Detection of Membrane Mechanical Properties and Endocytosis by Single Molecule Force Spectroscopy

  • Yuping ShanEmail author


Membranes are crucial for cellular life since they partition cells into different functional and physically separated compartments. Atomic force microscopy (AFM) makes it possible to observe, manipulate, and explore the cell membranes at a molecular resolution and therefore has produced a wealth of new opportunities in cell biology, including understanding the nanoscale organization and dynamics of cell membranes and cell walls, measuring cell mechanics and cell adhesion, and unraveling the molecular elasticity of cellular proteins and the mechanisms by which they assemble into nanodomains in the membrane. Single molecule force spectroscopy (SMFS) based on AFM enables the characterization of the mechanical response of biological matter at the nanometer scale. SMFS techniques exert and/or quantify forces to allow manipulation and characterization of the mechanical properties, functional state, conformations, and interactions of biological systems to molecular resolution. Here, we will mainly introduce the studies of cell membrane mechanics and dynamic process of endocytosis by AFM-based SMFS.



This work was supported by the National Natural Science Foundation of China (No. 31330082, 21773017 and 21673023) and Jilin Provincial Science Research Foundation of China (No. 20160520133JH).


  1. 1.
    Frederix P, Bosshart PD, Engel A (2009) Atomic force microscopy of biological membranes. Biophys J 96(2):329–338Google Scholar
  2. 2.
    Goksu EI, Vanegas JM, Blanchette CD et al (2009) AFM for structure and dynamics of biomembranes. Biochim Biophys Acta 1788(1):254–266CrossRefGoogle Scholar
  3. 3.
    Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47(31):7986–7998CrossRefGoogle Scholar
  4. 4.
    Hoh JH, Cleveland JP, Prater CB et al (1992) Quantized adhesion detected with the atomic force microscope. J Am Chem Soc 114(12):4917–4918CrossRefGoogle Scholar
  5. 5.
    Florin E, Moy V, Gaub H (1994) Adhesion forces between individual ligand-receptor pairs. Science 264(5157):415–417CrossRefGoogle Scholar
  6. 6.
    Casuso I, Rico F, Scheuring S (2011) Biological AFM: where we come from—where we are—where we may go. J Mol Recognit 24(3):406–413CrossRefGoogle Scholar
  7. 7.
    Kabaso D, Gongadze E, Elter P et al (2011) Attachment of rod-like (BAR) proteins and membrane shape. Mini Rev Med Chem 11(4):272–282CrossRefGoogle Scholar
  8. 8.
    Puchner EM, Gaub HE (2009) Force and function: probing proteins with AFM-based force spectroscopy. Curr Opin Struct Biol 19(5):605–614CrossRefGoogle Scholar
  9. 9.
    Lulevich V, Kim S, Grigoropoulos CP et al (2011) Frictionless sliding of single-stranded DNA in a carbon nanotube pore observed by single molecule force spectroscopy. Nano Lett 11(3):1171–1176CrossRefGoogle Scholar
  10. 10.
    Kienberger F, Costa LT, Zhu R et al (2007) Dynamic force microscopy imaging of plasmid DNA and viral RNA. Biomaterials 28(15):2403–2411CrossRefGoogle Scholar
  11. 11.
    Suzuki T, Iwazaki A, Katagiri H et al (1999) Enhanced expression of glucose transporter GLUT3 in tumorigenic HeLa cell hybrids associated with tumor suppressor dysfunction. Eur J Biochem 262(2):534–540CrossRefGoogle Scholar
  12. 12.
    Puntheeranurak T, Stroh C, Zhu R et al (2005) Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes. Ultramicroscopy 105(1–4):115–124CrossRefGoogle Scholar
  13. 13.
    Muller DJ, Dufrene YF (2011) Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21(8):461–469CrossRefGoogle Scholar
  14. 14.
    Clausen-Schaumann H, Seitz M, Krautbauer R et al (2000) Force spectroscopy with single bio-molecules. Curr Opin Chem Biol 4(5):524–530CrossRefGoogle Scholar
  15. 15.
    Moy V, Florin E, Gaub H (1994) Intermolecular forces and energies between ligands and receptors. Science 266(5183):257–259CrossRefGoogle Scholar
  16. 16.
    Lee G, Chrisey L, Colton R (1994) Direct measurement of the forces between complementary strands of DNA. Science 266(5186):771–773CrossRefGoogle Scholar
  17. 17.
    Dammer U, Hegner M, Anselmetti D et al (1996) Specific antigen/antibody interactions measured by force microscopy. Biophys J 70 (5):2437–2441Google Scholar
  18. 18.
