Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 704 Accesses

Abstract

Metal oxides are promising alternatives to Pt-based electrocatalysts for ORR due to their facile synthesis and high stability under alkaline and oxidative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ota K, Ishihara A (2013) Metal oxide-based compounds as electrocatalysts for oxygen reduction reaction. In: Shao M (eds) Electrocatalysis in fuel cells. Lecture notes in energy, vol 9. Springer, London

    Google Scholar 

  2. Liang Y, Li Y, Wang H et al (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786

    Article  Google Scholar 

  3. Liang Y, Li Y, Wang H et al (2013) Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 135:2013–2036

    Article  Google Scholar 

  4. Xia W, Mahmood A, Liang Z et al (2016) Earth-abundant nanomaterials for oxygen reduction. Angew Chem Int Ed 55:2650–2676

    Article  Google Scholar 

  5. Park KS, Ni Z, Cote AP et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103:10186–10191

    Article  Google Scholar 

  6. Xia W, Zou R, An L et al (2015) A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ Sci 8:568–576

    Article  Google Scholar 

  7. Jun S, Joo S, Ryoo R et al (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713

    Article  Google Scholar 

  8. Wu G, Mack N, Gao W et al (2012) Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes. ACS Nano 6:9764–9776

    Article  Google Scholar 

  9. Sharifi T, Hu G, Jia X et al (2012) Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 6:8904–8912

    Article  Google Scholar 

  10. Sheng Z, Shao L, Chen J et al (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358

    Article  Google Scholar 

  11. Guo D, Shibuya R, Akiba C et al (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351:361–365

    Article  Google Scholar 

  12. Fu L, Liu Z, Liu Y et al (2005) Beaded cobalt oxide nanoparticles along carbon nanotubes: towards more highly integrated electronic devices. Adv Mater 17:217–221

    Article  Google Scholar 

  13. Reichhardt N, Kjellman T, Sakeye M et al (2011) Removal of intrawall pores in sba-15 by selective modification. Chem Mater 23:3400–3403

    Article  Google Scholar 

  14. Gao F, Lu Q, Liu X et al (2001) Controlled synthesis of semiconductor PbS nanocrystals and nanowires inside mesoporous silica SBA-15 phase. Nano Lett 1:743–748

    Article  Google Scholar 

  15. Lastoskie C, Gubbins KE, Quirke N (1993) Pore size heterogeneity and the carbon slit pore: a density functional theory model. Langmuir 9:2693–2702

    Article  Google Scholar 

  16. Vinu A, Hossian K, Srinivasu P et al (2007) Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. J Mater Chem 17:1819–1825

    Article  Google Scholar 

  17. Lee H, Cho W, Oh M (2012) Advanced fabrication of metal–organic frameworks: template-directed formation of polystyrene@ZIF-8 core–shell and hollow ZIF-8 microspheres. Chem Commun 48:221–223

    Article  Google Scholar 

  18. Sorribas S, Zornoza B, Téllez C et al (2012) Ordered mesoporous silica–(ZIF-8) core–shell spheres. Chem Commun 48:9388–9390

    Article  Google Scholar 

  19. Guo S, Zhang S, Wu L et al (2012) Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen. Angew Chem Int Ed 51(47):11770–11773

    Article  Google Scholar 

  20. Zheng Y, Jiao Y, Jaroniec M et al (2012) Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. Small 8(23):3550–3566

    Article  Google Scholar 

  21. Deng D, Yu L, Chen X et al (2013) Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew Chem Int Ed 52:371–375

    Article  Google Scholar 

  22. Kim C, Lee D, Pinnavaia T (2004) Graphitic mesostructured carbon prepared from aromatic precursors. Langmuir 20:5157–5459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, W. (2018). Formation of Core-Shell Metal Oxide Nanoparticles for Oxygen Reduction. In: Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6811-9_4

Download citation

Publish with us

Policies and ethics