Advertisement

History and Traditional Techniques of Studying the Structure of Cell Membranes

  • Jing Gao
  • Hongda WangEmail author
Chapter

Abstract

All modern cells are delimited by cell membranes, which keep the integrity of the whole cell. The cell membrane is not only the boundary of the unit of life, but also a specific compartment that harbors many essential cellular activities. The unceasing progress of science and technology provides us a more comprehension and profound understanding of cell membranes. Here we summarize the major historical discoveries and theories that tackled the existence and structure of cell membranes, and the related techniques by which different membrane models have been proposed. We also discuss the strengths and weaknesses of the techniques and the suitability of different membrane models in various cell systems.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFA0505300), the National Natural Science Foundation of China (No. 21525314, 21703231, 21721003).

References

  1. 1.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383CrossRefGoogle Scholar
  2. 2.
    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39CrossRefGoogle Scholar
  3. 3.
    Glancy B, Balaban RS (2012) Role of Mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 51(14):2959–2973CrossRefGoogle Scholar
  4. 4.
    Sacchettini JC, Baum LG, Brewer CF (2001) Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry 40(10):3009–3015CrossRefGoogle Scholar
  5. 5.
    Vandenabeele P, Galluzzi L, Vanden Berghe T et al (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714CrossRefGoogle Scholar
  6. 6.
    Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409(6818):387–390CrossRefGoogle Scholar
  7. 7.
    Dynarowicz-Latka P, Dhanabalan A, Oliveira ON (2001) Modern physicochemical research on Langmuir monolayers. Adv Coll Interface Sci 91(2):221–293CrossRefGoogle Scholar
  8. 8.
    Langmuir I (1917) The constitution and fundamental properties of solids and liquids. II. liquids. J Am Chem Soc 39:1848–1906CrossRefGoogle Scholar
  9. 9.
    Pockels A (1894) On the spreading of oil upon water. Nature 50:223–224CrossRefGoogle Scholar
  10. 10.
    Rayleigh L (1899) The theory of anomalous dispersion. Phil Mag 48:151CrossRefGoogle Scholar
  11. 11.
    Lombard J (2014) Once upon a time the cell membranes: 175 years of cell boundary research. Biol Direct 9:32CrossRefGoogle Scholar
  12. 12.
    Gorter E, Grendel F (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41(4):439–443CrossRefGoogle Scholar
  13. 13.
    Bar RS, Deamer DW, Cornwell DG (1966) Surface area of human erythrocyte lipids—reinvestigation of experiments on plasma membrane. Science 153(3739):1010–1012CrossRefGoogle Scholar
  14. 14.
    Fricke H (1925) The electric capacity of suspensions with special reference to blood. J Gen Physiol 9(2):137–152CrossRefGoogle Scholar
  15. 15.
    Fricke H, Curtis HJ (1934) Electric impedance of suspensions of yeast cells. Nature 134:102–103CrossRefGoogle Scholar
  16. 16.
    Danielli JF (1935) The thickness of the wall of the red blood corpuscle. J Gen Physiol 19(1):19–22CrossRefGoogle Scholar
  17. 17.
    Waugh DF, Schmitt FO (1940) Investigations of the thickness and ultrastructure of cellular membranes by the analytical leptoscope. Cold Spring Harb Symp Quant Biol 8:233–241CrossRefGoogle Scholar
  18. 18.
    Davson H (1962) Growth of concept of paucimolecular membrane. Circulation 26(5):1022–1037CrossRefGoogle Scholar
  19. 19.
    Robertson JD (1957) New observations on the ultrastructure of the membranes of frog peripheral nerve fibers. J Biophys Biochem Cytol 3(6):1043–1048CrossRefGoogle Scholar
  20. 20.
    Cole KS (1932) Surface forces of the Arbacia egg. J Cell Comp Physiol 1(1):1–9CrossRefGoogle Scholar
  21. 21.
    Danielli JF, Harvey EN (1935) The tension at the surface of mackerel egg oil, with remarks on the nature of the cell surface. J Cell Comp Physiol 5(4):483–494CrossRefGoogle Scholar
  22. 22.