    Dufrene YF, Pelling AE (2013) Force nanoscopy of cell mechanics and cell adhesion. Nanoscale 5(10):4094–4104CrossRefGoogle Scholar
  19. 19.
    Sharma S, Rasool HI, Palanisamy V et al (2010) Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano 4(4):1921–1926Google Scholar
  20. 20.
    Stevenson J, Brown AJ (2009) How essential is cholesterol? Biochem J 420(2):e1–e4CrossRefGoogle Scholar
  21. 21.
    Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9:1–34CrossRefGoogle Scholar
  22. 22.
    Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1–6):1–152CrossRefGoogle Scholar
  23. 23.
    Puntheeranurak T, Wimmer B, Castaneda F et al (2007) Substrate specificity of sugar transport by rabbit SGLT1: single-molecule atomic force microscopy versus transport studies. Biochemistry 46(10):2797–2804CrossRefGoogle Scholar
  24. 24.
    Czajkowsky DM, Shao Z (1998) Submolecular resolution of single macromolecules with atomic force microscopy. FEBS Lett 430(1–2):51–54CrossRefGoogle Scholar
  25. 25.
    Fisher TE, Marszalek PE, Oberhauser AF et al (1999) The micro-mechanics of single molecules studied with atomic force microscopy. J Physiol 520(1):5–14CrossRefGoogle Scholar
  26. 26.
    Sarkar A, Robertson RB, Fernandez JM (2004) Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave. Proc Nat Acad Sci USA 101(35):12882–12886CrossRefGoogle Scholar
  27. 27.
    Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28(26):8759–8770CrossRefGoogle Scholar
  28. 28.
    Shan YP, Ma SY, Nie LY et al (2011) Size-dependent endocytosis of single gold nanoparticles. Chem Commun 47(28):8091–8093CrossRefGoogle Scholar
  29. 29.
    Shang X, Shan YP, Pan YG et al (2013) The force of transporting a single amino acid into the living cell measured using atomic force microscopy. Chem Commun 49(74):8163–8165CrossRefGoogle Scholar
  30. 30.
    Pan Y, Wang S, Shan Y et al (2015) Ultrafast tracking of a single live virion during the invagination of a cell membrane. Small 11(23):2782–2788CrossRefGoogle Scholar
  31. 31.
    Haque F (2003) Application of nanoindentation development of biomedical to materials. Surf Eng 19(4):255–268CrossRefGoogle Scholar
  32. 32.
    Turnbull A, White D (1996) Nanoindentation and microindentation of weathered unplasticised poly-vinyl chloride (UPVC). J Mater Sci 31(16):4189–4198CrossRefGoogle Scholar
  33. 33.
    Fang T-H, Kang S-H, Hong Z-H et al (2012) Elasticity and nanomechanical response of Aspergillus niger spores using atomic force microscopy. Micron 43(2–3):407–411CrossRefGoogle Scholar
  34. 34.
    Roos WH, Wuite GJL (2009) Nanoindentation studies reveal material properties of viruses. Adv Mater 21(10–11):1187–1192CrossRefGoogle Scholar
  35. 35.
    Souza ST, Agra LC, Santos CEA et al (2014) Macrophage adhesion on fibronectin evokes an increase in the elastic property of the cell membrane and cytoskeleton: an atomic force microscopy study. Eur Biophys J Biophys Lett 43(12):573–579CrossRefGoogle Scholar
  36. 36.
    Oliver W, Pharr G. (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mate Res 19(1):3–20Google Scholar
  37. 37.
    Kurland NE, Drira Z, Yadavalli VK (2012) Measurement of nanomechanical properties of biomolecules using atomic force microscopy. Micron 43(2):116–128CrossRefGoogle Scholar
  38. 38.
    Digiuni S, Berne-Dedieu A, Martinez-Torres C et al (2015) Single cell wall nonlinear mechanics revealed by a multiscale analysis of AFM force-indentation curves. Biophys J 108(9):2235–2248CrossRefGoogle Scholar
  39. 39.
    Bushby AJ (2001) Nano-indentation using spherical indenters. Nondestruct Test Eva 17(4–5):213–234CrossRefGoogle Scholar
  40. 40.
    Askarova S, Sun Z, GY, Sun GY, Meininger GA, Lee JC-M (2013) Amyloid-b ppeptide on sialyl-lewisx-selectin-mediated membrane tether mechanics at the cerebral endothelial cell surface. PLOS One 0060972Google Scholar
  41. 41.
    Rief M, Clausen-Schaumann H, Gaub HE (1999) Sequence-dependent mechanics of single DNA molecules. Nat Struct Biol 6(4):346–349CrossRefGoogle Scholar
  42. 42.
