Journal of Physics C: Solid State Physics 6, 1181 (1973).

    Google Scholar 

  20. N. D. Mermin Reviews of Modern Physics 51, 591 (1979).

    Google Scholar 

  21. D. Thouless, Topological quantum numbers in nonrelativistic physics (World Scientific Publishing Co Pte Ltd, 1997).

    Google Scholar 

  22. J. T. Chalker, Introduction to frustrated magnetism (Springer, 2011) pp. 3–22.

    Google Scholar 

  23. E. F. Shender, Sov. Phys. JETP 56, 178 (1982).

    Google Scholar 

  24. P. Fazekas and P. W. Anderson, Phil. Mag. 30, 23 (1974).

    Google Scholar 

  25. J. D. Jackson, Classical electrodynamics (Wiley, 1999).

    Google Scholar 

  26. O. Benton, O. Sikora, and N. Shannon, Phys. Rev. B 86, 075154 (2012).

    Google Scholar 

  27. R. Savit, Rev. Mod. Phys. 52, 453 (1980).

    Google Scholar 

  28. J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).

    Google Scholar 

  29. J. J. Sakurai and J. Napolitano, Modern quantum mechanics (Addison-Wesley, 2011).

    Google Scholar 

  30. C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature 451, 42 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhro Bhattacharjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd. and Hindustan Book Agency

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharjee, S. (2017). An introduction to Quantum Spin Liquids. In: Bhattacharjee, S., Mj, M., Bandyopadhyay, A. (eds) Topology and Condensed Matter Physics. Texts and Readings in Physical Sciences, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-10-6841-6_17

Download citation

Publish with us

Policies and ethics