    Halliburton WD, Friend WM (1889) The stromata of the red corpuscles. J Physiol 10(6):532–549CrossRefGoogle Scholar
  23. 23.
    Jorpes E (1932) The protein component of the erythrocyte membrane or stroma. Biochem J 26:1488–1503CrossRefGoogle Scholar
  24. 24.
    Danielli JF, Davson H (1935) A contribution to the theory of permeability of thin films. J Cell Comp Physiol 5(4):495–508CrossRefGoogle Scholar
  25. 25.
    Schmitt FO, Clark GL, Mrgudich JN (1934) X-ray diffraction studies on nerve. Science 80:567–568CrossRefGoogle Scholar
  26. 26.
    Danielli JF (1937) The relations between surface pH, ion concentrations and interfacial tension. Proc R Soc Ser B-Biol Sci 122(827):155–174CrossRefGoogle Scholar
  27. 27.
    Sjostrand FS, Andersson-Cedergren E, Dewey MM (1958) The ultrastructure of the intercalated discs of frog, mouse and guinea pig cardiac muscle. J Ultrastruct Res 1(3):271–287CrossRefGoogle Scholar
  28. 28.
    Robertson JD (1959) The ultrastructure of cell membranes and their derivatives. Biochem Soc Symp 16:3–43Google Scholar
  29. 29.
    Robertson JD (1960) The molecular structure and contact relationships of cell membranes. Prog Biophys Mol Biol 10:343–418Google Scholar
  30. 30.
    Edidin M (2003) Timeline—Lipids on the frontier: a century of cell-membrane bilayers. Nat Rev Mol Cell Biol 4(5):414–418CrossRefGoogle Scholar
  31. 31.
    Branton D, Park RB (1968) Papers on biological membrane structure. Bioscience. Little, Brown and Company, BostonGoogle Scholar
  32. 32.
    Korn ED (1966) Structure of biological membranes. Science 153(3743):1491–1498CrossRefGoogle Scholar
  33. 33.
    Robinow CF (1962) On plasma membrane of some bacteria and fungi. Circulation 26(5):1092–1104CrossRefGoogle Scholar
  34. 34.
    Benson AA (1966) On orientation of lipids in chloroplast and cell membranes. J Am Oil Chem Soc 43(5):265–270CrossRefGoogle Scholar
  35. 35.
    Green DE, Perdue JF (1966) Membranes as expressions of repeating units. Proc Natl Acad Sci USA 55(5):1295–1302CrossRefGoogle Scholar
  36. 36.
    Stoecken W, Engelman DM (1969) Current models for structure of biological membranes. J Cell Biol 42(3):613–646CrossRefGoogle Scholar
  37. 37.
    Hechter O (1965) Role of water structure in molecular organization of cell membranes. Fed Proc 24(2S15):S91–102Google Scholar
  38. 38.
    Morange M (2013) What history tells us XXX. The emergence of the fluid mosaic model of membranes. J Biosci 38(1):3–7CrossRefGoogle Scholar
  39. 39.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720–731CrossRefGoogle Scholar
  40. 40.
    Nicolson GL (2014) The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim et Biophys Acta-Biomembr 1838(6):1451–1466CrossRefGoogle Scholar
  41. 41.
    Mitchell P (1957) General theory of membrane transport from studies of bacteria. Nature 180(4577):134–136CrossRefGoogle Scholar
  42. 42.
    Branton D (1966) Fracture faces of frozen membranes. Proc Natl Acad Sci USA 55(5):1048–1056CrossRefGoogle Scholar
  43. 43.
    Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across lamellae of swollen phospholipids. J Mol Biol 13(1):238–252CrossRefGoogle Scholar
  44. 44.
    Henderson R, Unwin PNT (1975) Three-dimensional model of purple membrane obtained by electron-microscopy. Nature 257(5521):28–32CrossRefGoogle Scholar
  45. 45.
    Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle-fibers. Nature 260(5554):799–802CrossRefGoogle Scholar
  46. 46.
    Neher E (1992) Ion channels for communication between and within cells. Science 256(5056):498–502CrossRefGoogle Scholar
  47. 47.
    Benga G, Popescu O, Pop VI et al (1986) Para-(chloromercuri) benzenesulfonate binding by membrane-proteins and the inhibition of water transport in human-erythrocytes. Biochemistry 25(7):1535–1538CrossRefGoogle Scholar
  48. 48.
    Preston GM, Carroll TP, Guggino WB et al (1992) Appearance of water channels in Xenopus oocytes expressing red-cell CHIP28 protein. Science 256(5055):385–387CrossRefGoogle Scholar
  49. 49.
    Razi Naqvi K, Gonzalez-Rodriguez J, Cherry RJ et al (1973) Spectroscopic technique for studying protein rotation in membranes. Nat: New Biol 245(147):249–251Google Scholar
  50. 50.
    Edidin M (1974) Rotational and translational diffusion in membranes. Ann Rev Biophys Bioeng 3:179–201CrossRefGoogle Scholar
  51. 51.
    Rothman JE, Lenard J (1977) Membrane asymmetry. Science 195(4280):743–753CrossRefGoogle Scholar
  52. 52.
    Daleke DL (2003) Regulation of transbilayer plasma membrane phospholipid asymmetry. J Lipid Res 44(2):233–242CrossRefGoogle Scholar
  53. 53.
    Zwaal RFA, Comfurius P, Vandeenen LLM (1977) Membrane asymmetry and blood-coagulation. Nature 268(5618):358–360CrossRefGoogle Scholar
  54. 54.
    Bretscher MS (1973) Membrane structure: some general principles. Science 181(4100):622–829CrossRefGoogle Scholar
  55. 55.
    Nicolson GL (1976) Transmembrane control of receptors on normal and tumor-cells.1. Cytoplasmic influence over cell-surface components. Biochem Biophys Acta 457(1):57–108Google Scholar
  56. 56.
    Gebhardt C, Gruler H, Sackmann E (1977) Domain-structure and local curvature in lipid bilayers and biological-membranes. Zeitschrift Fur Naturforschung C-a J Biosci 32(7–8):581–596Google Scholar
  57. 57.
    Shimshick EJ, McConnell HM (1973) Lateral phase separation in phospholipid membranes. Biochemistry 12(12):2351–2360CrossRefGoogle Scholar
  58. 58.
    Simons K, Van Meer G (1988) Lipid sorting in epithelial-cells. Biochemistry 27(17):6197–6202CrossRefGoogle Scholar
  59. 59.
    Marcelja S (1976) Lipid-mediated protein interaction in membranes. Biochem Biophys Acta 455(1):1–7CrossRefGoogle Scholar
  60. 60.
    Sackmann E (1984) Biological membranes. Physical basis for trigger processes and membrane structures. Academic Press, LondonGoogle Scholar
  61. 61.
    Opdenkamp JAF (1979) Lipid asymmetry in membranes. Annu Rev Biochem 48:47–71CrossRefGoogle Scholar
  62. 62.
    Thompson TE, Tillack TW (1985) Organization of glycosphingolipids in bilayers and plasma-membranes of mammalian-cells. Ann Rev Biophys Biophys Chem 14:361–386CrossRefGoogle Scholar
  63. 63.
    Vaz WLC, Almeida PFF (1993) Phase topology and percolation in multiphase lipid bilayers—is the biological membrane a domain mosaic. Curr Opin Struct Biol 3(4):482–488CrossRefGoogle Scholar
  64. 64.
    Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell-surface. Cell 68(3):533–544CrossRefGoogle Scholar
  65. 65.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572CrossRefGoogle Scholar
  66. 66.
    Lillemeier BF, Pfeiffer JR, Surviladze Z et al (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA 103(50):18992–18997CrossRefGoogle Scholar
  67. 67.
    Ramstedt B, Slotte JP (2006) Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim Et Biophys Acta-Biomembr 1758(12):1945–1956CrossRefGoogle Scholar
  68. 68.
    van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124CrossRefGoogle Scholar
  69. 69.
    Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699CrossRefGoogle Scholar
  70. 70.
    Quinn PJ, Wolf C (2009) The liquid-ordered phase in membranes. Biochim Biophys Acta-Biomembr 1788(1):33–46CrossRefGoogle Scholar
  71. 71.
    Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275(23):17221–17224CrossRefGoogle Scholar
  72. 72.
    Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9(1):7–14CrossRefGoogle Scholar
  73. 73.
    Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50CrossRefGoogle Scholar
  74. 74.
    Lingwood D, Simons K (2007) Detergent resistance as a tool in membrane research. Nat Protoc 2(9):2159–2165CrossRefGoogle Scholar
  75. 75.
    Heerklotz H (2002) Triton promotes domain formation in lipid raft mixtures. Biophys J 83(5):2693–2701CrossRefGoogle Scholar
  76. 76.
    Lichtenberg D, Goni FM, Heerklotz H (2005) Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem Sci 30(8):430–436CrossRefGoogle Scholar
  77. 77.
    Sot J, Bagatolli LA, Goni FM et al (2006) Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Biophys J 90(3):903–914CrossRefGoogle Scholar
