Advertisement

Analysis and Applications of Single-Molecule Fluorescence in Live Cell Membranes

  • Hua He
  • Xiaojuan Wang
  • Fang HuangEmail author
Chapter

Abstract

In the past decades, single-molecule fluorescence (SMF) techniques have been booming as they provide researchers with valuable molecular information that are unobtainable by using ensemble techniques. Applications of SMF techniques to live cell membranes have revolutionized our views on many cellular processes. In this chapter, we describe the basics of SMF techniques such as SMF imaging, single-molecule fluorescence resonance energy transfer (sm-FRET), and fluorescence correlation spectroscopy (FCS) and then discuss their contributions to the understanding of live cell membranes. We finally provide the practical protocols of applying SMF techniques to live cell membranes, including the choice of fluorescent probes, labeling strategies, cell sample preparation, instrumentation setup, and data analysis.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21573289) and the Natural Science Foundation of Shandong Province (No. ZR2014BM028).

References

  1. 1.
    Moerner WE, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62(21):2535–2538CrossRefGoogle Scholar
  2. 2.
    Orrit M, Bernard J (1990) Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys Rev Lett 65(21):2716–2719CrossRefGoogle Scholar
  3. 3.
    Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262(5138):1422–1425CrossRefGoogle Scholar
  4. 4.
    Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374(6522):555–559CrossRefGoogle Scholar
  5. 5.
    Sako Y, Minoghchi S, Yanagida T (2000) Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2(3):168–172CrossRefGoogle Scholar
  6. 6.
    Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun 235(1):47–53CrossRefGoogle Scholar
  7. 7.
    Axelrod D (2001) Selective imaging of surface fluorescence with very high aperture microscope objectives. J Biomed Opt 6(1):6–13CrossRefGoogle Scholar
  8. 8.
    Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89(1):141–145CrossRefGoogle Scholar
  9. 9.
    Stout AL, Axelrod D (1989) Evanescent field excitation of fluorescence by epi-illumination microscopy. Appl Opt 28(24):5237–5242CrossRefGoogle Scholar
  10. 10.
    Sako Y, Yanagida T (2003) Single-molecule visualization in cell biology. Nat Rev Mol Cell Biol:SS1–5Google Scholar
  11. 11.
    Schütz G, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73(2):1073–1080CrossRefGoogle Scholar
  12. 12.
    Ide T, Yanagida T (1999) An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels. Biochem Biophys Res Commun 265(2):595–599CrossRefGoogle Scholar
  13. 13.
    Schmidt T, Schütz G, Baumgartner W, Gruber H, Schindler H (1996) Imaging of single molecule diffusion. Proc Natl Acad Sci U S A 93(7):2926–2929CrossRefGoogle Scholar
  14. 14.
    Shen C, Knapp M, Puchinger MG, Shahzad A, Gaubitzer E, Shen AD, Koehler G (2014) Using fluorescence correlation spectroscopy (FCS) for IFN-g detection: a preliminary study. J Immunol Methods 407:35–39CrossRefGoogle Scholar
  15. 15.
    Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47(1):819–846CrossRefGoogle Scholar
  16. 16.
    Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683CrossRefGoogle Scholar
  17. 17.
    Ishii Y, Yoshida T, Funatsu T, Wazawa T, Yanagida T (1999) Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution. Chem Phys 247(1):163–173CrossRefGoogle Scholar
  18. 18.
    Ha T, Enderle T, Ogletree D, Chemla D, Selvin P, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93(13):6264–6268CrossRefGoogle Scholar
  19. 19.
    Padilla-Parra S, Tramier M (2012) FRET microscopy in the living cell: different approaches, strengths and weaknesses. Bioessays 34(5):369–376CrossRefGoogle Scholar
  20. 20.
    Truong K, Ikura M (2001) The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol 11(5):573–578CrossRefGoogle Scholar
  21. 21.
    Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705–708CrossRefGoogle Scholar
  22. 22.
    Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13(1):1–27CrossRefGoogle Scholar
  23. 23.
    Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13(1):29–61CrossRefGoogle Scholar
  24. 24.
    Webb WW (1976) Applications of fluorescence correlation spectroscopy. Q Rev Biophys 9(01):49–68CrossRefGoogle Scholar
  25. 25.
    Chen H, Farkas ER, Webb WW (2008) In vivo applications of fluorescence correlation spectroscopy. Methods Cell Biol 89:3–35CrossRefGoogle Scholar
  26. 26.
    Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169CrossRefGoogle Scholar
  27. 27.
    Eigen M, Rigler R (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci U S A 91(13):5740–5747CrossRefGoogle Scholar
  28. 28.
    Rauer B, Neumann E, Widengren J, Rigler R (1996) Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin α-bungarotoxin with Torpedo californica acetylcholine receptor. Biophys Chem 58(1):3–12CrossRefGoogle Scholar
  29. 29.
    Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 95(23):13573–13578CrossRefGoogle Scholar
  30. 30.
    Schwille P, Haupts U, Maiti S, Webb WW (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one-and two-photon excitation. Biophys J 77(4):2251–2265CrossRefGoogle Scholar
  31. 31.
    Singh AP, Wohland T (2014) Applications of imaging fluorescence correlation spectroscopy. Curr Opin Chem Biol 20:29–35CrossRefGoogle Scholar
  32. 32.
    García-Sáez AJ, Schwille P (2007) Single molecule techniques for the study of membrane proteins. Appl Microbiol Biotechnol 76(2):257–266CrossRefGoogle Scholar
  33. 33.
    García-Sáez AJ, Schwille P (2008) Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods 46(2):116–122CrossRefGoogle Scholar
  34. 34.
    Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chem Phys Chem 8(3):433–443CrossRefGoogle Scholar
  35. 35.
    Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34(3):383–408CrossRefGoogle Scholar
  36. 36.
    Fahey P, Koppel D, Barak L, Wolf D, Elson E, Webb W (1977) Lateral diffusion in planar lipid bilayers. Science 195(4275):305–306CrossRefGoogle Scholar
  37. 37.
    Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36(3):176–182CrossRefGoogle Scholar
  38. 38.
    Schlessinger J, Koppel D, Axelrod D, Jacobson K, Webb W, Elson E (1976) Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci U S A 73(7):2409–2413CrossRefGoogle Scholar
  39. 39.
    Kahya N (2006) Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy. Chem Phys Lipids 141(1):158–168CrossRefGoogle Scholar
  40. 40.
    Benda A, Beneš M, Marecek V, Lhotský A, Hermens WT, Hof M (2003) How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir 19(10):4120–4126CrossRefGoogle Scholar
  41. 41.
    Schwille P, Meyer-Almes F-J, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72(4):1878–1886CrossRefGoogle Scholar
  42. 42.
    Bacia K, Kim SA, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3(2):83–89CrossRefGoogle Scholar
  43. 43.
    Haustein E, Schwille P (2004) Single-molecule spectroscopic methods. Curr Opin Struct Biol 14(5):531–540CrossRefGoogle Scholar
  44. 44.
    Lillemeier BF, Mörtelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11(1):90–96CrossRefGoogle Scholar
  45. 45.
    Larson DR, Gosse JA, Holowka DA, Baird BA, Webb WW (2005) Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J Cell Biol 171(3):527–536CrossRefGoogle Scholar
  46. 46.
    Xie XS, Yu J, Yang WY (2006) Living cells as test tubes. Science 312(5771):228–230CrossRefGoogle Scholar
  47. 47.
    Teramura Y, Ichinose J, Takagi H, Nishida K, Yanagida T, Sako Y (2006) Single-molecule analysis of epidermal growth factor binding on the surface of living cells. EMBO J 25(18):4215–4222CrossRefGoogle Scholar
  48. 48.
    Nguyen AH, Nguyen VT, Kamio Y, Higuchi H (2006) Single-molecule visualization of environment-sensitive fluorophores inserted into cell membranes by staphylococcal γ-hemolysin. Biochemistry 45(8):2570–2576CrossRefGoogle Scholar
  49. 49.
    Uyemura T, Takagi H, Yanagida T, Sako Y (2005) Single-molecule analysis of epidermal growth factor signaling that leads to ultrasensitive calcium response. Biophys J 88(5):3720–3730CrossRefGoogle Scholar
  50. 50.
    Tani T, Miyamoto Y, Fujimori KE, Taguchi T, Yanagida T, Sako Y, Harada Y (2005) Trafficking of a ligand-receptor complex on the growth cones as an essential step for the uptake of nerve growth factor at the distal end of the axon: a single-molecule analysis. J Neurosci 25(9):2181–2191CrossRefGoogle Scholar
  51. 51.
    Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4(4):319–321Google Scholar
  52. 52.
    Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80(6):2667–2677CrossRefGoogle Scholar
  53. 53.
    Harms GS, Cognet L, Lommerse PH, Blab GA, Kahr H, Gamsjäger R, Spaink HP, Soldatov NM, Romanin C, Schmidt T (2001) Single-molecule imaging of L-type Ca2+ channels in live cells. Biophys J 81(5):2639–2646CrossRefGoogle Scholar
  54. 54.
    Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C, Yoshimura A, Kusumi A (2004) Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci U S A 101(19):7317–7322CrossRefGoogle Scholar
  55. 55.
    Zhang W, Jiang Y, Wang Q, Ma X, Xiao Z, Zuo W, Fang X, Chen Y-G (2009) Single-molecule imaging reveals transforming growth factor-β-induced type II receptor dimerization. Proc Natl Acad Sci U S A 106(37):15679–15683CrossRefGoogle Scholar
  56. 56.
    Maurice P, Kamal M, Jockers R (2011) Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol Sci 32(9):514–520CrossRefGoogle Scholar
  57. 57.
    James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3(12):1001–1006CrossRefGoogle Scholar
  58. 58.
    Meyer BH, Segura J-M, Martinez KL, Hovius R, George N, Johnsson K, Vogel H (2006) FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc Natl Acad Sci U S A 103(7):2138–2143CrossRefGoogle Scholar
  59. 59.
    Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer–dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192(3):463–480CrossRefGoogle Scholar
  60. 60.
    Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S, Molloy JE, Birdsall NJ (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A 107(6):2693–2698CrossRefGoogle Scholar
  61. 61.
    Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, Cocucci E, Zürn A, Lohse MJ (2013) Single-molecule analysis of fluorescently labeled G-protein–coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A 110(2):743–748CrossRefGoogle Scholar
  62. 62.
    Kusumi A, Tsunoyama TA, Hirosawa KM, Kasai RS, Fujiwara TK (2014) Tracking single molecules at work in living cells. Nat Chem Biol 10(7):524–532CrossRefGoogle Scholar
  63. 63.
    Shibata SC, Hibino K, Mashimo T, Yanagida T, Sako Y (2006) Formation of signal transduction complexes during immobile phase of NGFR movements. Biochem Biophys Res Commun 342(1):316–322CrossRefGoogle Scholar
  64. 64.
    Lommerse PH, Blab GA, Cognet L, Harms GS, Snaar-Jagalska BE, Spaink HP, Schmidt T (2004) Single-molecule imaging of the H-Ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys J 86(1):609–616CrossRefGoogle Scholar
  65. 65.
    Ueda M, Sako Y, Tanaka T, Devreotes P, Yanagida T (2001) Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294(5543):864–867CrossRefGoogle Scholar
  66. 66.
    Vrljic M, Nishimura SY, Brasselet S, Moerner W, McConnell HM (2002) Translational diffusion of individual Class II MHC membrane proteins in cells. Biophys J 83(5):2681–2692CrossRefGoogle Scholar
  67. 67.
    Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302(5644):442–445CrossRefGoogle Scholar
  68. 68.
    Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I (2010) Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464(7289):783-U163Google Scholar
  69. 69.
    Low-Nam ST, Lidke KA, Cutler PJ, Roovers RC, en Henegouwen PMVB, Wilson BS, Lidke DS (2011) ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand binding. Nat Struct Mol Biol 18(11):1244–1249Google Scholar
  70. 70.
    Webb SE, Roberts SK, Needham SR, Tynan CJ, Rolfe DJ, Winn MD, Clarke DT, Barraclough R, Martin-Fernandez ML (2008) Single-molecule imaging and fluorescence lifetime imaging microscopy show different structures for high-and low-affinity epidermal growth factor receptors in A431 cells. Biophys J 94(3):803–819CrossRefGoogle Scholar
  71. 71.
    Zhang D, Manna M, Wohland T, Kraut R (2009) Alternate raft pathways cooperate to mediate slow diffusion and efficient uptake of a sphingolipid tracer to degradative and recycling compartments. J Cell Sci 122(20):3715–3728CrossRefGoogle Scholar
  72. 72.
    Gerken M, Krippner-Heidenreich A, Steinert S, Willi S, Neugart F, Zappe A, Wrachtrup J, Tietz C, Scheurich P (2010) Fluorescence correlation spectroscopy reveals topological segregation of the two tumor necrosis factor membrane receptors. Biochim Biophys Acta 1798(6):1081–1089CrossRefGoogle Scholar
  73. 73.
    Hegener O, Jordan R, Häberlein H (2004) Dye-labeled benzodiazepines: development of small ligands for receptor binding studies using fluorescence correlation spectroscopy. J Med Chem 47(14):3600–3605CrossRefGoogle Scholar
  74. 74.
    Meissner O, Häberlein H (2003) Lateral mobility and specific binding to GABAA receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy. Biochemistry 42(6):1667–1672CrossRefGoogle Scholar
  75. 75.
    Gakamsky DM, Luescher IF, Pramanik A, Kopito RB, Lemonnier F, Vogel H, Rigler R, Pecht I (2005) CD8 kinetically promotes ligand binding to the T-cell antigen receptor. Biophys J 89(3):2121–2133CrossRefGoogle Scholar
  76. 76.
    Hao H, Fan L, Chen T, Li R, Li X, He Q, Botella MA, Lin J (2014) Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plant Cell 26(4):1729–1745CrossRefGoogle Scholar
  77. 77.
    Li X, Xing J, Qiu Z, He Q, Lin J (2016) Quantification of Membrane protein dynamics and interactions in plant cells by fluorescence correlation spectroscopy. Mol Plant 9(9):1229–1239CrossRefGoogle Scholar
  78. 78.
    Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ, Rigneault H, He HT, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25(14):3245–3256CrossRefGoogle Scholar
  79. 79.
    Leutenegger M, Ringemann C, Lasser T, Hell SW, Eggeling C (2012) Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS). Opt Express 20(5):5243–5263CrossRefGoogle Scholar
  80. 80.
    Fan L, Hao H, Xue Y, Zhang L, Song K, Ding Z, Botella MA, Wang H, Lin J (2013) Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 140(18):3826–3837CrossRefGoogle Scholar
  81. 81.
    Sakon JJ, Weninger KR (2010) Detecting the conformation of individual proteins in live cells. Nat Methods 7(3):203–205CrossRefGoogle Scholar
  82. 82.
    Owen DM, Williamson D, Rentero C, Gaus K (2009) Quantitative microscopy: protein dynamics and membrane organisation. Traffic 10(8):962–971CrossRefGoogle Scholar
  83. 83.
    Demir F, Horntrich C, Blachutzik JO, Scherzer S, Reinders Y, Kierszniowska S, Schulze WX, Harms GS, Hedrich R, Geiger D (2013) Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc Natl Acad Sci U S A 110(20):8296–8301CrossRefGoogle Scholar
  84. 84.
    Schütz GJ, Kada G, Pastushenko VP, Schindler H (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19(5):892–901CrossRefGoogle Scholar
  85. 85.
    Douglass AD, Vale RD (2005) Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121(6):937–950CrossRefGoogle Scholar
  86. 86.
    Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R, Leutenegger M, Polyakova S, Belov V, Hell S, Eggeling C (2011) STED nanoscopy reveals molecular details of cholesterol-and cytoskeleton-modulated lipid interactions in living cells. Biophys J 101(7):1651–1660CrossRefGoogle Scholar
  87. 87.
    Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V, Honigmann A, Belov VN, Eggeling C, Coskun Ü, Simons K (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818(7):1777–1784Google Scholar
  88. 88.
    Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schönle A (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162CrossRefGoogle Scholar
  89. 89.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909CrossRefGoogle Scholar
  90. 90.
    Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224CrossRefGoogle Scholar
  91. 91.
    Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59(3):223–239CrossRefGoogle Scholar
  92. 92.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67(1):509–544CrossRefGoogle Scholar
  93. 93.
    Griesbeck O (2004) Fluorescent proteins as sensors for cellular functions. Curr Opin Neurobiol 14(5):636–641CrossRefGoogle Scholar
  94. 94.
    Hibino K, Shibata T, Yanagida T, Sako Y (2009) A RasGTP-induced conformational change in C-RAF is essential for accurate molecular recognition. Biophys J 97(5):1277–1287CrossRefGoogle Scholar
  95. 95.
    Elf J, Li GW, Xie XS (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316(5828):1191–1194CrossRefGoogle Scholar
  96. 96.
    Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296(5569):913–916CrossRefGoogle Scholar
  97. 97.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775CrossRefGoogle Scholar
  98. 98.
    Jaiswal JK, Goldman ER, Mattoussi H, Simon SM (2004) Use of quantum dots for live cell imaging. Nat Methods 1(1):73–78CrossRefGoogle Scholar
  99. 99.
    Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14(9):497–504CrossRefGoogle Scholar
  100. 100.
    Pinaud F, Clarke S, Sittner A, Dahan M (2010) Probing cellular events, one quantum dot at a time. Nat Methods 7(4):275–285CrossRefGoogle Scholar
  101. 101.
    Liu SL, Zhang ZL, Sun EZ, Peng J, Xie M, Tian ZQ, Lin Y, Pang DW (2011) Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking. Biomaterials 32(30):7616–7624CrossRefGoogle Scholar
  102. 102.
    Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76CrossRefGoogle Scholar
  103. 103.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446CrossRefGoogle Scholar
  104. 104.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544CrossRefGoogle Scholar
  105. 105.
    Jiang X, Zhu M, Narain R (2014) Quantum Dots Bioconjugates. In: Narain R (ed) Chemistry of bioconjugates: synthesis, characterization, and biomedical applications. Wiley, Hoboken, New Jersey, pp 315–326CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and BiotechnologyChina University of Petroleum (East China)QingdaoChina

Personalised recommendations