    Rief M, Gautel M, Oesterhelt F et al (1997) Reversible unfolding of individual Titin immunoglobulin domains by AFM. Science 276(5315):1109–1112CrossRefGoogle Scholar
  43. 43.
    Carrion-Vazquez M, Oberhauser AF, Fowler SB et al (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Nat Acad Sci U S A 96(7):3694–3699CrossRefGoogle Scholar
  44. 44.
    Yu H, Siewny MGW, Edwards DT et al (2017) Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science 355(6328):945–950CrossRefGoogle Scholar
  45. 45.
    Engel A, Muller DJ (2000) Observing single biomolecules at work with the atomic force microscope. Nat Struct Mol Biol 7(9):715–718CrossRefGoogle Scholar
  46. 46.
    Garcia-Saez AJ, Schwille P (2007) Single molecule techniques for the study of membrane proteins. Appl Microbiol Biotechnol 76(2):257–266CrossRefGoogle Scholar
  47. 47.
    Kada G, Kienberger F, Hinterdorfer P (2008) Atomic force microscopy in bionanotechnology. Nano Today 3(1–2):12–19CrossRefGoogle Scholar
  48. 48.
    Chen J, Liu T, Gao J et al (2016) Variation in carbohydrates between cancer and normal cell membranes revealed by super-resolution fluorescence imaging. Adv Sci 1600270Google Scholar
  49. 49.
    Engel A, Gaub HE (2008) Structure and mechanics of membrane proteins. Annu Rev Biochem 77:127–148CrossRefGoogle Scholar
  50. 50.
    Kessler M, Gottschalk KE, Janovjak H et al (2006) Bacteriorhodopsin folds into the membrane against an external force. J Mol Biol 357(2):644–654CrossRefGoogle Scholar
  51. 51.
    Kedrov A, Ziegler C, Janovjak H et al (2004) Controlled unfolding and refolding of a single sodium-proton antiporter using atomic force microscopy. J Mol Biol 340(5):1143–1152CrossRefGoogle Scholar
  52. 52.
    Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32(2):32–338Google Scholar
  53. 53.
    Scheuring S, Stahlberg H, Chami M et al (2002) Charting and unzipping the surface layer of Corynebacterium glutamicum with the atomic force microscope. Mol Microbiol 44(3):675–684CrossRefGoogle Scholar
  54. 54.
    Brueckner BR, Noeding H, Janshoff A (2017) Viscoelastic properties of confluent MDCK II cells obtained from force cycle experiments. Biophys J 112(4):724–735CrossRefGoogle Scholar
  55. 55.
    Yan B, Ren J, Liu Y et al. (2017) Study of cholesterol repletion effect on nanomechanical properties of human umbilical vein endothelial cell via rapid broadband atomic force microscopy. J Biomech Eng T Asme 139(3):034501–034501-5Google Scholar
  56. 56.
    Puntheeranurak T, Kasch M, Xia X et al (2007) Three surface subdomains form the vestibule of the Na+/Glucose cotransporter SGLT1. J Biol Chem 282(35):25222–25230CrossRefGoogle Scholar
  57. 57.
    Wimmer B, Raja M, Hinterdorfer P et al (2009) C-terminal Loop 13 of Na+/Glucose cotransporter 1 contains both stereospecific and non-stereospecific sugar interaction sites. J Biol Chem 284(2):983–991CrossRefGoogle Scholar
  58. 58.
    Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70(1):43–77Google Scholar
  59. 59.
    Hundal HS, Taylor PM (2009) Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab 296(4):E603–E613CrossRefGoogle Scholar
  60. 60.
    Palacin M, Bertran J, Zorzano (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78(4):969–1054Google Scholar
  61. 61.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668CrossRefGoogle Scholar
  62. 62.
    Dausend J, Musyanovych A, Dass M et al (2008) Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 8(12):1135–1143CrossRefGoogle Scholar
  63. 63.
    Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18(15):1953–1964CrossRefGoogle Scholar
  64. 64.
    Dixit SK, Goicochea NL, Daniel MC et al (2006) Quantum dot encapsulation in viral capsids. Nano Lett 6(9):1993–1999CrossRefGoogle Scholar
  65. 65.
    Chavanpatil MD, Khdair A, Panyam J (2007) Surfactant-polymer nanoparticles: a novel platform for sustained and enhanced cellular delivery of water-soluble molecules. Pharmacol Res 24(4):803–810CrossRefGoogle Scholar
  66. 66.
    Heller DA, Jeng ES, Yeung TK et al (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311(5760):508–511CrossRefGoogle Scholar
  67. 67.
    Hirsch LR, Stafford RJ, Bankson JA et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Nat Acad Sci U S A 100(23):13549–13554CrossRefGoogle Scholar
  68. 68.
    Liu N, Mu Y, Chen Y et al (2013) Degradation of aqueous synthesized CdTe/ZnS quantum dots in mice: differential blood kinetics and biodistribution of cadmium and tellurium. Part Fibre Toxicol 10:37CrossRefGoogle Scholar
  69. 69.
    Shi X, von dem Bussche A, Hurt RH et al (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nano 6(11):714–719CrossRefGoogle Scholar
  70. 70.
    Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Nat Acad Sci U S A 102(27):9469–9474CrossRefGoogle Scholar
  71. 71.
    Zhang S, Li J, Lykotrafitis G et al (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21(4):419–424CrossRefGoogle Scholar
  72. 72.
    Wang Z, Tiruppathi C, Minshall RD et al (2009) Size and Dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano 3(12):4110–4116CrossRefGoogle Scholar
  73. 73.
    Shan Y, Hao X, Shang X et al (2011) Recording force events of single quantum-dot endocytosis. Chem Commun 47(12):3377–3379CrossRefGoogle Scholar
  74. 74.
    Shukla R, Bansal V, Chaudhary M et al (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(23):10644–10654CrossRefGoogle Scholar
  75. 75.
    Jin H, Heller DA, Sharma R et al (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3(1):149–158CrossRefGoogle Scholar
  76. 76.
    Kamei K, Mukai Y, Kojima H et al (2009) Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery. Biomaterials 30(9):1809–1814CrossRefGoogle Scholar
  77. 77.
    Desai MP, Labhasetwar V, Walter E et al (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14(11):1568–1573CrossRefGoogle Scholar
  78. 78.
    Ding B, Tian Y, Pan Y et al (2015) Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing. Nanoscale 7(17):7545–7549CrossRefGoogle Scholar
  79. 79.
    Tomalia DA, Baker H, Dewald J et al (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17(1):117–132CrossRefGoogle Scholar
  80. 80.
    Jain V, Bharatam PV (2014) Pharmacoinformatic approaches to understand complexation of dendrimeric nanoparticles with drugs. Nanoscale 6(5):2476–2501CrossRefGoogle Scholar
  81. 81.
    Albertazzi L, Serresi M, Albanese A et al (2010) Dendrimer internalization and intracellular trafficking in living cells. Mol Pharm 7(3):680–688CrossRefGoogle Scholar
  82. 82.
    Zong H, Thomas TP, Lee K-H et al (2012) Bifunctional PAMAM dendrimer conjugates of folic acid and methotrexate with defined ratio. Biomacromol 13(4):982–991CrossRefGoogle Scholar
  83. 83.
    Haensler J, Szoka FC (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4(5):372–379CrossRefGoogle Scholar
  84. 84.
    Saovapakhiran A, D’Emanuele A, Attwood D et al (2009) Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug Chem 20(4):693–701CrossRefGoogle Scholar
  85. 85.
    De Clercq E (2006) Antiviral agents active against influenza A viruses. Nat Rev Drug Discov 5(12):1015–1025CrossRefGoogle Scholar
  86. 86.
    Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3(5):347–355CrossRefGoogle Scholar
  87. 87.
    Ebner A, Wildling L, Kamruzzahan ASM et al (2007) A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjug Chem 18(4):1176–1184CrossRefGoogle Scholar
  88. 88.
    Kamruzzahan ASM, Ebner A, Wildling L et al (2006) Antibody linking to atomic force microscope tips via disulfide bond formation. Bioconjug Chem 17(6):1473–1481CrossRefGoogle Scholar
  89. 89.
    Hinterdorfer P, Baumgartner W, Gruber HJ et al (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA 93(8):3477–3481CrossRefGoogle Scholar
  90. 90.
    Ebner A, Hinterdorfer P, Gruber HJ (2007) Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers. Ultramicroscopy 107(101):922–927CrossRefGoogle Scholar
  91. 91.
    Diao J, Ren D, Engstrom JR et al (2005) A surface modification strategy on silicon nitride for developing biosensors. Anal Biochem 343(2):322–328CrossRefGoogle Scholar
  92. 92.
    Pan Y, Zhang F, Zhang L et al (2017) The process of wrapping virus revealed by a force tracing technique and simulations. Adv Sci 4:1600489Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Chemistry and Life Science, Advanced Institute of Materials ScienceChangchun University of TechnologyChangchunChina

Personalised recommendations