Skip to main content

Analysis and Applications of Single-Molecule Fluorescence in Live Cell Membranes

  • Chapter
  • First Online:
  • 1808 Accesses

Abstract

In the past decades, single-molecule fluorescence (SMF) techniques have been booming as they provide researchers with valuable molecular information that are unobtainable by using ensemble techniques. Applications of SMF techniques to live cell membranes have revolutionized our views on many cellular processes. In this chapter, we describe the basics of SMF techniques such as SMF imaging, single-molecule fluorescence resonance energy transfer (sm-FRET), and fluorescence correlation spectroscopy (FCS) and then discuss their contributions to the understanding of live cell membranes. We finally provide the practical protocols of applying SMF techniques to live cell membranes, including the choice of fluorescent probes, labeling strategies, cell sample preparation, instrumentation setup, and data analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Moerner WE, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62(21):2535–2538

    Article  CAS  Google Scholar 

  2. Orrit M, Bernard J (1990) Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys Rev Lett 65(21):2716–2719

    Article  CAS  Google Scholar 

  3. Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262(5138):1422–1425

    Article  CAS  Google Scholar 

  4. Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374(6522):555–559

    Article  CAS  Google Scholar 

  5. Sako Y, Minoghchi S, Yanagida T (2000) Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2(3):168–172

    Article  CAS  Google Scholar 

  6. Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun 235(1):47–53

    Article  CAS  Google Scholar 

  7. Axelrod D (2001) Selective imaging of surface fluorescence with very high aperture microscope objectives. J Biomed Opt 6(1):6–13

    Article  CAS  Google Scholar 

  8. Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89(1):141–145

    Article  CAS  Google Scholar 

  9. Stout AL, Axelrod D (1989) Evanescent field excitation of fluorescence by epi-illumination microscopy. Appl Opt 28(24):5237–5242

    Article  CAS  Google Scholar 

  10. Sako Y, Yanagida T (2003) Single-molecule visualization in cell biology. Nat Rev Mol Cell Biol:SS1–5

    Google Scholar 

  11. Schütz G, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73(2):1073–1080

    Article  Google Scholar 

  12. Ide T, Yanagida T (1999) An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels. Biochem Biophys Res Commun 265(2):595–599

    Article  CAS  Google Scholar 

  13. Schmidt T, Schütz G, Baumgartner W, Gruber H, Schindler H (1996) Imaging of single molecule diffusion. Proc Natl Acad Sci U S A 93(7):2926–2929

    Article  CAS  Google Scholar 

  14. Shen C, Knapp M, Puchinger MG, Shahzad A, Gaubitzer E, Shen AD, Koehler G (2014) Using fluorescence correlation spectroscopy (FCS) for IFN-g detection: a preliminary study. J Immunol Methods 407:35–39

    Article  CAS  Google Scholar 

  15. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47(1):819–846

    Article  CAS  Google Scholar 

  16. Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683

    Article  CAS  Google Scholar 

  17. Ishii Y, Yoshida T, Funatsu T, Wazawa T, Yanagida T (1999) Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution. Chem Phys 247(1):163–173

    Article  CAS  Google Scholar 

  18. Ha T, Enderle T, Ogletree D, Chemla D, Selvin P, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93(13):6264–6268

    Article  CAS  Google Scholar 

  19. Padilla-Parra S, Tramier M (2012) FRET microscopy in the living cell: different approaches, strengths and weaknesses. Bioessays 34(5):369–376

    Article  Google Scholar 

  20. Truong K, Ikura M (2001) The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol 11(5):573–578

    Article  CAS  Google Scholar 

  21. Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29(11):705–708

    Article  CAS  Google Scholar 

  22. Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13(1):1–27

    Article  CAS  Google Scholar 

  23. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13(1):29–61

    Article  CAS  Google Scholar 

  24. Webb WW (1976) Applications of fluorescence correlation spectroscopy. Q Rev Biophys 9(01):49–68

    Article  CAS  Google Scholar 

  25. Chen H, Farkas ER, Webb WW (2008) In vivo applications of fluorescence correlation spectroscopy. Methods Cell Biol 89:3–35

    Article  CAS  Google Scholar 

  26. Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169

    Article  CAS  Google Scholar 

  27. Eigen M, Rigler R (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci U S A 91(13):5740–5747

    Article  CAS  Google Scholar 

  28. Rauer B, Neumann E, Widengren J, Rigler R (1996) Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin α-bungarotoxin with Torpedo californica acetylcholine receptor. Biophys Chem 58(1):3–12

    Article  CAS  Google Scholar 

  29. Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 95(23):13573–13578

    Article  CAS  Google Scholar 

  30. Schwille P, Haupts U, Maiti S, Webb WW (1999) Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one-and two-photon excitation. Biophys J 77(4):2251–2265

