Skip to main content

Computer Simulations to Explore Membrane Organization and Transport

  • Chapter
  • First Online:
Membrane Biophysics
  • 1773 Accesses

Abstract

Over the past half-century, molecular dynamics (MD) simulations have developed from a method for studying the dynamics of pure Lennard-Jones particles to a versatile methodology for studying a broad range of biological systems at the atomic resolution. Recent advances in computer hardware and atomistic simulation algorithms have tremendously increased the timescales accessible to MD simulation by several orders of magnitude from nanosecond timescales to microsecond timescales. The dynamic behaviors of many key biochemical processes, which are hardly observed experimentally, such as protein folding, drug binding, permeation or transport of substrates across cell membrane, could be fully recorded using MD simulations at very fine temporal and spatial resolutions. Membrane proteins account for 20–30% of open reading frames in most genomes and they are targets of over 50% of all modern medicinal drugs. Knowledge of the structure and dynamical behavior of membranes and membrane proteins can greatly enhance the chances for successful pharmaceutical, anesthetic and drug delivery agent developments. However, it remains a big challenge to determine structural information of membrane proteins in experiments compared with soluble proteins. Fortunately, computational approaches, especially MD simulations, can serve as suitable tools to solve this problem and connect the relationship between the membrane protein structure and its physiological functions. In this chapter, we will demonstrate the utility of various theoretical models to investigate membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gullingsrud J, Schulten K (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J 86:3496–3509

    Article  CAS  Google Scholar 

  2. Pastor RW (1994) Molecular-dynamics and Monte-Carlo simulations of lipid bilayers. Curr Opin Struct Biol 4:486–492

    Article  CAS  Google Scholar 

  3. Feller SE (2000) Molecular dynamics simulations of lipid bilayers. Curr Opin Colloid Interface Sci 5:217–223

    Article  CAS  Google Scholar 

  4. Forrest LR, Sansom MSP (2000) Membrane simulations: bigger and better? Curr Opin Struct Biol 10:174–181

    Article  CAS  Google Scholar 

  5. Jiang YX, Lee A, Chen JY, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41

    Article  CAS  Google Scholar 

  6. Riviere S, Challet L, Fluegge D, Spehr M, Rodriguez I (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459:574–577

    Article  CAS  Google Scholar 

  7. Lin JC, Duell K, Konopka JB (2004) A microdomain formed by the extracellular ends of the transmembrane domains promotes activation of the G protein-coupled alpha-factor receptor. Mol Cell Biol 24:2041–2051

    Article  CAS  Google Scholar 

  8. Davis JE, Raharnan O, Patel S (2009) Molecular dynamics simulations of a DMPC bilayer using nonadditive interaction models. Biophys J 96:385–402

    Article  CAS  Google Scholar 

  9. Dickson CJ, Rosso L, Betz RM, Walker RC, Gould IR (2012) GAFFlipid: a General Amber Force Field for the accurate molecular dynamics simulation of phospholipid. Soft Matter 8:9617–9627

    Article  CAS  Google Scholar 

  10. Dickson CJ, Rosso L, Walker RC, Gould IR (2012) Lipid bilayer simulations: Expanding time and space with the General Amber Force Field. Abstr Pap Am Chem Soc 243

    Google Scholar 

  11. Lim JB, Rogaski B, Klauda JB (2012) Update of the cholesterol force field parameters in CHARMM. J Phys Chem B 116:203–210

    Article  CAS  Google Scholar 

  12. Yin DX, Mackerell AD (1998) Combined ab initio empirical approach for optimization of Lennard-Jones parameters. J Comput Chem 19:334–348

    Article  CAS  Google Scholar 

  13. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  CAS  Google Scholar 

  14. Sun DL, Forsman J, Woodward CE (2015) Evaluating force fields for the computational prediction of ionized arginine and lysine side-chains partitioning into lipid bilayers and octanol. J Chem Theory Comput 11:1775–1791

    Article  CAS  Google Scholar 

  15. Kukol A (2009) Lipid models for united-atom molecular dynamics simulations of proteins. J Chem Theory Comput 5:615–626

    Article  CAS  Google Scholar 

  16. Lopes PE, Roux B, Mackerell AD Jr (2009) Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability. Theory and applications. Theoret Chem Acc 124:11–28

    Article  CAS  Google Scholar 

  17. Chowdhary J, Harder E, Lopes PEM, Huang L, MacKerell AD Jr, Roux B (2013) A polarizable force field of dipalmitoylphosphatidylcholine based on the classical drude model for molecular dynamics simulations of lipids. J Phys Chem B 117:9142–9160

    Article  CAS  Google Scholar 

  18. Vorobyov IV, Anisimov VM, MacKerell AD (2005) Polarizable empirical force field for alkanes based on the classical drude oscillator model. J Phys Chem B 109:18988–18999

    Article  CAS  Google Scholar 

  19. Lamoureux G, MacKerell AD, Roux B (2003) A simple polarizable model of water based on classical Drude oscillators. J Chem Phys 119:5185–5197

    Article  CAS  Google Scholar 

  20. Roux B, Berneche S, Egwolf B, Lev B, Noskov SY, Rowley CN, Yu H (2011) Ion selectivity in channels and transporters. J Gen Physiol 137:415–426

    Article  CAS  Google Scholar 

  21. Kroese DP, Brereton T, Taimre T, Botev ZI (2014) Why the Monte Carlo method is so important today. Wiley Interdisc Rev: Comput Stat 6:386–392

    Article  Google Scholar 

  22. Del Moral P, Doucet A, Jasra A (2006) Sequential Monte Carlo samplers. J Roy Stat Soc B (Stat Methodol) 68:411–436

    Article  Google Scholar 

  23. Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. 1. General method. J Chem Phys 31:459–466

    Article  CAS  Google Scholar 

  24. Rahman A (1964) Correlations in the motion of atoms in liquid argon. Phys Rev 136:A405–A411

    Article  Google Scholar 

  25. Andrews DH (1930) The relation between the Raman spectra and the structure of organic molecules. Phys Rev 36:0544–0554

    Article  CAS  Google Scholar 

  26. Lifson S, Warshel A (1968) Consistent force field for calculations of conformations vibrational spectra and enthalpies of cycloalkane and n-alkane molecules. J Chem Phys 49:5116–5129

    Article  CAS  Google Scholar 

  27. McDaniel JG, Schmidt JR (2016) Next-generation force fields from symmetry-adapted perturbation theory. Annu Rev Phys Chem 67(67):467–488

    Article  CAS  Google Scholar 

  28. Karplus S, Lifson S (1971) Consistent force field calculations on 2,5-diketopiperazine and its 3.6-dimethyl derivatives. Biopolymers 10:1973–1982

    Article  CAS  Google Scholar 

  29. Warshel A (1973) Quantum-mechanical consistent force-field (Qcff/Pi) method—calculations of energies, conformations and vibronic interactions of ground and excited-states of conjugated molecules. Isr J Chem 11:709–717

    Article  CAS  Google Scholar 

  30. Warshel A, Levitt M, Lifson S (1970) Consistent force field for calculation of vibrational spectra and conformations of some amides and lactam rings. J Mol Spectrosc 33:84–99

    Article  CAS  Google Scholar 

  31. Warshel A, Lifson S (1970) Consistent force field calculations. 2. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes. J Chem Phys 53:582–594

    Article  CAS  Google Scholar 

  32. Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics—the MM3 force-field for hydrocarbons. 1. J Am Chem Soc 111:8551–8566

    Article  CAS  Google Scholar 

  33. Halgren TA (1992) The Merck molecular-force field—form, scope, parameterization and performance. Abstr Pap Am Chem Soc 204:38-Comp

    Google Scholar 

  34. Halgren TA, Bush BL (1996) The Merck molecular force field (MMFF94). Extension and application. Abstr Pap Am Chem Soc 212:2-Comp

    Google Scholar 

  35. Halgren TA, Nachbar RB (1996) MMF94: the Merck molecular force field. Bridging the gap—from small organics to proteins. Abstr Pap Am Chem Soc 211:70-Comp

    Google Scholar 

  36. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM (1992) Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  CAS  Google Scholar 

  37. Mayo SL, Olafson BD, Goddard WA (1990) Dreiding—a generic force-field for molecular simulations. J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  38. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  39. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1996) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, p 5179, 1995). J Am Chem Soc 118:2309

