Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 471 Accesses

Abstract

The flow transition has a critical impact on aerodynamic heating, drag, and vehicle operation because turbulent flows generate tremendously higher friction and heating to the vehicles than laminar ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mack, L.M.: Linear stability theory and the problem of supersonic boundary-layer transition. AIAA J 13(3), 278–289 (1975)

    Article  Google Scholar 

  2. Mack, L.M.: Boundary-layer linear stability theory. AGARD Report No 709 , Special Course on Stability and Transition of Laminar Flows (1984)

    Google Scholar 

  3. Federov, A., Tumin, A.: High-speed boundary-layer instability: Old terminology and a new framework. AIAA J. 49(8), 1647–1657 (2011)

    Article  Google Scholar 

  4. Fedorov, A.: Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 79–95 (2011). doi:10.1146/annurev-fluid-122109-160750

    Article  MATH  MathSciNet  Google Scholar 

  5. Zhong, X., Wang, X.: Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Ann. Rev. Fluid Mech. 44, 527–561 (2012). doi:10.1146/annurev-fluid-120710-101208

    Article  MATH  MathSciNet  Google Scholar 

  6. Theofilis, V.: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39(4), 249–315 (2003). doi:10.1016/S0376-0421(02)00030-1, http://www.sciencedirect.com/science/article/pii/S0376042102000301

  7. Theofilis, V.: Global linear instability. Ann. Rev. Fluid Mech. 43, 319–352 (2011). doi:10.1146/annurev-fluid-122109-160705, http://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-122109-160705

  8. Reed, H.L., Saric, W.S., Arnal, D.: Linear stability theory applied to boundary layers. Annual Review of Fluid Mechanics 28, 389–428 (1996). doi:10.1146/annurev.fl.28.010196.002133. http://www.annualreviews.org/doi/abs/10.1146/annurev.fl.28.010196.002133

  9. Fu, S., Wang, L.: Rans modeling of high-speed aerodynamic flow transition with consideration of stability theory. Prog. Aerosp Sci. 58, 36–59 (2013). doi:10.1016/j.paerosci.2012.08.004, http://www.sciencedirect.com/science/article/pii/S0376042112000851

  10. Ma, Y., Zhong, X.: Receptivity of a supersonic boundary layer over a flat plate. Part 2. Receptivity to free-stream sound. J. Fluid Mech. 488, 79–121 (2003). doi:10.1017/S0022112003004798, http://journals.cambridge.org/article_S0022112003004798

  11. Ma, Y., Zhong, X.: Receptivity of a supersonic boundary layer over a flat plate. part 3. effects of different types of free-stream disturbances. J. Fluid Mech. 532, 63–109 (2005). doi:10.1017/S0022112005003836, http://journals.cambridge.org/article_S0022112005003836

  12. Fedorov, A.V.: Receptivity of a high-speed boundary layer to acoustic disturbances. J. Fluid Mech. 491 101–129 (2003). doi:10.1017/S0022112003005263, http://journals.cambridge.org/article_S0022112003005263

  13. Fedorov, A.V., Ryzhov, A.A., Soudakov, V.G., Utyuzhnikov, S.V.: Receptivity of a high-speed boundary layer to temperature spottiness. J. Fluid Mech. 722 533–553 (2013). doi:10.1017/jfm.2013.111, http://journals.cambridge.org/article_S0022112013001110

  14. Tempelmann, D., Schrader, L.U., Hanifi, A., Brandt, L., Henningson, D.S.: Swept wing boundary-layer receptivity to localized surface roughness. J. Fluid Mech. 711, 516–544 (2012). doi:10.1017/jfm.2012.405, http://journals.cambridge.org/article_S0022112012004053

  15. Fedorov, A.V.: Receptivity of a supersonic boundary layer to solid particulates. J. Fluid Mech. 737, 105–131 (2013). doi:10.1017/jfm.2013.564, http://journals.cambridge.org/article_S0022112013005648

  16. Ruban, A.I., Bernots, T., Pryce, D.: Receptivity of the boundary layer to vibrations of the wing surface. J. Fluid Mech. 723 480–528 (2013). doi:10.1017/jfm.2013.119, http://journals.cambridge.org/article_S0022112013001195