  78. 78.
    Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Ann Rev Biophys 38:53–74. doi: 10.1146/annurev.biophys.050708.133634
  79. 79.
    Kraft ML, Weber PK, Longo ML et al (2006) Phase separation of lipid membranes analyzed with high-resolution secondary ion mass spectrometry. Science 313(5795):1948–1951CrossRefGoogle Scholar
  80. 80.
    Lozano MM, Liu Z, Sunnick E et al (2013) Colocalization of the ganglioside G(M1) and cholesterol detected by secondary ion mass spectrometry. J Am Chem Soc 135(15):5620–5630CrossRefGoogle Scholar
  81. 81.
    Chiantia S, Ries J, Kahya N et al (2006) Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. ChemPhysChem 7(11):2409–2418CrossRefGoogle Scholar
  82. 82.
    Giocondi MC, Vie V, Lesniewska E et al (2000) In situ imaging of detergent-resistant membranes by atomic force microscopy. J Struct Biol 131(1):38–43CrossRefGoogle Scholar
  83. 83.
    Goksu EI, Vanegas JM, Blanchette CD et al (2009) AFM for structure and dynamics of biomembranes. Biochim Biophys Acta-Biomembr 1788(1):254–266CrossRefGoogle Scholar
  84. 84.
    Shaw JE, Epand RF, Epand RM et al (2006) Correlated fluorescence-atomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization. Biophys J 90(6):2170–2178CrossRefGoogle Scholar
  85. 85.
    Filippov A, Oradd G, Lindblom G (2003) The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. Biophys J 84(5):3079–3086CrossRefGoogle Scholar
  86. 86.
    Guo W, Kurze V, Huber T et al (2002) A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems. Biophys J 83(3):1465–1478CrossRefGoogle Scholar
  87. 87.
    Soni SP, LoCascio DS, Liu Y et al (2008) Docosahexaenoic acid enhances segregation of lipids between raft and nonraft domains: H-2-NMR study. Biophys J 95(1):203–214CrossRefGoogle Scholar
  88. 88.
    Klymchenko AS, Kreder R (2014) Fluorescent probes for lipid rafts: from model membranes to living cells. Chem Biol 21(1):97–113CrossRefGoogle Scholar
  89. 89.
    Eggeling C, Ringemann C, Medda R et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–U1121CrossRefGoogle Scholar
  90. 90.
    Wang Y, Gao J, Guo X et al (2014) Regulation of EGFR nanocluster formation by ionic protein-lipid interaction. Cell Res 24(8):959–976CrossRefGoogle Scholar
  91. 91.
    Nicolson GL (1976) Transmembrane control of the receptors on normal and tumor cells: I. cytoplasmic influence over cell surface components. Biochem Biophys Acta 457(1):57–108Google Scholar
  92. 92.
    Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438(7068):578–580CrossRefGoogle Scholar
  93. 93.
    Abrahams JP, Leslie AGW, Lutter R et al (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart-mitochondria. Nature 370(6491):621–628CrossRefGoogle Scholar
  94. 94.
    Golebiewska U, Scarlata S (2010) The effect of membrane domains on the G protein-phospholipase C beta signaling pathway. Crit Rev Biochem Mol Biol 45(2):97–105CrossRefGoogle Scholar
  95. 95.
    Cortijo M, Alonso A, Gomezfernandez JC et al (1982) Intrinsic protein-lipid interactions—infrared spectroscopic studies of gramicidin-A, bacteriorhodopsin and Ca2+-ATPase in biomembranes and reconstituted systems. J Mol Biol 157(4):597–618CrossRefGoogle Scholar
  96. 96.
    Arrondo JLR, Goni FM (1998) Infrared studies of protein-induced perturbation of lipids in lipoproteins and membranes. Chem Phys Lipid 96(1–2):53–68CrossRefGoogle Scholar
  97. 97.
    Holt A, Killian JA (2010) Orientation and dynamics of transmembrane peptides: the power of simple models. Eur Biophys J Biophys Lett 39(4):609–621CrossRefGoogle Scholar
  98. 98.
    Escriba PV, Gonzalez-Ros JM, Goni FM et al (2008) Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 12(3):829–875CrossRefGoogle Scholar
  99. 99.
    Escriba PV (2006) Membrane-lipid therapy: a new approach in molecular medicine. Trends in Mol Med 12(1):34–43CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunPeople’s Republic of China

Personalised recommendations