    Article  CAS  Google Scholar 

  40. Best RB, Mittal J, Feig M, MacKerell AD Jr (2012) Inclusion of many-body effects in the additive CHARMM protein CMAP potential results in enhanced cooperativity of alpha-helix and beta-hairpin formation. Biophys J 103:1045–1051

    Article  CAS  Google Scholar 

  41. Guvench O, Hatcher ER, Venable RM, Pastor RW, Mackerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370

    Article  CAS  Google Scholar 

  42. Hart K, Foloppe N, Baker CM, Denning EJ, Nilsson L, Mackerell AD Jr (2012) Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. J Chem Theory Comput 8:348–362

    Article  CAS  Google Scholar 

  43. MacKerell AD Jr, Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–265

    Article  CAS  Google Scholar 

  44. Mallajosyula SS, Guvench O, Hatcher E, Mackerell AD Jr (2012) CHARMM additive all-atom force field for phosphate and sulfate linked to carbohydrates. J Chem Theory Comput 8:759–776

    Article  CAS  Google Scholar 

  45. Raman EP, Guvench O, MacKerell AD Jr (2010) CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. J Phys Chem B 114:12981–12994

    Article  CAS  Google Scholar 

  46. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690

    CAS  Google Scholar 

  47. Yu W, He X, Vanommeslaeghe K, MacKerell AD Jr (2012) Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 33:2451–2468

    Article  CAS  Google Scholar 

  48. Daura X, Oliva B, Querol E, Aviles FX, Tapia O (1996) On the sensitivity of MD trajectories to changes in water-protein interaction parameters: the potato carboxypeptidase inhibitor in water as a test case for the GROMOS force field. Proteins 25:89–103

    Article  CAS  Google Scholar 

  49. Hansen HS, Hunenberger PH (2011) A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32:998–1032

    Article  CAS  Google Scholar 

  50. Horta BAC, Lin ZX, Huang W, Riniker S, van Gunsteren WF, Hunenberger PH (2012) Reoptimized interaction parameters for the peptide-backbone model compound N-methylacetamide in the GROMOS force field: influence on the folding properties of two beta-peptides in methanol. J Comput Chem 33:1907–1917

    Article  CAS  Google Scholar 

  51. Kouwijzer MLCE, vanEijck BP, Kooijman H, Kroon J (1995) Extension of the GROMOS force field for carbohydrates, resulting in improvement of the crystal structure determination of alpha-D-galactose. AIP Conf Proc 330:393

    Article  Google Scholar 

  52. Lins RD, Hunenberger PH (2005) A new GROMOS force field for hexopyranose-based carbohydrates. J Comput Chem 26:1400–1412

    Article  CAS  Google Scholar 

  53. Oostenbrink C, Soares TA, van der Vegt NFA, van Gunsteren WF (2005) Validation of the 53A6 GROMOS force field. Eur Biophys J 34:273–284

    Article  CAS  Google Scholar 

  54. Ott KH, Meyer B (1996) Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations. J Comput Chem 17:1068–1084

    Article  CAS  Google Scholar 

  55. Pol-Fachin L, Rusu VH, Verli H, Lins RD (2012) GROMOS 53A6(GLYC), an improved GROMOS force field for hexopyranose-based carbohydrates. J Chem Theory Comput 8:4681–4690

    Article  CAS  Google Scholar 

  56. Reif MM, Hunenberger PH, Oostenbrink C (2012) New interaction parameters for charged amino acid side chains in the GROMOS force field. J Chem Theory Comput 8:3705–3723

    Article  CAS  Google Scholar 

  57. Smith MD, Rao JS, Segelken E, Cruz L (2015) Force-field induced bias in the structure of A beta(21-30): a comparison of OPLS, AMBER, CHARMM, and GROMOS force fields. J Chem Inf Model 55:2587–2595

    Article  CAS  Google Scholar 

  58. Soares TA, Hunenberger PH, Kastenholz MA, Krautler V, Lenz T, Lins RD, Oostenbrink C, Van Gunsteren WF (2005) An improved nucleic acid parameter set for the GROMOS force field. J Comput Chem 26:725–737

    Article  CAS  Google Scholar 

  59. Suardiaz R, Maestre M, Suarez E, Perez C (2006) Parameterization and validation of Gromos force field to use in conformational analysis of epoxidic systems. J Mol Struc-Theochem 778:21–25

    Article  CAS  Google Scholar 

  60. Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  61. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  CAS  Google Scholar 

  62. Gu R-X, Liu LA, Wei D-Q, Du J-G, Liu L, Liu H (2011) Free energy calculations on the two drug binding sites in the M2 proton channel. J Am Chem Soc 133:10817–10825

    Article  CAS  Google Scholar 

  63. Lian P, Wei D-Q, Wang J-F, Chou K-C (2011) An allosteric mechanism inferred from molecular dynamics simulations on phospholamban pentamer in lipid membranes. PLoS One 6:e18587

    Google Scholar 

  64. Wang J, Zhu W, Li G, Hansmann UHE (2011) Velocity-scaling optimized replica exchange molecular dynamics of proteins in a hybrid explicit/implicit solvent. J Chem Phys 135:08B625

    Google Scholar 

  65. Mortier WJ, Ghosh SK, Shankar S (1986) Electronegativity-equalization method for the calculation of atomic charges in molecules. J Am Chem Soc 108:4315–4320

    Article  CAS  Google Scholar 

  66. Cieplak P, Dupradeau FY, Duan Y, Wang J (2009) Polarization effects in molecular mechanical force fields. J Phys Condens Matter: Inst Phys J 21:333102

    Article  CAS  Google Scholar 

  67. Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  68. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  69. Nalewajski RF, Korchowiec J, Zhou Z (1988) Molecular hardness and softness parameters and their use in chemistry. Int J Quantum Chem 34:349–366

    Article  Google Scholar 

  70. Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML (1996) Explicit reversible integrators for extended systems dynamics. Mol Phys 87:1117–1157

    Article  CAS  Google Scholar 

  71. Patel S, Mackerell AD, Brooks CL (2004) CHARMM fluctuating charge force field for proteins: II protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J Comput Chem 25:1504–1514

    Article  CAS  Google Scholar 

  72. Chelli R, Procacci P, Righini R, Califano S (1999) Electrical response in chemical potential equalization schemes. J Chem Phys 111:8569–8575

    Article  CAS  Google Scholar 

  73. Stern HA, Kaminski GA, Banks JL, Zhou R, Berne B, Friesner RA (1999) Fluctuating charge, polarizable dipole, and combined models: parameterization from ab initio quantum chemistry. J Phys Chem B 103:4730–4737

    Article  CAS  Google Scholar 

  74. Banks JL, Kaminski GA, Zhou R, Mainz DT, Berne BJ, Friesner RA (1999) Parametrizing a polarizable force field from ab initio data. I. The fluctuating point charge model. J Chem Phys 110:741–754

    Article  CAS  Google Scholar 

  75. Baker CM (2015) Polarizable force fields for molecular dynamics simulations of biomolecules. Wiley Interdisc Rev: Comput Mol Sci 5:241–254

    CAS  Google Scholar 

  76. Bauer BA, Patel S (2012) Recent applications and developments of charge equilibration force fields for modeling dynamical charges in classical molecular dynamics simulations. Theoret Chem Acc 131:1153

    Google Scholar 

  77. Zhao D-X, Liu C, Wang F-F, Yu C-Y, Gong L-D, Liu S-B, Yang Z-Z (2010) Development of a polarizable force field using multiple fluctuating charges per atom. J Chem Theory Comput 6:795–804

    Article  CAS  Google Scholar 

  78. Yang Z-Z, Wang J-J, Zhao D-X (2014) Valence state parameters of all transition metal atoms in metalloproteins—development of ABEEM sigma pi fluctuating charge force field. J Comput Chem 35:1690–1706

    Article  CAS  Google Scholar 

  79. Davis JE, Patel S (2009) Charge equilibration force fields for lipid environments: applications to fully hydrated DPPC bilayers and DMPC-embedded gramicidin A. J Phys Chem B 113:9183–9196

    Article  CAS  Google Scholar 

  80. Patel S, Davis JE, Bauer BA (2009) Exploring ion permeation energetics in gramicidin A using polarizable charge equilibration force fields. J Am Chem Soc 131:13890–+