  17. Kovasznay, L.S.G.: Turbulence in supersonic flow. J. Aeronaut. Sci. 20(10), 657–674 (1953)

    Article  MATH  Google Scholar 

  18. Ma, Y., Zhong, X.: Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions. J. Fluid Mech. 488, 31–78 (2003). doi:10.1017/S0022112003004786, http://journals.cambridge.org/article_S0022112003004786

  19. Fedorov, A.V., Khokhlov, A.P.: Prehistory of instability in a hypersonic boundary layer. Theor. Comput. Fluid Dyn. 14(6), 359–375 (2001). doi:10.1007/s001620100038, http://dx.doi.org/10.1007/s001620100038

  20. Federov, A., Tumin, A.: Initial-value problem for hypersonic boundary-layer flows. AIAA J. 41(3), 379–389 (2003)

    Article  Google Scholar 

  21. Gushchin, V., Fedorov, A.: Excitation and development of unstable disturbances in a supersonic boundary layer. Fluid Dyn. 25(3), 344–352 (1990). doi:10.1007/BF01049814, http://dx.doi.org/10.1007/BF01049814

  22. Lifshitz, Y., Degani, D., Tumin, A.: Study of discrete modes branching in high-speed boundary layers. AIAA J. 50(10), 2202–2210 (2012)

    Article  Google Scholar 

  23. Görtler, H.: Über eine dreidimensionale instabilität laminarer grenzschichten an konkaven wänden. Ges. D. Wiss. Göttingen, Nachr 1(2) (1940) (Translated as On the three-dimensional instability of laminar boundary layers on concave walls. NACA TM 1375, 1954)

    Google Scholar 

  24. Herbert, T.: On the stability of the boundary layer along a concave wall. Archiwum mechaniki stosowanej 28(5–6), 1039–1055 (1976)

    MATH  Google Scholar 

  25. Hall, P.: Görtler vortices in growing boundary layers: the leading edge receptivity problem, linear growth and the nonlinear breakdown stage. Mathematika 37, 151–189 (1990). doi:10.1112/S0025579300012894

    Article  MATH  MathSciNet  Google Scholar 

  26. Floryan, J.: On the Görtler instability of boundary layers. Prog. Aerosp. Sci. 28(3), 235–271 (1991). doi:10.1016/0376-0421(91)90006-P

    Article  MATH  MathSciNet  Google Scholar 

  27. Saric, W.S.: Görtler vortices. Annu. Rev. Fluid Mech. 26(1), 379–409 (1994). doi:10.1146/annurev.fl.26.010194.002115

    Article  MATH  Google Scholar 

  28. Bassom, A.P., Seddougui, S.O.: Receptivity mechanisms for Görtler vortex modes. Theor. Comput. Fluid Dyn. 7(5), 317–339 (1995). doi:10.1007/BF00312412

    Article  MATH  Google Scholar 

  29. Denier, J.P., Hall, P., Seddougui, S.O.: On the receptivity problem for gortler vortices: Vortex motions induced by wall roughness. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 335(1636), 51–85 (1991). doi:10.1098/rsta.1991.0036

    Article  MATH  Google Scholar 

  30. Bassom, A.P., Hall, P.: The receptivity problem for O(1) wavelength gortler vortices. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 446 no. 1928, pp. 499–516 (1994). doi:10.1098/rspa.1994.0117

  31. Luchini, P., Bottaro, A.: Görtler vortices: a backward-in-time approach to the receptivity problem. J. Fluid Mech. 363, 1–23 (1998). doi:10.1017/S0022112098008970

    Article  MATH  MathSciNet  Google Scholar 

  32. Schrader, L.u., Brandt, L., Zaki, T.A.: Receptivity, instability and breakdown of Görtler flow. J. Fluid Mech. 682, 362–396 (2011). doi:10.1017/jfm.2011.229

  33. Wu, X., Zhao, D., Luo, J.: Excitation of steady and unsteady Görtler vortices by free-stream vortical disturbances. J. Fluid Mech. 682, 66–100 (2011). doi:10.1017/jfm.2011.224

    Article  MATH  MathSciNet  Google Scholar 

  34. Hall, P.: Taylor- Görtler vortices in fully developed or boundary-layer flows: linear theory. J. Fluid Mech. 124, 475–494 (1982). doi:10.1017/S0022112082002596

    Article  MATH  Google Scholar 

  35. Hall, P.: The linear development of Görtler vortices in growing boundary layers. J. Fluid Mech. 130, 41–58 (1983). doi:10.1017/S0022112083000968

    Article  MATH  MathSciNet  Google Scholar 

  36. Bottaro, A., Luchini, P.: Görtler vortices: Are they amenable to local eigenvalue analysis? Eur. J. Mech. B/Fluids 18(1), 47–65 (1999). doi:10.1016/S0997-7546(99)80005-3

    Article  MATH  MathSciNet  Google Scholar 

  37. Day, H.P., Herbert, T., Saric, W.S.: Comparing local and marching analysis of Görtler instability. AIAA J. 28(6), 1010–1015 (1990)

    Article  Google Scholar 

  38. Goulpié, P., Klingmann, B.G.B., Bottaro, A.: Görtler vortices in boundary layers with streamwise pressure gradient: Linear theory. Phys. Fluids 8(2), 451–459 (1996). doi:10.1063/1.868799

    Article  MATH  MathSciNet  Google Scholar 

  39. Hall, P., Fu, Y.: On the Görtler vortex instability mechanism at hypersonic speeds. Theor. Comput. Fluid Dyn. 1(3), 125–134 (1989). doi:10.1007/BF00417916

    Article  MATH  Google Scholar 

  40. Spall, R.E., Malik, M.R.: Goertler vortices in supersonic and hypersonic boundary layers. Phys. Fluids A: Fluid Dyn. 1(11), 1822–1835 (1989). doi:10.1063/1.857508

    Article  MATH  Google Scholar 

  41. Fu, Y., Hall, P.: Nonlinear development and secondary instability of large-amplitude Görtler vortices in hypersonic boundary-layers. Euro. J. Mech. B-Fluids 11(4), 465–510 (1992)

    MATH  Google Scholar 

  42. Fu, Y., Hall, P.: Effects of Görtler vortices, wall cooling and gas dissociation on the rayleigh instability in a hypersonic boundary layer. J. Fluid Mech. 247, 503–525 (1993). doi:10.1017/S0022112093000540

    Article  MATH  MathSciNet  Google Scholar 

  43. Dando, A.H., Seddougui, S.O.: The compressible Görtler problem in two-dimensional boundary layers. IMA J. Appl. Math. 51(1), 27–67 (1993). doi:10.1093/imamat/51.1.27

    Article  MATH  MathSciNet  Google Scholar 

  44. Ren, J., Fu, S.: Competition of the multiple Görtler modes in hypersonic boundary layer flows. Sci. China Phys. Mech. Astron. 57(6), 1178–1193 (2014). doi:10.1007/s11433-014-5454-9

    Article  Google Scholar 

  45. Luca, L., Cardone, G., Aymer de la Chevalerie, D., Fonteneau, A.: Goertler instability of a hypersonic boundary layer. Exp. Fluids 16(1), 10–16 (1993). doi:10.1007/BF00188500

    Article  Google Scholar 

  46. de la Chevalerie, D., Fonteneau, A., Luca, L.D., Cardone, G.: Görtler-type vortices in hypersonic flows: the ramp problem. Exp. Therm. Fluid Sci. 15(2), 69–81 (1997). doi:10.1016/S0894-1777(97)00051-4

    Article  Google Scholar 

  47. Schrijer, F.: Investigation of Görtler vortices in a hypersonic double compression ramp flow by means of infrared thermography. Quant. Infrared Thermogr. J. 7(2), 201–215 (2010). doi:10.3166/qirt.7.201-215

    Article  Google Scholar 

  48. Chen, F.J., Wilkinson, S.P., Beckwith, I.E.: Görtler instability and hypersonic quiet nozzle design. J. Spacecr. Rocket. 30(2), 170–175 (1993)

    Article  Google Scholar 

  49. Schneider, S.P.: Design of a mach-6 quiet-flow wind-tunnel nozzle using the e**n method for transition estimation. In: 36th AIAA Aerospace Sciences Meeting and Exhibit, AIAA- 1998-0547 (1998)

    Google Scholar 

  50. Schneider, S.P.: Development of hypersonic quiet tunnels. J. Spacecr. Rocket. 45(4), 641–664 (2008). doi:10.2514/1.34489

    Article  Google Scholar 

  51. Volino, R.J., Simon, T.W.: Spectral measurements in transitional boundary layers on a concave wall under high and low free-stream turbulence conditions. J. Turbomach. 122, 450–457 (2000)

    Article  Google Scholar 

  52. Boiko, A., Ivanov, A., Kachanov, Y., Mischenko, D.: Quasi-steady and unsteady goertler vortices on concave wall: experiment and theory. In: J. Palma., A. Lopes (eds.) Advances in Turbulence XI, Springer Proceedings Physics, vol. 117, pp. 173–175. Springer, Berlin (2007). doi:10.1007/978-3-540-72604-3_54, http://dx.doi.org/10.1007/978-3-540-72604-3_54

  53. Boiko, A., Ivanov, A., Kachanov, Y., Mischenko, D.: Steady and unsteady Görtler boundary-layer instability on concave wall. Euro. J. Mech. B/Fluids 29(2), 61–83 (2010)

    Article  MATH  Google Scholar 

  54. Landahl, M.T.: Wave breakdown and turbulence. SIAM J. Appl. Math. 28(4), 735–756 (1975). doi:10.1137/0128061, http://dx.doi.org/10.1137/0128061

  55. Landahl, M.T.: A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243–251 (1980). doi:10.1017/S0022112080000122, http://journals.cambridge.org/article_S0022112080000122

  56. Ellingsen, T., Palm, E.: Stability of linear flow. Phys. Fluids (1958-1988) 18(4), 487–488 (1975). doi:10.1063/1.861156

  57. Hultgren, L.S., Gustavsson, L.H.: Algebraic growth of disturbances in a laminar boundary layer. Phys. Fluids (1958-1988) 24(6), 1000–1004 (1981). doi:10.1063/1.863490

  58. Andersson, P., Berggren, M., Henningson, D.S.: Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11(1), 134–150 (1999). doi:10.1063/1.869908, http://scitation.aip.org/content/aip/journal/pof2/11/1/10.1063/1.869908

  59. Luchini, P.: Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289–309 (2000). doi:10.1017/S0022112099007259, http://journals.cambridge.org/article_S0022112099007259

  60. Leib, S.J., Wundrow, D.W., Goldstein, M.E.: Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169–203 (1999). doi:10.1017/S0022112098003504, http://journals.cambridge.org/article_S0022112098003504

  61. Ricco, P., Wu, X.: Response of a compressible laminar boundary layer to free-stream vortical disturbances. J. Fluid Mech. 587, 97–138 (2007). doi:10.1017/S0022112007007070, http://journals.cambridge.org/article_S0022112007007070

  62. Morkovin, M.: On roughness induced transition: Facts, views, and speculations. In: Hussaini M., Voigt R. (eds.) Instability and Transition, ICASE/NASA LaRC Series, pp. 281–295. Springer US (1990). doi:10.1007/978-1-4612-3430-2_318, doi:10.1007/978-1-4612-3430-2_34

  63. Joslin, R.D., Grosch, C.E.: Growth characteristics downstream of a shallow bump: Computation and experiment. Phys. Fluids 7(12), 3042–3047 (1995). doi:10.1063/1.868680, http://scitation.aip.org/content/aip/journal/pof2/7/12/10.1063/1.868680

  64. Tumin, A., Reshotko, E.: Receptivity of a boundary-layer flow to a three-dimensional hump at finite reynolds numbers. Phys. Fluids. 17(9) (2005). doi:10.1063/1.2033907

  65. Hanifi, A., Schmid, P.J., Henningson, D.S.: Transient growth in compressible boundary layer flow. Phys. Fluids 8(3), 826–837 (1996). doi:10.1063/1.868864, http://scitation.aip.org/content/aip/journal/pof2/8/3/10.1063/1.868864

  66. Tumin, A., Reshotko, E.: Spatial theory of optimal disturbances in boundary layers. Phys. Fluids 13(7), 2097–2104 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  67. Tumin, A., Reshotko, E.: Optimal disturbances in compressible boundary layers. AIAA J. 41(12), 2357–2363 (2003)

    Article  Google Scholar 

  68. De Tullio, N., Paredes, P., Sandham, N.D., Theofilis, V.: Laminar-turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613–646 (2013). doi:10.1017/jfm.2013.520

    Article  MATH  MathSciNet  Google Scholar 

  69. Swearingen, J.D., Blackwelder, R.F.: The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255–290 (1987). doi:10.1017/S0022112087002337

    Article  Google Scholar 

  70. Sabry, A.S., Liu, J.T.C.: Longitudinal vorticity elements in boundary layers: nonlinear development from initial görtler vortices as a prototype problem. J. Fluid Mech. 231, 615–663 (1991). doi:10.1017/S0022112091003543

    Article  MATH  Google Scholar 

  71. Hall, P., Horseman, N.J.: The linear inviscid secondary instability of longitudinal vortex structures in boundary layers. J. Fluid Mech. 232, 357–375 (1991). doi:10.1017/S0022112091003725

    Article  MATH  MathSciNet  Google Scholar 

  72. Yu, X., Liu, J.T.C.: The secondary instability in Goertler flow. Phys. Fluids A: Fluid Dyn. 3(8), 1845–1847 (1991). doi:10.1063/1.857913

    Article  MATH  Google Scholar 

  73. Yu, X., Liu, J.T.C.: On the mechanism of sinuous and varicose modes in three-dimensional viscous secondary instability of nonlinear Görtler rolls. Phys. Fluids 6(2), 736–750 (1994). doi:10.1063/1.868312

    Article  MATH  Google Scholar 

  74. Liu, W., Domaradzki, J.A.: Direct numerical simulation of transition to turbulence in Görtler flow. J. Fluid Mech. 246, 267–299 (1993). doi:10.1017/S0022112093000126

    Article  MATH  Google Scholar 

  75. Park, D.S., Huerre, P.: Primary and secondary instabilities of the asymptotic suction boundary layer on a curved plate. J. Fluid Mech. 283, 249–272 (1995). doi:10.1017/S0022112095002308

    Article  MATH  Google Scholar 

  76. Li, F., Malik, M.R.: Fundamental and subharmonic secondary instabilities of Görtler vortices. J. Fluid Mech. 297, 77–100 (1995). doi:10.1017/S0022112095003016

    Article  MATH  MathSciNet  Google Scholar 

  77. Bottaro, A., Kingmann, B.: On the linear breakdown of Görtler vortices. Euro. J. Mech. B Fluids 15(3), 301–330 (1996)

    Google Scholar 

  78. Tandiono, Winoto, S.H., Shah, D.A.: On the linear and nonlinear development of Görtler vortices. Phys. Fluids 20(9), 094,103 (2008). doi:10.1063/1.2980349

  79. Tandiono, Winoto, S.H., Shah, D.A.: Wall shear stress in Görtler vortex boundary layer flow. Phys. Fluids 21(8), 084106 (2009). doi:10.1063/1.3205428

  80. Andersson, P., Brandt, L., Bottaro, A., Henningson, D.S.: On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 29–60 (2001). doi:10.1017/S0022112000002421, http://journals.cambridge.org/article_S0022112000002421

  81. Asai, M., Minagawa, M., Nishioka, M.: The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech. 455, 289–314 (2002). doi:10.1017/S0022112001007431

    Article  MATH  Google Scholar 

  82. Ren, J., Fu, S.: Floquet analysis of fundamental, subharmonic and detuned secondary instabilities of Görtler vortices. Sci. China Phys. Mech. Astron. 57(3), 555–561 (2014). doi:10.1007/s11433-014-5396-2

    Article  Google Scholar 

  83. Whang, C., Zhong, X.: Secondary Görtler instability in hypersonic boundary layers. In:39th Aerospace Sciences Meeting Exhibit (2001). AIAA-2001-0273

    Google Scholar 

  84. Li, F., Choudhari, M., Chang, C.L., Wu, M., Greene, P.: Development and breakdown of Görtler vortices in high speed boundary layers. In: 50th Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2010). doi: 10.2514/6.2010-705. AIAA-2010-0705

  85. Choi, K.S.: Fluid dynamics: The rough with the smooth. Nature 440(8), 754 (2006). doi:10.1038/440754a

    Article  Google Scholar 

  86. Cossu, C., Brandt, L., Bagheri, S., Henningson, D.S.: Secondary threshold amplitudes for sinuous streak breakdown. Phys. Fluids 23(7), 074103 (2011). doi:10.1063/1.3614480

  87. Cossu, C., Brandt, L.: Stabilization of tollmien-schlichting waves by finite amplitude optimal streaks in the blasius boundary layer. Phys. Fluids 14(8), L57–L60 (2002). doi:10.1063/1.1493791

    Article  MATH  Google Scholar 

  88. Cossu, C., Brandt, L.: On tollmien-schlichting-like waves in streaky boundary layers. Euro. J. Mech. B/Fluids 23(6), 815–833 (2004). doi:10.1016/j.euromechflu.2004.05.001

    Article  MATH  MathSciNet  Google Scholar 

  89. Bagheri, S., Hanifi, A.: The stabilizing effect of streaks on tollmien-schlichting and oblique waves: A parametric study. Phys. Fluids 19(7), 078103 (2007). doi:10.1063/1.2746047

  90. Fransson, J.H.M., Brandt, L., Talamelli, A., Cossu, C.: Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Phys. Fluids 16(10), 3627–3638 (2004). doi:10.1063/1.1773493

    Article  MATH  Google Scholar 

  91. Fransson, J.H.M., Brandt, L., Talamelli, A., Cossu, C.: Experimental study of the stabilization of tollmien-schlichting waves by finite amplitude streaks. Phys. Fluids 17(5), 054110 (2005). doi:10.1063/1.1897377

  92. Fransson, J.H.M., Talamelli, A., Brandt, L., Cossu, C.: Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett. 96, 064501 (2006). doi:10.1103/PhysRevLett.96.064501

  93. Fransson, J.H.M., Talamelli, A.: On the generation of steady streamwise streaks in flat-plate boundary layers. J. Fluid Mech. 698, 211–234 (2012). doi:10.1017/jfm.2012.80

    Article  MATH  Google Scholar 

  94. Shahinfar, S., Sattarzadeh, S.S., Fransson, J.H.M., Talamelli, A.: Revival of classical vortex generators now for transition delay. Phys. Rev. Lett. 109, 074501 (2012). doi:10.1103/PhysRevLett.109.074501

  95. Shahinfar, S., Fransson, J.H.M., Sattarzadeh, S.S., Talamelli, A.: Scaling of streamwise boundary layer streaks and their ability to reduce skin-friction drag. J. Fluid Mech. 733, 1–32 (2013). doi:10.1017/jfm.2013.431

    Article  MATH  MathSciNet  Google Scholar 

  96. Sattarzadeh, S.S., Fransson, J.H.: On the scaling of streamwise streaks and their efficiency to attenuate tollmien-schlichting waves. Exp. Fluids 56(3), 58 (2015). doi:10.1007/s00348-015-1930-x

    Article  Google Scholar 

  97. Siconolfi, L., Camarri, S., Fransson, J.H.M.: Boundary layer stabilization using free-stream vortices. J.Fluid Mech. 764, R2 (2015). doi:10.1017/jfm.2014.731

    Article  Google Scholar 

  98. Shahinfar, S., Sattarzadeh, S.S., Fransson, J.H.M.: Passive boundary layer control of oblique disturbances by finite-amplitude streaks. J. Fluid Mech. 749, 1–36 (2014). doi:10.1017/jfm.2014.211

    Article  MATH  Google Scholar 

  99. Saric, W.S., Carillo, R.B., Reibert, M.S.: Leading-edge roughness as a transition control mechanism. In: AIAA Paper 98-0781 (1998)

    Google Scholar 

  100. Saric, W.S., Reed, H.L.: Supersonic laminar flow control on swept wings using distributed roughness. In: AIAA paper 2002-0147 (2002)

    Google Scholar 

  101. Hosseini, S.M., Tempelmann, D., Hanifi, A., Henningson, D.S.: Stabilization of a swept-wing boundary layer by distributed roughness elements. J. Fluid Mech. 718, R1 (2013). doi:10.1017/jfm.2013.33

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ren, J. (2018). Introduction. In: Secondary Instabilities of Görtler Vortices in High-Speed Boundary Layers. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6832-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6832-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6831-7

  • Online ISBN: 978-981-10-6832-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics