Skip to main content

Hydrogen Embrittlement and Hydrogen Absorption

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

The focus in this chapter is on the delayed failure, hydrogen embrittlement of steels, and detection of hydrogen in the metal. Several techniques for the detection of hydrogen in the metal are also explained. The diffusible hydrogen in the metal plays an important role in the delayed failure or hydrogen embrittlement, and the electrochemical detection of permeated hydrogen by the Devanathan–Stachurski double cell is explained in detail. From the analysis of the current transient, one can evaluate the diffusion coefficient of hydrogen in the metal. From the application of micro-electrochemical cell, the permeated hydrogen can be detected local site by site. On zinc-coated steel scratched, the permeated hydrogen was found to be enhanced around the scratched area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yagi E, Kobayashi T et al (1983) Lattice location of hydrogen in tantalum as observed by channeling method using nuclear reaction 1H(11B, α)αα. J Phys Soc Jpn 52:3441–3447

    Article  CAS  Google Scholar 

  2. Yagi E (2003) The state of hydrogen in Nb-based Nb–Mo alloys analyzed by the channelling method. ISIJ Intern 43:505–513

    Article  CAS  Google Scholar 

  3. Yagi E, Kobayashi T et al (1986) Direct evidence of stress-induced site change of H in V observed by the channeling method. Phys Rev B 33:5121–5123

    Article  CAS  Google Scholar 

  4. Pressouyre GM (1980) Trap theory of hydrogen embrittlement. Acta Metall 28:895–991

    Article  CAS  Google Scholar 

  5. Takai K (2011) Hydrogen existing states and hydrogen embrittlement. Zairyo-to-Kankyo (Materials and Environment) 60:230–235

    Article  CAS  Google Scholar 

  6. Kusida T (2000) Research on hydrogen embrittlement by electrochemical hydrogen permeation technique. Zairyo-to-Kankyo (Materials and Environment) 49:195–200

    Article  Google Scholar 

  7. Shiragami T (2011) Hydrogen embrittlement of steel. Zairyo-to-ankyo (Materilas and Environment) 60:236–240

    Article  Google Scholar 

  8. Michler T, Lee Y, Gangloff RP, Naumannm J (2009) Influence of macro segregation on hydrogen environment embrittlement of SUS 316L stainless steel. Int J Hydrogen Energy 34:3201–3209

    Article  CAS  Google Scholar 

  9. Michler T, Naumann J (2010) Microstructural aspects upon hydrogen environment embrittlement of various bcc steels. Int J Hydrogen Energy 35:821–832

    Article  CAS  Google Scholar 

  10. Omura T, Kushida T et al (2005) Hydorgen absorption into high strength bolts under atmospheric exposure and delayed fracture susceptibility evaluation. Tetsu-to-Hagane 91:476–489

    Article  Google Scholar 

  11. Moro I, Briottet L et al (2010) Hydrogen embrittlement susceptibility of a high strength steel X80. Mat Sci Eng A 527:7252–7260

    Article  Google Scholar 

  12. Hara T (2011) Hydrogen entry behavior into steel in immersion environments. Zairyo-to-Kankyo (Materials and Environment) 60:259–264

    Article  CAS  Google Scholar 

  13. Koyama M, Akiyama E, Tsuzaki K (2012) Effect of hydrogen content on the embrittlement in a Fe–Mn–C twinning-induced plasticity steel. Corros Sci 59:277–281

    Article  CAS  Google Scholar 

  14. Ebihara K, Iwamoto T et al (2014) Numerical analysis of influence of hydrogen charging method on thermal desorption spectra for pre-strained high-strength steel. ISIJ Int 54:153–159

    Article  CAS  Google Scholar 

  15. Hatano H, Fujinami M et al (2014) Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies. Acta Mater 67:342–353

    Article  CAS  Google Scholar 

  16. Koyama M, Springer H et al (2014) Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel. Int J Hydrogen Energy 39:4634–4646

    Article  CAS  Google Scholar 

  17. Sakairi M (ed) (2016) Special issue on creation of hydrogen-passive surface on steels to prevent of hydrogen embrittlement. ISIJ Int 56:377–497

    Google Scholar 

  18. Tsuru T, Huang Y, Ali MR, Nishikata A (2005) Hydrogen entry into steel during atmospheric corrosion process. Corros Sci 47:2431–2440

    Article  CAS  Google Scholar 

  19. Omura T, Kudo T, Fujimoto S (2006) Environmental factors affecting hydrogen entry into high strength steel due to atmospheric corrosion. Mat Trans 47:2956–2962

    Article  CAS  Google Scholar 

  20. Takagi S, Sakairi M (2011) Electrochemical detection of hydrogen generated by atmospheric corrosion of scratches in zinc coated steels -effect of the scratched area. Zairyo-to-Kankyo (Materials and Environment) 60:435–437

    Article  CAS  Google Scholar 

  21. Akiyama E, Li S et al (2011) Hydrogen entry into fe and high strength steels under simulated atmospheric corrosion. Electrochim Acta 56:1799–1805

    Article  CAS  Google Scholar 

  22. Bockris JO’M, Reddy AKN (1977) Modern electrochemistry, vol 2. Plenum Press, New York, pp 1231–1251

    Google Scholar 

  23. Stratmann M, Frankel GS (eds) (2003) Encyclopedia of electrochemistry, vol 4 Corrosion and oxide films. Wileu-VCH Gmbh&Co. KGaA, Weinheim, pp 108–155

    Google Scholar 

  24. George SM, DeSantolo AM, Hall RB (1985) Surface diffusion of hydrogen on Ni(100) studied using laser-induced thermal desorption. Surf Sci 159:L425–L432

    Article  CAS  Google Scholar 

  25. Koehler BG, Mak CH et al (1988) Desorption kinetics of hydrogen and deuterium from Si(111) 7 × 7 studied using laser-induced thermal desorption. J Chem Phys 89:1709–1718

    Article  CAS  Google Scholar 

  26. Nagumo M, Nakamura N, Takai K (2001) Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels. Metallurg Mat Transact A 32:339–347

    Article  Google Scholar 

  27. Takai K, Watanuki R (2003) Hydrogen in Trapping states innocuous to environmental degradation of high-strength steels. ISIJ Intern 43:520–526

    Article  CAS  Google Scholar 

  28. Saitoh H, Hishi T, Misawa T (1996) Observation of hydrogen distribution on Pt, Pd and type 304 austenitic stainless steel by silver decoration method. Mat Trans 37:373–378

    CAS  Google Scholar 

  29. Ito G, Haramura N, Ihara T (1999) Behavior of hydrogen in an Ni3Al compound investigated by means of hydrogen microprint technique. J Japan Inst Met 63:593–596

    Article  Google Scholar 

  30. Nagao A, Kuramoto S, Ichitani K, Kanno M (2001) Visualization of hydrogen transport in high strength steels affected by stress fields and hydrogen trapping. Scripta Mater 45:122701232

    Article  Google Scholar 

  31. Ichitani K, Kanno M (2003) Visualization of hydrogen diffusion in steels by high sensitivity hydrogen microprint technique. Sci Tech Adv Mat 4:545–551

    Article  CAS  Google Scholar 

  32. Ichitani K, Kanno M, Kuramoto S (2003) Recent Development in hydrogen microprint technique and its application to hydrogen embrittlement. ISIJ Int 43:496–504

    Article  CAS  Google Scholar 

  33. Carlson DE, Magee CW (1978) A SIMS analysis of deuterium diffusion in hydrogenated amorphous silicon. Appl Phys Lett 33:81–83

    Article  CAS  Google Scholar 

  34. Tsuru T, Latanishion RM (1982) Grain boundary transport of hydrogen in nickel. Scr Metall 16:575–578

    Article  CAS  Google Scholar 

  35. Taniguchi N, Suzuki H et al (2007) Long term hydrogen absorption behavior and hydrogen embrittlement of titanium overpack under anaerobic condition. Zairyo-to-Kankyo (Materials and Environment) 56:576–584

    Article  CAS  Google Scholar 

  36. Asaoka T, Lapasset T, Aucouturier M, Lacombe P (1978) Observation of hydrogen trapping in Fe-0.15 Wt% Ti alloy by high resolution autoradiography. Corrosion 34:39–47

    Article  CAS  Google Scholar 

  37. Okada H, Itoh G, Sugano M (1992) Microscopic analysis of hydrogen by tritium autoradiography. Keikinzoku 42:112–120

    CAS  Google Scholar 

  38. Saito H, Mori M, Ishida Y, Observation of Hydrogen (1996) Trapping in grain boundaries and grain boundary properties by tritium TEM autoradiography. J Japan Inst Met 60: 914–920

    Google Scholar 

  39. Grate M, Brass AM, Haut C, Guttierez-solana F (1998) Hydrogen trapping on non metallic inclusions in Cr-Mo low alloy steels. Corros Sci 40:1073–1086

    Article  Google Scholar 

  40. Takahashi J, Kawakami K, Kobayashi Y, Tarui T (2010) The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scripta Mater 63:261–264

    Article  CAS  Google Scholar 

  41. Boes N, Züchner H (1976) Electrochemical methods for studying diffusion, permeation and solubility of hydrogen in metals. J Less-Common Met 49:223–240

    Article  CAS  Google Scholar 

  42. Haruna T, Takeuchi K, Kasahara T, Ni Y (2016) Effect of additional element on hydrogen absorption for iron in acidic and neutral sulfate solutions. ISIJ Int 56:378–384

    Article  CAS  Google Scholar 

  43. Tada E, Nishikata A (2016) Evaluation of hydrogen absorption into iron by alternating current responses in an electrochemical hydrogen permeation cell. ISIJ Int 56:424–430

    Article  CAS  Google Scholar 

  44. Fushimi K, Jin M et al (2016) Hydrogen permeation into a carbon steel sheet observed by a micro-capillary combined with a Devanathan-Stachurski cell. ISIJ Int 56:431–435

    Article  CAS  Google Scholar 

  45. Devanathan MAV, Stachurski Z (1962) The adsorption and diffusion of electrolytic hydrogen in palladium. Proc Royal Soc Lond Series A 270:90–102. doi:10.1098/rspa.1962.0205

    Article  CAS  Google Scholar 

  46. Devanathan MAV, Stachurski Z (1964) The mechanism of hydrogen evolution on iron in acid solutions by determination of permeation rates. J Electrochem Soc 111:619–623

    Article  CAS  Google Scholar 

  47. McBreen J, Nanis L, Beck W (1966) A method for determination of the permeation rate of hydrogen through metal membranes. J Electrocheml Soc 113:1218–1222

    Article  Google Scholar 

  48. Saito A, Tokuhiro H et al (1977) Comparison of glycerin displacement and electrochemical methods on hydrogen occlusion of steel. Corros Eng 28:503–508

    Article  Google Scholar 

  49. Kyo Y, Yadav AP, Nishihkata A, Tsuru T (2011) Hydrogen entry behaviour of newly developed Al–Mg–Si coating produced by physical vapour deposition. Corros Sci 53:3043–3047

    Article  CAS  Google Scholar 

  50. Sakairi M, Takagi S (2016) Effect of surface conditions and relative humidity on hydrogen permeation behavior of zinc coated steels during wet and dry corrosion. ISIJ Int 56:452–458

    Article  CAS  Google Scholar 

  51. Igarashi K, Sakairi M (2016) Effect of surface conditions and specimen composition on hydrogen permeation behavior of coated and uncoated steels during wet and dry corrosion at a constant dew point. ISIJ Int 56:465–471

    Article  CAS  Google Scholar 

  52. Yoshizawa S, Tsuruta T, Yamakawa K (1975) Development of nickel plating method in electrochemical measurement of hydrogen content in steel. Corros Eng 24:511–515

    Article  CAS  Google Scholar 

  53. Zakroczymski T, Flis J (1996) Impedance characterization of the activation of iron surface for hydrogen entry from alkaline solution. Electrochim Acta 41:1245–1250

    Article  CAS  Google Scholar 

  54. Fushimi K, Jin M et al (2014) Convection-dependent hydrogen permeation into a carbon steel sheet. ECS Electrochem Lett 3:C21–C23

    Article  CAS  Google Scholar 

  55. Bockris JO’M, Drazic D, Depic AR (1961) The electrode kinetics of the deposition and dissolution of iron. Electrochim Acta 4:325–361

    Google Scholar 

  56. Nanis L, Namboodhiri TKG (1972) Mathematics of the electrochemical extraction of hydrogen from iron. J Electrochem Soc 119:691–694

    Article  CAS  Google Scholar 

  57. Crank J (1975) The mathematics of diffusion. Calrendon Press, Oxford, pp 44–68

    Google Scholar 

  58. Hagi H, Hayashi A, Ohtani N (1978) Diffusion coefficient of hydorgen in iron between 230 and 300 K. J Japan Inst Met 42:801–807

    Article  CAS  Google Scholar 

  59. Johnson HH, Quick N, Kumnick AJ (1979) Hydrogen trapping mechanisms by permeation techniques. Scr Metall 13:67–72

    Article  CAS  Google Scholar 

  60. Hayashi A, Nagano M, Ohtani N (1980) Measurement of diffusion coefficient of hydrogen in iron at low temperatures by the electrochemical alternating method. J Japan Inst Met 44:48–52

    Article  CAS  Google Scholar 

  61. Sakamoto Y, Nishino T (1982) The determination of hydrogen diffusivity in palladium by the different electrochemical permeation methods. Bull Fac Eng Nagasaki Univ 18:79–88

    CAS  Google Scholar 

  62. Sakairi M, Igarashi K, Nagao A (2016) Development of an area-selective technique for electrochemical hydrogen detection with laser local activation. ISIJ Int 56:483–486

    Article  CAS  Google Scholar 

  63. Sato N, Takahashi T et al (2016) A micro-electrochemical approach to understanding hydrogen absorption into steel during pitting corrosion. ISIJ Int 56:495–497

    Article  CAS  Google Scholar 

  64. Sakairi M (2015) Reaction area selected electrochemical corrosion test methods. Zairyo-to-Kankyo (Materials and Environment) 64:66–72

    Article  CAS  Google Scholar 

  65. Shinohara T (2011) Reaction area selected electrochemical corrosion test methods. J Surf Fining Soc Japan 62:25–29

    Article  CAS  Google Scholar 

  66. Fujita S, Mizuno D (2007) Corrosion and corrosion test methods of zinc coated steel sheets on automobiles. Corros Sci 49:211–219

    Article  CAS  Google Scholar 

  67. Nishikata A (2011) Recent advances in coated steel sheets and the corrosion protection mechanism. J Surf Fining Soc Japan 62:2–7

    Article  CAS  Google Scholar 

  68. Hosking NC, Strom MA, Shipway PH, Rudd CD (2007) Corrosion resistance of zinc–magnesium coated steel. Corros Sci 49:3669–3695

    Article  CAS  Google Scholar 

  69. Sakairi M, Uchida Y, Itabashi K, Takahashi H (2007) Re-passivation and initial stage of localized corrosion of metals by using photon rupture technique and electrochemistry. In: Bettini EL (ed) Progress in corrosion research. Nova Science Publishers Inc., NY, pp 133–157

    Google Scholar 

  70. Sakairi M, Yanada K et al (2011) Application of pulsed laser fabrication in localized corrosion research. In: Jakubczak K (ed) Lasers—applications in science and industry, InTech, pp 173–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Ohtsuka .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Ohtsuka, T., Nishikata, A., Sakairi, M., Fushimi, K. (2018). Hydrogen Embrittlement and Hydrogen Absorption. In: Electrochemistry for Corrosion Fundamentals. SpringerBriefs in Molecular Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-6820-1_5

Download citation

Publish with us

Policies and ethics