    Google Scholar 

  81. Bauer BA, Lucas TR, Meninger DJ, Patel S (2011) Water permeation through DMPC lipid bilayers using polarizable charge equilibration force fields. Chem Phys Lett 508:289–294

    Article  CAS  Google Scholar 

  82. Lamoureux G, Bt Roux (2003) Modeling induced polarization with classical Drude oscillators: theory and molecular dynamics simulation algorithm. J Chem Phys 119:3025–3039

    Article  CAS  Google Scholar 

  83. Rick SW, Stuart SJ (2002) Potentials and algorithms for incorporating polarizability in computer simulations. Rev Comput Chem 18:89–146

    CAS  Google Scholar 

  84. Allen TW, Andersen OS, Roux B (2006) Ion permeation through a narrow channel: using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields. Biophys J 90:3447–3468

    Article  CAS  Google Scholar 

  85. Dorairaj S, Allen TW (2007) On the thermodynamic stability of a charged arginine side chain in a transmembrane helix. Proc Natl Acad Sci USA 104:4943–4948

    Article  CAS  Google Scholar 

  86. Lopes PE, Huang J, Shim J, Luo Y, Li H, Roux B, MacKerell AD Jr (2013) Polarizable force field for peptides and proteins based on the classical drude oscillator. J Chem Theory Comput 9:5430–5449

    Article  CAS  Google Scholar 

  87. He X, Lopes PEM, MacKerell AD Jr (2013) Polarizable empirical force field for acyclic polyalcohols based on the classical drude oscillator. Biopolymers 99:724–738

    Article  CAS  Google Scholar 

  88. Patel DS, He X, MacKerell AD Jr (2015) Polarizable empirical force field for hexopyranose monosaccharides based on the classical drude oscillator. J Phys Chem B 119:637–652

    Article  CAS  Google Scholar 

  89. Jana M, MacKerell AD Jr (2015) CHARMM drude polarizable force field for aldopentofuranoses and methyl-aldopentofuranosides. J Phys Chem B 119:7846–7859

    Article  CAS  Google Scholar 

  90. Savelyev A, MacKerell AD Jr (2014) Balancing the interactions of ions, water, and DNA in the Drude polarizable force field. J Phys Chem B 118:6742–6757

    Article  CAS  Google Scholar 

  91. Savelyev A, MacKerell AD Jr (2014) All-atom polarizable force field for DNA based on the classical drude oscillator model. J Comput Chem 35:1219–1239

    Article  CAS  Google Scholar 

  92. Lemkul JA, Huang J, Roux B, MacKerell AD (2016) An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications. Chem Rev 116:4983–5013

    Article  CAS  Google Scholar 

  93. Robinson D (2013) A polarizable force-field for cholesterol and sphingomyelin. J Chem Theory Comput 9:2498–2503

    Article  CAS  Google Scholar 

  94. Straatsma TP, McCammon JA (1990) Molecular dynamics simulations with interaction potentials including polarization development of a noniterative method and application to water. Mol Simul 5:181–192

    Article  Google Scholar 

  95. Cieplak P, Caldwell J, Kollman P (2001) Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases. J Comput Chem 22:1048–1057

    Article  CAS  Google Scholar 

  96. Ren P, Ponder JW (2002) Consistent treatment of inter-and intramolecular polarization in molecular mechanics calculations. J Comput Chem 23:1497–1506

    Article  CAS  Google Scholar 

  97. Thole BT (1981) Molecular polarizabilities calculated with a modified dipole interaction. Chem Phys 59:341–350

    Article  CAS  Google Scholar 

  98. Wang QT, Rackers JA, He C, Qi R, Narth C, Lagardere L, Gresh N, Ponder JW, Piquemal JP, Ren PY (2015) General model for treating short-range electrostatic penetration in a molecular mechanics force field. J Chem Theory Comput 11:2609–2618

    Article  CAS  Google Scholar 

  99. Piquemal JP, Gresh N, Giessner-Prettre C (2003) Improved formulas for the calculation of the electrostatic contribution to the intermolecular interaction energy from multipolar expansion of the electronic distribution. J Phys Chem A 107:10353–10359

    Article  CAS  Google Scholar 

  100. Marrink SJ, Tieleman DP (2013) Perspective on the Martini model. Chem Soc Rev 42:6801–6822

    Article  CAS  Google Scholar 

  101. Qi YF, Cheng X, Im W (2015) CHARMM-GUI martini maker for coarse-grained simulations. Biophys J 108:161a–161a

    Article  Google Scholar 

  102. Im W (2016) CHARMM-GUI 10 years for biomolecular modeling and simulation. Biophys J 110:328a–328a

    Article  Google Scholar 

  103. Qi YF, Ingolfsson HI, Cheng X, Lee J, Marrink SJ, Im W (2015) CHARMM-GUI martini maker for coarse-grained simulations with the martini force field. J Chem Theory Comput 11:4486–4494

    Article  CAS  Google Scholar 

  104. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  CAS  Google Scholar 

  105. Gudermann T, Nurnberg B, Schultz G (1995) Receptors and G-proteins as primary components of transmembrane signal-transduction. 1. G-protein-coupled receptors—structure and function. J Mol Med 73:51–63

    Article  CAS  Google Scholar 

  106. Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964

    Article  CAS  Google Scholar 

  107. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta(2)-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  Google Scholar 

  108. Pucadyil TJ, Chattopadhyay A (2006) Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 45:295–333

    Article  CAS  Google Scholar 

  109. Taylor MRG (2007) Pharmacogenetics of the human beta-adrenergic receptors. Pharmacogenomics J 7:29–37

    Article  CAS  Google Scholar 

  110. Milligan G, Svoboda P, Brown CM (1994) Why are there so many adrenoceptor subtypes. Biochem Pharmacol 48:1059–1071

    Article  CAS  Google Scholar 

  111. Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (2002) Identification of G protein-coupled receptor genes from the human genome sequence (vol 520, p 97, 2002). FEBS Lett 523:257

    Article  CAS  Google Scholar 

  112. Harrison T, Samuel BU, Akompong T, Hamm H, Mohandas N, Lomasney JW, Haldar K (2003) Erythrocyte G protein-coupled receptor signaling in malarial infection. Science 301:1734–1736

    Article  CAS  Google Scholar 

  113. Watts A, Volotovski ID, Marsh D (1979) Rhodopsin-lipid associations in bovine rod outer segment membranes—identification of immobilized lipid by spin-labels. Biochemistry 18:5006–5013

    Article  CAS  Google Scholar 

  114. Fretten P, Morris SJ, Watts A, Marsh D (1980) Lipid-lipid and lipid-protein interactions in chromaffin granule membranes—a spin label electron-spin-resonance study. Biochem Biophys Acta 598:247–259

    Article  CAS  Google Scholar 

  115. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  CAS  Google Scholar 

  116. Zocher M, Zhang C, Rasmussen SGF, Kobilka BK, Mueller DJ (2012) Cholesterol increases kinetic, energetic, and mechanical stability of the human beta(2)-adrenergic receptor. Proc Natl Acad Sci USA 109:E3463–E3472

    Article  CAS  Google Scholar 

  117. Periole X, Cavalli M, Marrink S-J, Ceruso MA (2009) Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J Chem Theory Comput 5:2531–2543

    Article  CAS  Google Scholar 

  118. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V-P, Chien EYT, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 angstrom structure of the human beta(2)-adrenergic receptor. Structure 16:897–905

    Article  CAS  Google Scholar 

  119. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760

    Article  CAS  Google Scholar 

  120. Wassenaar TA, Ingolfsson HI, Boeckmann RA, Tieleman DP, Marrink SJ (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155

    Article  CAS  Google Scholar 

  121. Kusalik PG, Svishchev IM (1994) The spatial structure in liquid water. Science 265:1219–1221

    Article  CAS  Google Scholar 

  122. Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    Article  CAS  Google Scholar 

  123. Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT (2008) Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 88:639–672

    Article  CAS  Google Scholar 

  124. Kunzelmann K (2015) TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca(2+) and cell volume. Trends Biochem Sci 40:535–543

    Article  CAS  Google Scholar 

  125. Gomez NM, Tamm ER, Straubeta O (2013) Role of bestrophin-1 in store-operated calcium entry in retinal pigment epithelium. Pflugers Arch Eur J Physiol 465:481–495

    Article  CAS  Google Scholar 

  126. Bakall B, Marknell T, Ingvast S, Koisti MJ, Sandgren O, Li W, Bergen AA, Andreasson S, Rosenberg T, Petrukhin K, Wadelius C (1999) The mutation spectrum of the bestrophin protein–functional implications. Hum Genet 104:383–389

    Article  CAS  Google Scholar 

  127. Sun H, Tsunenari T, Yau KW, Nathans J (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA 99:4008–4013

    Article  CAS  Google Scholar 

  128. Kane Dickson V, Pedi L, Long SB (2014) Structure and insights into the function of a Ca(2+)-activated Cl(-) channel. Nature 516:213–218

    Article  CAS  Google Scholar 

  129. Yang T, Liu Q, Kloss B, Bruni R, Kalathur RC, Guo Y, Kloppmann E, Rost B, Colecraft HM, Hendrickson WA (2014) Structure and selectivity in bestrophin ion channels. Science 346:355–359

    Article  CAS  Google Scholar 

  130. Davidson AE, Millar ID, Urquhart JE, Burgess-Mullan R, Shweikh Y, Parry N, O’Sullivan J, Maher GJ, McKibbin M, Downes SM, Lotery AJ, Jacobson SG, Brown PD, Black GC, Manson FD (2009) Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. Am J Hum Genet 85:581–592

    Article  CAS  Google Scholar 

  131. Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405:199–221

    Article  CAS  Google Scholar 

  132. Yuan P, Leonetti MD, Hsiung YC, MacKinnon R (2012) Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 481:94–U105

    Google Scholar 

  133. Qu Z, Cheng W, Cui Y, Cui Y, Zheng J (2009) Human disease-causing mutations disrupt an N-C-terminal interaction and channel function of bestrophin 1. J Biol Chem 284:16473–16481

    Article  CAS  Google Scholar 

  134. Jo S, Im W (2011) CHARMM-GUI: brining advanced computational techniques to web interface. Biophys J 100:156

    Article  CAS  Google Scholar 

  135. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  136. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  137. Hockney RW, Goel SP, Eastwood JW (1974) Quiet high-resolution computer models of a plasma. J Comput Phys 14:148–158

    Article  Google Scholar 

  138. Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  139. Nose S, Klein ML (1983) Constant pressure molecular-dynamics for molecular-systems. Mol Phys 50:1055–1076

    Article  CAS  Google Scholar 

  140. Nose S (1984) A molecular-dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  CAS  Google Scholar 

  141. Bonomi M, Branduardi D, Bussi G, Camilloni C, Provasi D, Raiteri P, Donadio D, Marinelli F, Pietrucci F, Broglia RA, Parrinello M (2009) PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 180:1961–1972

    Article  CAS  Google Scholar 

  142. Grossfield A. WHAM: the weighted histogram analysis method, version 2.0.6, http://membrane.urmc.rochester.edu/content/wham

  143. Timko J, De Castro A, Kuyucak S (2011) Ab initio calculation of the potential of mean force for dissociation of aqueous Ca-Cl. J Chem Phys 134:204510

    Google Scholar 

  144. Lamoureux G, Roux B (2006) Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. J Phys Chem B 110:3308–3322

    Article  CAS  Google Scholar 

  145. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38

    Article  CAS  Google Scholar 

  146. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  Google Scholar 

  147. Kumar R, Iyer VG, Im W (2007) CHARMM-GUI: a graphical user interface for the CHARMM users. Abstr Pap Am Chem Soc 233:273

    Google Scholar 

  148. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  149. Sali A, Potterton L, Yuan F, Vanvlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by modeler. Proteins 23:318–326

    Article  CAS  Google Scholar 

  150. Deshpande N, Addess KJ, Bluhm WF, Merino-Ott JC, Townsend-Merino W, Zhang Q, Knezevich C, Xie L, Chen L, Feng ZK, Green RK, Flippen-Anderson JL, Westbrook J, Berman HM, Bourne PE (2005) The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res 33:D233–D237

    Article  CAS  Google Scholar 

  151. Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 91430110 and 31370714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohui Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chu, H., Zhang, Y., Li, Y., Li, G. (2018). Computer Simulations to Explore Membrane Organization and Transport. In: Wang, H., Li, G. (eds) Membrane Biophysics. Springer, Singapore. https://doi.org/10.1007/978-981-10-6823-2_12

Download citation

Publish with us

Policies and ethics