Advertisement

Synthesis of 3D Porous Carbon and Its Application in Li–S Batteries

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

It’s feasible to synthesize porous carbon materials from MOFs since MOFs can act as a porous template and carbon source at the same time, which simplifies the traditional process for preparing porous carbon. Moreover, the MOF-derived porous carbons possess extraordinarily high surface area and rich porosity that cannot be achieved from conventional method, contributing to enhanced performance in electrochemical energy storage/conversion, gas adsorption/separation or sensing.

References

  1. 1.
    Xia W, Mahmood A, Zou R et al (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8:1837–1866CrossRefGoogle Scholar
  2. 2.
    Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mat Chem A 1:14–19CrossRefGoogle Scholar
  3. 3.
    Xia W, Zhang X, Xu L et al (2013) Facile and economical synthesis of metal–organic framework MIL-100(Al) gels for high efficiency removal of microcystin-LR. RSC Adv 3:11007–11013CrossRefGoogle Scholar
  4. 4.
    Volkringer C, Popov D, Loiseau T et al (2009) Synthesis, single–Crystal x-ray microdiffraction, and nmr characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100. Chem Mater 21:5695–5697CrossRefGoogle Scholar
  5. 5.
    Xia W, Qiu B, Xia D et al (1935) Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Sci Rep 2013:3Google Scholar
  6. 6.
    Fellinger T, White R, Titirici M et al (2012) Borax-mediated formation of carbon aerogels from glucose. Adv Func Mater 22:3254–3260CrossRefGoogle Scholar
  7. 7.
    Aegerter M, Leventis N, Koebel M (2011) Aerogels handbook. Springer-Verlag, New YorkCrossRefGoogle Scholar
  8. 8.
    Liu B, Shioyama H, Akita T et al (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391CrossRefGoogle Scholar
  9. 9.
    Lillo-Ródenas MA, Juan-Juan J, Cazorla-Amorós D et al (2004) About reactions occurring during chemical activation with hydroxides. Carbon 42:1371–1375CrossRefGoogle Scholar
  10. 10.
    Yuan D, Chen J, Tan S et al (2009) Worm-like mesoporous carbon synthesized from metal-organic coordination polymers for supercapacitors. Electrochem Commun 11:1191–1194CrossRefGoogle Scholar
  11. 11.
    Liu B, Shioyama H, Jiang H et al (2010) Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48:456–463CrossRefGoogle Scholar
  12. 12.
    Hu J, Wang H, Gao Q et al (2010) Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors. Carbon 48:3599–3606CrossRefGoogle Scholar
  13. 13.
    Jiang H, Liu B, Lan Y et al (2011) From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc 133:11854–11857CrossRefGoogle Scholar
  14. 14.
    Hu M, Reboul J, Furukawa S et al (2011) Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). Chem Commun 47:8124–8126CrossRefGoogle Scholar
  15. 15.
    Radhakrishnan L, Reboul J, Furukawa S et al (2011) Preparation of microporous carbon fibers through carbonization of Al-based porous coordination polymer (Al-PCP) with furfuryl alcohol. Chem Mater 23:1225–1231CrossRefGoogle Scholar
  16. 16.
    Almasoudi A, Mokaya R (2012) Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. J Mater Chem 22:146–152CrossRefGoogle Scholar
  17. 17.
    Yang SJ, Kim T, Im JH et al (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24:464–470CrossRefGoogle Scholar
  18. 18.
    Hu M, Reboul J, Furukawa S et al (2012) Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J Am Chem Soc 134:2864–2867CrossRefGoogle Scholar
  19. 19.
    Chaikittisilp W, Hu M, Wang H et al (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48:7259–7261CrossRefGoogle Scholar
  20. 20.
    Lim S, Suh K, Kim Y et al (2012) Porous carbon materials with a controllable surface area synthesized from metal-organic frameworks. Chem Commun 48:7447–7449CrossRefGoogle Scholar
  21. 21.
    Pachfule P, Biswal BP, Banerjee R (2012) Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis. Chem—A Eur J 18:11399–11408CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Wei Xia
    • 1
  1. 1.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations