Single-Molecule Recognition and Force Measurements by AFM

Part of the Springer Theses book series (Springer Theses)


Utilizing AFM to investigate the individual molecular interactions was investigated. Rituximab (an anti-CD20 monoclonal antibody) was linked to the surface of AFM tip via PEG spacers, and the tip functionalization was confirmed by SEM imaging and fluorescence staining. With rituximab-conjugated tips, the CD20-rituximab specific interactions were probed on purified CD20s coated on mica and on native CD20s on the surface lymphoma Raji cell, showing the different molecular binding forces of purified CD20s and native CD20s.


  1. 1.
    Li M, Liu L, Xi N et al (2014) Progress in measuring biophysical properties of membrane proteins with AFM single-molecule force spectroscopy. Chin Sci Bull 59:2717–2725CrossRefGoogle Scholar
  2. 2.
    Bippes CA, Muller DJ (2011) High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Rep Prog Phys 74:086601ADSCrossRefGoogle Scholar
  3. 3.
    Fotiadis D (2012) Atomic force microscopy for the study of membrane proteins. Curr Opin Biotechnol 23:510–515CrossRefGoogle Scholar
  4. 4.
    Yildirim MA, Goh KI, Cusick ME et al (2007) Drug-target network. Nat Biotechnol 25:1119–1126CrossRefGoogle Scholar
  5. 5.
    Baker M (2010) Making membrane proteins for structure: a trillion tiny tweaks. Nat Methods 7:429–433CrossRefGoogle Scholar
  6. 6.
    Pieper U, Schlessinger A, Kloppmann E et al (2013) Coordinating the impact of structural genomics on the human α-helical transmembrane proteome. Nat Struct Mol Biol 20:135–138CrossRefGoogle Scholar
  7. 7.
    Hopf TA, Colwell LJ, Sheridan R et al (2012) Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149:1607–1621CrossRefGoogle Scholar
  8. 8.
    Robertson JWF, Kasianowicz JJ, Banerjee S (2012) Analytical approaches for studying transporters, channels and porins. Chem Rev 112:6227–6249CrossRefGoogle Scholar
  9. 9.
    Zhang X, Ren W, Decaen P et al (2012) Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 486:130–134ADSCrossRefGoogle Scholar
  10. 10.
    Ma D, Lu P, Yan C et al (2012) Structure and mechanism of a glutamate-GABA antiporter. Nature 483:632–636ADSCrossRefGoogle Scholar
  11. 11.
    Bill RM, Henderson PJF, Iwata S et al (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29:335–340CrossRefGoogle Scholar
  12. 12.
    Moraes I, Evans G, Sanchez-Weatherby J et al (2014) Membrane protein structure determination-the next generation. Biochim Biophys Acta 1838:78–87CrossRefGoogle Scholar
  13. 13.
    Doerr A (2009) Membrane protein structures. Nat Methods 6:35CrossRefGoogle Scholar
  14. 14.
    Oddershede LB (2012) Force probing of individual molecules inside the living cell is now a reality. Nat Chem Biol 8:879–886CrossRefGoogle Scholar
  15. 15.
    Phillips R, Ursell T, Wiggins P et al (2009) Emerging roles for lipids in shaping membrane-protein function. Nature 459:379–385ADSCrossRefGoogle Scholar
  16. 16.
    Coskun U, Simons K (2011) Cell membranes: the lipid perspective. Structure 19:1543–1548CrossRefGoogle Scholar
  17. 17.
    Groves JT, Kuriyan J (2010) Molecular mechanisms in signal transduction at the membrane. Nat Struct Mol Biol 17:659–665CrossRefGoogle Scholar
  18. 18.
    Fu R, Wang X, Li C et al (2011) In situ structural characterization of a recombinant protein in native Escherichia coli membranes with solid-state magic-angle-spinning NMR. J Am Chem Soc 133:12370–12373CrossRefGoogle Scholar
  19. 19.
    Ando T, Uchihashi T, Kodera N (2013) High-speed AFM and applications to biomolecular systems. Ann Rev Biophys 42:393–414CrossRefGoogle Scholar
  20. 20.
    Li M, Dang D, Liu L et al (2017) Imaging and force recognition of single molecular behaviors using atomic force microscopy. Sensors 17:200CrossRefGoogle Scholar
  21. 21.
    Casuso I, Khao J, Chami M et al (2012) Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nat Nanotechnol 7:525–529ADSCrossRefGoogle Scholar
  22. 22.
    Muller DJ, Helenius J, Alsteens D et al (2009) Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 5:383–390CrossRefGoogle Scholar
  23. 23.
    Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417ADSCrossRefGoogle Scholar
  24. 24.
    Hinterdorfer P, Baumgartner W, Gruber HJ et al (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA 93:3477–3481ADSCrossRefGoogle Scholar
  25. 25.
    Allen S, Chen X, Davies J et al (1997) Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry 36:7457–7463CrossRefGoogle Scholar
  26. 26.
    Gaumgartner W, Hinterdorfer P, Ness W et al (2000) Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci USA 97:4005–4010ADSCrossRefGoogle Scholar
  27. 27.
    Zhang X, Bogorin DF, Moy VT (2004) Molecular basis of the dynamic strength of the sialyl Lewis X-selectin interaction. ChemPhysChem 5:175–182CrossRefGoogle Scholar
  28. 28.
    Puntheeranurak T, Wildling L, Gruber HJ et al (2006) Ligands on the string: single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT1 in living cells. J Cell Sci 119:2960–2967CrossRefGoogle Scholar
  29. 29.
    Yu J, Wang Q, Shi X et al (2007) Single-molecule force spectroscopy study of interaction between transforming growth factor β1 and its receptor in living cells. J Phys Chem B 111:13619–13625CrossRefGoogle Scholar
  30. 30.
    Shi X, Xu L, Yu J et al (2009) Study of inhibition effect of Herceptin on interaction between Heregulin and ErbB receptors HER3/HER2 by single-molecule force spectroscopy. Exp Cell Res 315:2847–2855CrossRefGoogle Scholar
  31. 31.
    Carvalho FA, Connell S, Miltenberger-Miltenyi G et al (2010) Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano 4:4609–4620CrossRefGoogle Scholar
  32. 32.
    Zhang J, Wu G, Song C et al (2012) Single molecular recognition force spectroscopy study of a luteinizing hormone-releasing hormone analogue as a carcinoma target drug. J Phys Chem B 116:13331–13337CrossRefGoogle Scholar
  33. 33.
    Li Y, Qiao H, Yan W et al (2013) Molecular recognition force spectroscopy study of the dynamic interaction between aptamer GBI-10 and extracellular matrix protein tenascin-C on human glioblastoma cell. J Mol Recogn 26:46–50CrossRefGoogle Scholar
  34. 34.
    Li M, Liu L, Xi N et al (2015) Biological applications of a nanomanipulator based on AFM: in situ visualization and quantification of cellular behaviors at the single-molecule level. IEEE Nanotechnol Mag 9:25–35CrossRefGoogle Scholar
  35. 35.
    Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355CrossRefGoogle Scholar
  36. 36.
    Dupres V, Menozzi FD, Locht C et al (2005) Nanoscale mapping and functional analysis of individual adhesions on living bacteria. Nat Methods 2:515–520CrossRefGoogle Scholar
  37. 37.
    Carvalho FA, Santos NC (2012) Atomic force microscopy-based force spectroscopy-biological and biomedical applications. IUBMB Life 64:465–472CrossRefGoogle Scholar
  38. 38.
    Grandbois M, Beyer M, Rief M et al (1999) How strong is a covalent bond. Science 283:1727–1730ADSCrossRefGoogle Scholar
  39. 39.
    Fuhrmann A, Ros R (2010) Single-molecule force spectroscopy: a method for quantitative analysis of ligand-receptor interactions. Nanomedicine 5:657–666CrossRefGoogle Scholar
  40. 40.
    Ebner A, Wildling L, Kamruzzahan ASM et al (2007) A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjug Chem 18:1176–1184CrossRefGoogle Scholar
  41. 41.
    Stroh C, Wang H, Bash R et al (2004) Single-molecule recognition imaging microscopy. Proc Natl Acad Sci USA 101:12503–12507ADSCrossRefGoogle Scholar
  42. 42.
    Li M, Xiao X, Liu L et al (2013) Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients. Exp Cell Res 319:2812–2821CrossRefGoogle Scholar
  43. 43.
    Li M, Xiao X, Liu L et al (2013) Imaging and measuring the molecular force of lymphoma pathological cells using atomic force microscopy. Scanning 35:40–46CrossRefGoogle Scholar
  44. 44.
    Li M, Liu L, Xi N et al (2011) Detecting CD20-rituximab interaction forces using AFM single-molecule force spectroscopy. Chin Sci Bull 56:3829–3835CrossRefGoogle Scholar
  45. 45.
    Kada G, Kienberger F, Hinterdorfer P (2008) Atomic force microscopy in bionanotechnology. Nano Today 3:12–19CrossRefGoogle Scholar
  46. 46.
    Muller DJ, Engel A, Amrein M (1997) Preparation techniques for the observation of native biological systems with the atomic force microscope. Biosens Bioelectron 12:867–877CrossRefGoogle Scholar
  47. 47.
    Henderson RM, Schneider S, Li Q et al (1996) Imaging ROMK1 inwardly rectifying ATP-sensitive K + channel protein using atomic force microscopy. Proc Natl Acad Sci USA 93:8756–8760ADSCrossRefGoogle Scholar
  48. 48.
    Kirat KE, Burton I, Dupres V et al (2005) Sample preparation procedures for biological atomic force microscopy. J Microsc 218:199–207MathSciNetCrossRefGoogle Scholar
  49. 49.
    Kada G, Blayney L, Jeyakumar LH et al (2001) Recognition force microscopy/spectroscopy of ion channels: applications to the skeletal muscle Ca2+ release channel (RYR1). Ultramicroscopy 86:129–137CrossRefGoogle Scholar
  50. 50.
    Wang H, Obenauer-Kutner L, Lin M et al (2008) Imaging glycosylation. J Am Chem Soc 130:8154–8155CrossRefGoogle Scholar
  51. 51.
    Muller DJ, Dufrene YF (2011) Force nanoscopy of living cells. Curr Biol 21:R212–R216CrossRefGoogle Scholar
  52. 52.
    Stevens F, Lo YS, Harris JM et al (1999) Computer modeling of atomic force microscopy force measurements: comparisons of Poisson, histogram, and continuum methods. Langmuir 15:207–213CrossRefGoogle Scholar
  53. 53.
    Li M, Liu L, Xi N et al (2010) Detecting CD20-rituximab specific interactions on lymphoma cells using atomic force microscopy. Sci China Life Sci 53:1189–1195CrossRefGoogle Scholar
  54. 54.
    Werten PJL, Remigy HW, Groot BL et al (2002) Progress in the analysis of membrane protein structure and functions. FEBS Lett 529:65–72CrossRefGoogle Scholar
  55. 55.
    Gu X, Jia X, Feng J et al (2010) Molecular modeling and affinity determination of scFv antibody: proper linker peptide enhances its activity. Ann Biomed Eng 38:537–549CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Robotics, Shenyang Institute of AutomationChinese Academy of SciencesShenyangChina

Personalised recommendations