    Article  CAS  Google Scholar 

  31. Singh AP, Wohland T (2014) Applications of imaging fluorescence correlation spectroscopy. Curr Opin Chem Biol 20:29–35

    Article  CAS  Google Scholar 

  32. García-Sáez AJ, Schwille P (2007) Single molecule techniques for the study of membrane proteins. Appl Microbiol Biotechnol 76(2):257–266

    Article  CAS  Google Scholar 

  33. García-Sáez AJ, Schwille P (2008) Fluorescence correlation spectroscopy for the study of membrane dynamics and protein/lipid interactions. Methods 46(2):116–122

    Article  CAS  Google Scholar 

  34. Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chem Phys Chem 8(3):433–443

    Article  CAS  Google Scholar 

  35. Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34(3):383–408

    Article  CAS  Google Scholar 

  36. Fahey P, Koppel D, Barak L, Wolf D, Elson E, Webb W (1977) Lateral diffusion in planar lipid bilayers. Science 195(4275):305–306

    Article  CAS  Google Scholar 

  37. Schwille P, Korlach J, Webb WW (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36(3):176–182

    Article  CAS  Google Scholar 

  38. Schlessinger J, Koppel D, Axelrod D, Jacobson K, Webb W, Elson E (1976) Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc Natl Acad Sci U S A 73(7):2409–2413

    Article  CAS  Google Scholar 

  39. Kahya N (2006) Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy. Chem Phys Lipids 141(1):158–168

    Article  CAS  Google Scholar 

  40. Benda A, Beneš M, Marecek V, Lhotský A, Hermens WT, Hof M (2003) How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir 19(10):4120–4126

    Article  CAS  Google Scholar 

  41. Schwille P, Meyer-Almes F-J, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72(4):1878–1886

    Article  CAS  Google Scholar 

  42. Bacia K, Kim SA, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3(2):83–89

    Article  CAS  Google Scholar 

  43. Haustein E, Schwille P (2004) Single-molecule spectroscopic methods. Curr Opin Struct Biol 14(5):531–540

    Article  CAS  Google Scholar 

  44. Lillemeier BF, Mörtelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11(1):90–96

    Article  CAS  Google Scholar 

  45. Larson DR, Gosse JA, Holowka DA, Baird BA, Webb WW (2005) Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J Cell Biol 171(3):527–536

    Article  CAS  Google Scholar 

  46. Xie XS, Yu J, Yang WY (2006) Living cells as test tubes. Science 312(5771):228–230

    Article  CAS  Google Scholar 

  47. Teramura Y, Ichinose J, Takagi H, Nishida K, Yanagida T, Sako Y (2006) Single-molecule analysis of epidermal growth factor binding on the surface of living cells. EMBO J 25(18):4215–4222

    Article  CAS  Google Scholar 

  48. Nguyen AH, Nguyen VT, Kamio Y, Higuchi H (2006) Single-molecule visualization of environment-sensitive fluorophores inserted into cell membranes by staphylococcal γ-hemolysin. Biochemistry 45(8):2570–2576

    Article  CAS  Google Scholar 

  49. Uyemura T, Takagi H, Yanagida T, Sako Y (2005) Single-molecule analysis of epidermal growth factor signaling that leads to ultrasensitive calcium response. Biophys J 88(5):3720–3730

    Article  CAS  Google Scholar 

  50. Tani T, Miyamoto Y, Fujimori KE, Taguchi T, Yanagida T, Sako Y, Harada Y (2005) Trafficking of a ligand-receptor complex on the growth cones as an essential step for the uptake of nerve growth factor at the distal end of the axon: a single-molecule analysis. J Neurosci 25(9):2181–2191

    Article  CAS  Google Scholar 

  51. Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4(4):319–321

    CAS  Google Scholar 

  52. Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80(6):2667–2677

    Article  CAS  Google Scholar 

  53. Harms GS, Cognet L, Lommerse PH, Blab GA, Kahr H, Gamsjäger R, Spaink HP, Soldatov NM, Romanin C, Schmidt T (2001) Single-molecule imaging of L-type Ca2+ channels in live cells. Biophys J 81(5):2639–2646

    Article  CAS  Google Scholar 

  54. Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C, Yoshimura A, Kusumi A (2004) Single-molecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci U S A 101(19):7317–7322

    Article  CAS  Google Scholar 

  55. Zhang W, Jiang Y, Wang Q, Ma X, Xiao Z, Zuo W, Fang X, Chen Y-G (2009) Single-molecule imaging reveals transforming growth factor-β-induced type II receptor dimerization. Proc Natl Acad Sci U S A 106(37):15679–15683

    Article  CAS  Google Scholar 

  56. Maurice P, Kamal M, Jockers R (2011) Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol Sci 32(9):514–520

    Article  CAS  Google Scholar 

  57. James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3(12):1001–1006

    Article  CAS  Google Scholar 

  58. Meyer BH, Segura J-M, Martinez KL, Hovius R, George N, Johnsson K, Vogel H (2006) FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc Natl Acad Sci U S A 103(7):2138–2143

    Article  CAS  Google Scholar 

  59. Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer–dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192(3):463–480

    Article  CAS  Google Scholar 

  60. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S, Molloy JE, Birdsall NJ (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A 107(6):2693–2698

    Article  CAS  Google Scholar 

  61. Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, Cocucci E, Zürn A, Lohse MJ (2013) Single-molecule analysis of fluorescently labeled G-protein–coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A 110(2):743–748

    Article  CAS  Google Scholar 

  62. Kusumi A, Tsunoyama TA, Hirosawa KM, Kasai RS, Fujiwara TK (2014) Tracking single molecules at work in living cells. Nat Chem Biol 10(7):524–532

    Article  CAS  Google Scholar 

  63. Shibata SC, Hibino K, Mashimo T, Yanagida T, Sako Y (2006) Formation of signal transduction complexes during immobile phase of NGFR movements. Biochem Biophys Res Commun 342(1):316–322

    Article  CAS  Google Scholar 

  64. Lommerse PH, Blab GA, Cognet L, Harms GS, Snaar-Jagalska BE, Spaink HP, Schmidt T (2004) Single-molecule imaging of the H-Ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys J 86(1):609–616

    Article  CAS  Google Scholar 

  65. Ueda M, Sako Y, Tanaka T, Devreotes P, Yanagida T (2001) Single-molecule analysis of chemotactic signaling in Dictyostelium cells. Science 294(5543):864–867

    Article  CAS  Google Scholar 

  66. Vrljic M, Nishimura SY, Brasselet S, Moerner W, McConnell HM (2002) Translational diffusion of individual Class II MHC membrane proteins in cells. Biophys J 83(5):2681–2692

    Article  CAS  Google Scholar 

  67. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302(5644):442–445

    Article  CAS  Google Scholar 

  68. Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I (2010) Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464(7289):783-U163

    Google Scholar 

  69. Low-Nam ST, Lidke KA, Cutler PJ, Roovers RC, en Henegouwen PMVB, Wilson BS, Lidke DS (2011) ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand binding. Nat Struct Mol Biol 18(11):1244–1249

    Google Scholar 

  70. Webb SE, Roberts SK, Needham SR, Tynan CJ, Rolfe DJ, Winn MD, Clarke DT, Barraclough R, Martin-Fernandez ML (2008) Single-molecule imaging and fluorescence lifetime imaging microscopy show different structures for high-and low-affinity epidermal growth factor receptors in A431 cells. Biophys J 94(3):803–819

    Article  CAS  Google Scholar 

  71. Zhang D, Manna M, Wohland T, Kraut R (2009) Alternate raft pathways cooperate to mediate slow diffusion and efficient uptake of a sphingolipid tracer to degradative and recycling compartments. J Cell Sci 122(20):3715–3728

    Article  CAS  Google Scholar 

  72. Gerken M, Krippner-Heidenreich A, Steinert S, Willi S, Neugart F, Zappe A, Wrachtrup J, Tietz C, Scheurich P (2010) Fluorescence correlation spectroscopy reveals topological segregation of the two tumor necrosis factor membrane receptors. Biochim Biophys Acta 1798(6):1081–1089

    Article  CAS  Google Scholar 

  73. Hegener O, Jordan R, Häberlein H (2004) Dye-labeled benzodiazepines: development of small ligands for receptor binding studies using fluorescence correlation spectroscopy. J Med Chem 47(14):3600–3605

    Article  CAS  Google Scholar 

  74. Meissner O, Häberlein H (2003) Lateral mobility and specific binding to GABAA receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy. Biochemistry 42(6):1667–1672

    Article  CAS  Google Scholar 

  75. Gakamsky DM, Luescher IF, Pramanik A, Kopito RB, Lemonnier F, Vogel H, Rigler R, Pecht I (2005) CD8 kinetically promotes ligand binding to the T-cell antigen receptor. Biophys J 89(3):2121–2133

    Article  CAS  Google Scholar 

  76. Hao H, Fan L, Chen T, Li R, Li X, He Q, Botella MA, Lin J (2014) Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plant Cell 26(4):1729–1745

    Article  CAS  Google Scholar 

  77. Li X, Xing J, Qiu Z, He Q, Lin J (2016) Quantification of Membrane protein dynamics and interactions in plant cells by fluorescence correlation spectroscopy. Mol Plant 9(9):1229–1239

    Article  CAS  Google Scholar 

  78. Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ, Rigneault H, He HT, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25(14):3245–3256

    Article  CAS  Google Scholar 

  79. Leutenegger M, Ringemann C, Lasser T, Hell SW, Eggeling C (2012) Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS). Opt Express 20(5):5243–5263

    Article  CAS  Google Scholar 

  80. Fan L, Hao H, Xue Y, Zhang L, Song K, Ding Z, Botella MA, Wang H, Lin J (2013) Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 140(18):3826–3837

    Article  CAS  Google Scholar 

  81. Sakon JJ, Weninger KR (2010) Detecting the conformation of individual proteins in live cells. Nat Methods 7(3):203–205

    Article  CAS  Google Scholar 

  82. Owen DM, Williamson D, Rentero C, Gaus K (2009) Quantitative microscopy: protein dynamics and membrane organisation. Traffic 10(8):962–971

    Article  CAS  Google Scholar 

  83. Demir F, Horntrich C, Blachutzik JO, Scherzer S, Reinders Y, Kierszniowska S, Schulze WX, Harms GS, Hedrich R, Geiger D (2013) Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc Natl Acad Sci U S A 110(20):8296–8301

    Article  CAS  Google Scholar 

  84. Schütz GJ, Kada G, Pastushenko VP, Schindler H (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19(5):892–901

    Article  Google Scholar 

  85. Douglass AD, Vale RD (2005) Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121(6):937–950

    Article  CAS  Google Scholar 

  86. Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R, Leutenegger M, Polyakova S, Belov V, Hell S, Eggeling C (2011) STED nanoscopy reveals molecular details of cholesterol-and cytoskeleton-modulated lipid interactions in living cells. Biophys J 101(7):1651–1660

    Article  CAS  Google Scholar 

  87. Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V, Honigmann A, Belov VN, Eggeling C, Coskun Ü, Simons K (2012) Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim Biophys Acta 1818(7):1777–1784

    Google Scholar 

  88. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schönle A (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162

    Article  CAS  Google Scholar 

  89. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    Article  CAS  Google Scholar 

  90. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224

    Article  CAS  Google Scholar 

  91. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59(3):223–239

    Article  CAS  Google Scholar 

  92. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67(1):509–544

    Article  CAS  Google Scholar 

  93. Griesbeck O (2004) Fluorescent proteins as sensors for cellular functions. Curr Opin Neurobiol 14(5):636–641

    Article  CAS  Google Scholar 

  94. Hibino K, Shibata T, Yanagida T, Sako Y (2009) A RasGTP-induced conformational change in C-RAF is essential for accurate molecular recognition. Biophys J 97(5):1277–1287

    Article  CAS  Google Scholar 

  95. Elf J, Li GW, Xie XS (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316(5828):1191–1194

    Article  CAS  Google Scholar 

  96. Zacharias DA, Violin JD, Newton AC, Tsien RY (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296(5569):913–916

    Article  CAS  Google Scholar 

  97. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    Article  CAS  Google Scholar 

  98. Jaiswal JK, Goldman ER, Mattoussi H, Simon SM (2004) Use of quantum dots for live cell imaging. Nat Methods 1(1):73–78

    Article  Google Scholar 

  99. Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14(9):497–504

    Article  CAS  Google Scholar 

  100. Pinaud F, Clarke S, Sittner A, Dahan M (2010) Probing cellular events, one quantum dot at a time. Nat Methods 7(4):275–285

    Article  CAS  Google Scholar 

  101. Liu SL, Zhang ZL, Sun EZ, Peng J, Xie M, Tian ZQ, Lin Y, Pang DW (2011) Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking. Biomaterials 32(30):7616–7624

    Article  CAS  Google Scholar 

  102. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    Article  CAS  Google Scholar 

  103. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  CAS  Google Scholar 

  104. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  CAS  Google Scholar 

  105. Jiang X, Zhu M, Narain R (2014) Quantum Dots Bioconjugates. In: Narain R (ed) Chemistry of bioconjugates: synthesis, characterization, and biomedical applications. Wiley, Hoboken, New Jersey, pp 315–326

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21573289) and the Natural Science Foundation of Shandong Province (No. ZR2014BM028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, H., Wang, X., Huang, F. (2018). Analysis and Applications of Single-Molecule Fluorescence in Live Cell Membranes. In: Wang, H., Li, G. (eds) Membrane Biophysics. Springer, Singapore. https://doi.org/10.1007/978-981-10-6823-2_6

Download citation

Publish with us

Policies and ethics